Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Adv Mater ; : e2404828, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781580

ABSTRACT

High-performance fluorescent probes stand as indispensable tools in fluorescence-guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine-learning-assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin-pH (SiR─CTS-pH) is constructed. The results reveal that SiR─CTS-pH exhibits higher signal-to-noise ratio of fluorescence imaging, compared to single pH or cathepsin-activated probe. Moreover, SiR─CTS-pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine-learning-assisted model broaden the path and provide more advanced methods to researchers.

2.
Med Oncol ; 41(6): 163, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777998

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) can be defined as a deadly illness with a dismal prognosis in advanced stages. Therefore, we seek to examine P4HA2 expression and effect in HNSCC, along with the underlying mechanisms. This study utilized integrated bioinformatics analyses to evaluate the P4HA2 expression pattern, prognostic implication, and probable function in HNSCC. The study conducted various in vitro experiments, including colony formation, CCK-8, flow cytometry, wound healing, and transwell assays, on the human HNSCC cell line CAL-27 to examine the involvement of P4HA2 in HNSCC progression. Moreover, western blotting was used to investigate epithelial-mesenchymal transition (EMT) markers and PI3K/AKT pathway markers to elucidate the underlying mechanisms. P4HA2 expression was significantly enhanced in HNSCC, and its overexpression was correlated to tumor aggressiveness and a poor prognosis in patients. Based on in vitro experiments, the overexpressed P4HA2 enhanced cell proliferation, migration, invasion, as well as EMT while reducing apoptosis, whereas P4HA2 silencing exhibited the reverse effect. P4HA2 overexpression enhanced PI3K/AKT phosphorylation in HNSCC cells. Moreover, LY294002 was observed to counteract the effects of upregulated P4HA2 on proliferation, migration, invasion, and EMT in HNSCC. Collectively, we indicated that P4HA2 promoted HNSCC progression and EMT via PI3K/AKT signaling pathway.


Subject(s)
Disease Progression , Epithelial-Mesenchymal Transition , Head and Neck Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , Female , Humans , Male , Middle Aged , Apoptosis , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Epithelial-Mesenchymal Transition/physiology , Epithelial-Mesenchymal Transition/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics
3.
Arch Pharm (Weinheim) ; : e2400131, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678538

ABSTRACT

Three series of N-{[4-([1,2,4]triazolo[1,5-α]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl]methyl}acetamides (14a-d, 15a-n, and 16a-f) were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. The target compounds showed high ALK5 inhibitory activity and selectivity. The half maximal inhibitory concentration (IC50) for phosphorylation of ALK5 of 16f (9.1 nM), the most potent compound, was 2.7 times that of the clinical candidate EW-7197 (vactosertib) and 14 times that of the clinical candidate LY-2157299. The selectivity index of 16f against p38α mitogen-activated protein kinase was >109, which was much higher than that of positive controls (EW-7197: >41, and LY-2157299: 4). Furthermore, a molecular docking study provided the interaction modes between the target compounds and ALK5. Compounds 14c, 14d, and 16f effectively inhibited the protein expression of α-smooth muscle actin (α-SMA), collagen I, and tissue inhibitor of metalloproteinase 1 (TIMP-1)/matrix metalloproteinase 13 (MMP-13) in transforming growth factor-ß-induced human umbilical vein endothelial cells. Compounds 14c and 16f showed especially high activity at low concentrations, which suggests that these compounds could inhibit myocardial cell fibrosis. Compounds 14c, 14d, and 16f are potential preclinical candidates for the treatment of cardiac fibrosis.

4.
Int Immunopharmacol ; 131: 111824, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38461633

ABSTRACT

BACKGROUND: Psoriasis is an inflammatory skin disease that occurs repeatedly over time. The natural product of sesquiterpene lactones, Parthenolide (Par), is isolated from Tanacetum parthenium L. (feverfew) which has significant effects on anti-inflammatory. The therapeutic effect of the medication itself is crucial, but different routes of administration of the same drug can also produce different effects. PURPOSE: The aim of our research sought to investigate the ameliorating effects of Par in psoriasis-like skin inflammation and its related mechanism of action. RESULTS: In the IMQ-induced model, intragastric administration of Par reduced the Psoriasis Area and Severity Index (PASI) score, improved skin erythema, scaling, and other symptoms. And Par decreased the expression of Ki67, keratin14, keratin16 and keratin17, and increased the expression of keratin1. Par could reduce IL-36 protein expressions, meanwhile the expression of Il1b, Cxcl1 and Cxcl2 mRNA were also decreased. Par regulated the expression levels of F4/80, MPO and NE. However, skin transdermal administration of Par was more effective. Similarly, Par attenuated IL-36γ, IL-1ß and caspase-1 activated by Poly(I:C) in in vitro and ex vivo. In addition, Par also reduced NE, PR3, and Cathepsin G levels in explant skin tissues. CONCLUSION: Par ameliorated psoriasis-like skin inflammation in both in vivo and in vitro, especially after treatment with transdermal drug delivery, possibly by inhibiting neutrophil extracellular traps and thus by interfering IL-36 signaling pathway. It indicated that Par provides a new research strategy for the treatment of psoriasis-like skin inflammation and is expected to be a promising drug.


Subject(s)
Dermatitis , Extracellular Traps , Psoriasis , Sesquiterpenes , Animals , Mice , Imiquimod/pharmacology , Administration, Cutaneous , Extracellular Traps/metabolism , Skin , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/metabolism , Sesquiterpenes/therapeutic use , Sesquiterpenes/pharmacology , Dermatitis/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Disease Models, Animal , Mice, Inbred BALB C
5.
Phys Chem Chem Phys ; 26(8): 6956-6966, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38334722

ABSTRACT

The investigation and development of high thermoelectric value materials has become a research hotspot in recent years. In this work, based on the density functional theory on the Perdew-Burke-Ernzerhof (GGA-PBE) level, the thermoelectric properties of transition metal halides CdBr, Janus Cd2BrI, and CdI monolayers have been systematically investigated using Boltzmann transport theory. The calculation of the electronic band structure shows that these three materials have indirect band gap semiconductor properties. For carrier transport, the electron mobilities for CdBr, Janus Cd2BrI, and CdI monolayers are found to be 74, 16, 21 cm2 s-1 V-1 for p-type doping and 116, 102, 78 cm2 s-1 V-1 for n-type doping. Regarding their phonon transport, the CdBr, Cd2BrI, and CdI monolayers all have very low lattice thermal conductivity (4.78, 2.46, and 1.65 W m-1 K-1, respectively) that decreases with increasing temperature, which is favorable for obtaining large zT values. The electrical transport results show that the performance of p-type doping is better than that of n-type doping. At 300 K, the Seebeck coefficients of p-type doping for the CdBr, Cd2BrI, and CdI monolayers are 217.72, 246.43, and 226.24 µV K-1, respectively. In addition, we predict that the zT values of the CdBr, Cd2BrI, and CdI monolayers are 0.62, 1.64, and 0.87 for p-type doping at 300 K respectively. The zT values increase with the increase of temperature. In particular, the Janus Cd2BrI monolayer has a zT value of 3.03 at 600 K. These results suggest that all these materials can be good candidates for thermoelectric materials.

6.
J Nat Med ; 78(2): 427-438, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38334900

ABSTRACT

Angelica dahurica (A. dahurica) has a wide range of pharmacological effects, including analgesic, anti-inflammatory and hepatoprotective effects. In this study, we investigated the effect of A. dahurica extract (AD) and its effective component bergapten (BG) on hepatic fibrosis and potential mechanisms. Hepatic fibrosis was induced by intraperitoneal injection with carbon tetrachloride (CCl4) for 1 week, and mice were administrated with AD or BG by gavage for 1 week before CCl4 injection. Hepatic stellate cells (HSCs) were stimulated by transforming growth factor-ß (TGF-ß) and cultured with AD, BG, GW4064 (FXR agonist) or Guggulsterone (FXR inhibitor). In CCl4-induced mice, AD significantly decreased serum aminotransferase, reduced excess accumulation of extracellular matrix (ECM), inhibited caspase-1 and IL-1ß, and increased FXR expressions. In activated HSCs, AD suppressed the expressions of α-SMA, collagen I, and TIMP-1/MMP-13 ratio and inflammatory factors, functioning as FXR agonist. In CCl4-induced mice, BG significantly improved serum transaminase and histopathological changes, reduced ECM excessive deposition, inflammatory response, and activated FXR expression. BG increased FXR expression and inhibited α-SMA and IL-1ß expressions in activated HSCs, functioning as GW4064. FXR deficiency significantly attenuated the decreasing effect of BG on α-SMA and IL-1ß expressions in LX-2 cells. In conclusion, AD could regulate hepatic fibrosis by regulating ECM excessive deposition and inflammation. Activating FXR signaling by BG might be the potential mechanism of AD against hepatic fibrosis.


Subject(s)
Liver Cirrhosis , Signal Transduction , Mice , Animals , 5-Methoxypsoralen/adverse effects , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Hepatic Stellate Cells , Transforming Growth Factor beta/pharmacology , Liver
7.
Acta Pharmacol Sin ; 45(3): 609-618, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38030799

ABSTRACT

Leveraging the specificity of antibody to deliver cytotoxic agent into tumor, antibody-drug conjugates (ADCs) have become one of the hotspots in the development of anticancer therapies. Although significant progress has been achieved, there remain challenges to overcome, including limited penetration into solid tumors and potential immunogenicity. Fully human single-domain antibodies (UdAbs), with their small size and human nature, represent a promising approach for addressing these challenges. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is a glycosylated cell surface protein that rarely expressed in normal adult tissues but overexpressed in diverse cancers, taking part in tumorigenesis, progression, and metastasis. In this study, we investigated the therapeutic potential of UdADC targeting CEACAM5. We performed biopanning in our library and obtained an antibody candidate B9, which bound potently and specifically to CEACAM5 protein (KD = 4.84 nM) and possessed excellent biophysical properties (low aggregation tendency, high homogeneity, and thermal stability). The conjugation of B9 with a potent cytotoxic agent, monomethyl auristatin E (MMAE), exhibited superior antitumor efficacy against CEACAM5-expressing human gastric cancer cell line MKN-45, human pancreatic carcinoma cell line BxPC-3 and human colorectal cancer cell line LS174T with IC50 values of 38.14, 25.60, and 101.4 nM, respectively. In BxPC-3 and MKN-45 xenograft mice, administration of UdADC B9-MMAE (5 mg/kg, i.v.) every 2 days for 4 times markedly inhibited the tumor growth without significant change in body weight. This study may have significant implications for the design of next-generation ADCs.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Single-Domain Antibodies , Humans , Animals , Mice , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Cell Adhesion Molecules , Cytotoxins , Xenograft Model Antitumor Assays , Carcinoembryonic Antigen , GPI-Linked Proteins
8.
Int Immunopharmacol ; 127: 111460, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38157696

ABSTRACT

BACKGROUND: Ligustilide (Lig) is the main active ingredient of Umbelliferae Angelicae Sinensis Radix (Chinese Angelica) and Chuanxiong Rhizoma (Sichuan lovase rhizome). Lig possesses various pharmacological properties and could treat obesity by regulating energy metabolism. However, the impact and regulatory mechanism of Lig on alcoholic hepatic steatosis remains unclear. PURPOSE: This study aimed to explore the therapeutic effect of Lig on alcoholic hepatic steatosis and its related pharmacological mechanism. RESULTS: With chronic and binge ethanol feeding, liver tissue damage and lipid accumulation in mice suffering alcoholic hepatic steatosis were significantly improved after Lig treatment. Lig effectively regulated the expression levels of lipid metabolism-related proteins in alcoholic hepatic steatosis. In addition, Lig reduced RXFP1 expression, inhibited the activation of NLRP3 inflammasome, and blocked NET formation. Lig reduced the infiltration of immune cells to the liver and the further prevented the occurrence of alcohol-stimulated inflammatory response in liver. Lig significantly regulated lipid accumulation in alcohol exposed AML12 cells via modulating PPARα and SREBP1. In MPMs, Lig decreased the expression of RXFP1, inhibited the activation of NLRP3 in macrophages stimulated by LPS/ATP, and slowed down the occurrence of inflammatory response. CONCLUSION: Lig sustained lipid metabolism homeostasis in alcoholic hepatic steatosis, through inhibiting the activation of NLRP3 inflammasomes and the formation of NETs, especially targeting RXFP1 in macrophages.


Subject(s)
4-Butyrolactone/analogs & derivatives , Fatty Liver, Alcoholic , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Fatty Liver, Alcoholic/drug therapy , Fatty Liver, Alcoholic/metabolism , Liver/metabolism , Ethanol/therapeutic use , Inflammasomes , Lipids/therapeutic use , Mice, Inbred C57BL
9.
Bioorg Chem ; 139: 106723, 2023 10.
Article in English | MEDLINE | ID: mdl-37459824

ABSTRACT

Liver fibrosis is a worldwide challenge of health issue. Developing effective new drugs for treating liver fibrosis is of great importance. In recent years, chemically synthesized drugs have significant advantages in treating liver fibrosis. Small molecule pyrazole derivatives as activin receptor-like kinase 5 (ALK5) inhibitors have also shown anti-fibrotic and tumor growth inhibitory effects. To develop the candidate with anti-fibrotic effect, we synthesized a novel pyrazole derivative, J-1048. The inhibitory effect of J-1048 on ALK5 and p38α mitogen-activated protein (MAP) kinase activity was assessed by enzymatic assays. We established an in vivo liver fibrosis model by injecting thioacetamide (TAA) into mice and in vitro model of TGF-ß stimulated hepatic stellated cells to explore the inhibition mechanisms and therapeutic potential of J-1048 as an ALK5 inhibitor in liver fibrosis. Our data showed that J-1048 inhibited TAA-induced liver fibrosis in mice by explicitly blocking the TGF-ß/Smad signaling pathway. Additionally, J-1048 inhibited the production of inflammatory cytokine Interleukin-1ß (IL-1ß) by inhibiting the purinergic ligand-gated ion channel 7 receptor (P2X7r) -Nucleotide-binding domain-(NOD-)like receptor protein 3 (NLRP3) axis, thereby alleviating liver fibrosis. Our findings demonstrated that a novel small molecule ALK5 inhibitor, J-1048, exhibited strong potential as a clinical therapeutic candidate for liver fibrosis.


Subject(s)
Hepatitis , Protein Serine-Threonine Kinases , Mice , Animals , Receptor, Transforming Growth Factor-beta Type I , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Mice, Inbred NOD , Fibrosis , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Inflammation , Transforming Growth Factor beta , Pyrazoles/adverse effects
10.
J Enzyme Inhib Med Chem ; 38(1): 2230388, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37439326

ABSTRACT

Recent studies on biphenyl-containing compounds, a type of PD-1/PD-L1 blocker which binds to PD-L1 and induces dimerisation, have focussed on its immune function. Herein, 10 novel biphenyl derivatives were designed and synthesised. The results of the CCK-8 showed that compounds have different anti-tumour activities for tumour cells in the absence of T cells. Particularly, 12j-4 can significantly induce the apoptosis of MDA-MB-231 cells (IC50 = 2.68 ± 0.27 µM). In further studies, 12j-4 has been shown to prevent the phosphorylation of AKT by binding to cytoplasmic PD-L1, which induces apoptosis in MDA-MB-231 cells through non-immune pathways. The inhibition of AKT phosphorylation restores the activity of GSK-3ß, ultimately resulting in the degradation of PD-L1. Besides, in vivo study indicated that 12j-4 repressed tumour growth in nude mice. As these biphenyls exert their anti-tumour effects mainly through non-immune pathways, they are worthy of further study as PD-L1 inhibitors.


Subject(s)
Biphenyl Compounds , Breast Neoplasms , Proto-Oncogene Proteins c-akt , Animals , Mice , B7-H1 Antigen , Glycogen Synthase Kinase 3 beta , Mice, Nude , Breast Neoplasms/drug therapy , Biphenyl Compounds/pharmacology
11.
Cancer Med ; 12(9): 10536-10552, 2023 05.
Article in English | MEDLINE | ID: mdl-37062057

ABSTRACT

OBJECTIVE: This study aims to evaluate the risk stratification among elderly Nasopharyngeal carcinoma (NPC) patients (≥60 years old) and select the beneficiaries from concurrent chemotherapy (CCRT) combined with induction chemotherapy (IC). MATERIALS AND METHODS: A total of 909 elderly non-metastatic NPC patients treated with cisplatin-based CCRT or IC + CCRT between January 2007 and December 2016 were included. Prognostic nomograms were generated according to clinical characteristics and serum biomarkers. The survival outcomes of patients treated with CCRT versus IC + CCRT were compared in three well-matched risk groups (high, medium, and low risk) after PSM analysis. Benefit of IC in people older or younger than 70 years and effect of different IC regimens and cycles on prognosis were analyzed. RESULTS: Nomograms of overall survival (OS) (C-index: 0.64, 95% CI, 0.61-0.89) and disease special survival (DSS) (C-index: 0.65, 95% CI, 0.62-0.71) showed good prognostic accuracy. The nomogram for DSS included variables of age, gender, ACE, EBV DNA, N stage, and T stage. OS included variables of age, smoking history, ACE, ALB, EBV DNA, N stage, and T stage. The corresponding 5-year OS rates of high, medium and low risk groups were 87.4%, 82.2%, and 60.9%, respectively (p < 0.001), while the 5-year DSS rates were 92.2%, 84.3%, and 69.0%, respectively (p < 0.001). In the high risk group, IC + CCRT led to significantly higher 5-year OS and DSS rate compared with CCRT (5-year OS rate, 73.5% versus 51.8%, p = 0.006; 5-year DSS rate, 81.4% versus 61.3%, p = 0.002). While in the medium and low risk groups, OS and DSS were not significantly different (OS: p = 0.259, 0.186; DSS: p = 0.29, 0.094). Subgroup analysis showed in the high risk group, only people younger than 70 years old could benefit from IC. TPF and IC cycles of three could lead to the best survival results. CONCLUSION: Compared with CCRT, OS, and DSS among high risk elderly patients were significantly improved by the addition of IC in patients younger than 70 years old. TPF and three IC cycles were recommended.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Aged , Middle Aged , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/radiotherapy , Induction Chemotherapy/adverse effects , Chemoradiotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Risk Assessment
12.
Food Funct ; 14(5): 2392-2403, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36786020

ABSTRACT

Psoriasis is a recurrent inflammatory skin disease. IL-36-related cytokines are overexpressed in psoriasis, but the mechanism is not yet clear. Costunolide (Cos) is a sesquiterpenoid compound derived from the root of the traditional Chinese medicine Aucklandia lappa Decne. This study aimed to explore the mechanism of Cos on improving psoriasis-like skin inflammation. An in vivo model was established by applying imiquimod treatment to the back skin of mice, and an in vitro model was established by using polyinosinic-polycytidylic acid (Poly(I:C)) stimulated-mouse primary dermal fibroblasts to induce inflammation. The results showed that Cos improved the pathological changes of psoriasis-like skin inflammation. In addition, Cos could inhibit epidermal damage and inflammation-related expression and improve the occurrence of skin-related inflammation in both in vivo and in vitro experiments. The improvement of psoriasis-like skin inflammatory response might be through the P2X7R/IL-36 signaling pathway. Collectively, Cos has an inhibitory effect on the expression of psoriasis-like skin inflammation. This showed that Cos has potential skin health promoting benefits by preventing psoriasis-like skin inflammation.


Subject(s)
Dermatitis , Psoriasis , Sesquiterpenes , Animals , Mice , Imiquimod/adverse effects , Skin/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Dermatitis/drug therapy , Dermatitis/etiology , Inflammation/chemically induced , Cytokines/metabolism , Health Promotion , Mice, Inbred BALB C , Disease Models, Animal
13.
Phytomedicine ; 110: 154599, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36577209

ABSTRACT

BACKGROUND: Alcoholic liver disease (ALD) is accompanied by a disruption of lipid metabolism and an inflammatory response in the liver during the process of disease. Carnosic acid (CA), a natural diterpene extracted from Rosmarinus officinalis (rosemary) and Salvia officinalis (sage), has more pharmacological activities, which is known to be useful in the treatment of obesity and acts by regulating energy metabolism. However, the role and regulation mechanism of CA against ALD remain unclear. HYPOTHESIS: We hypothesized that CA might improve alcoholic-induced hepatosteatosis. STUDY DESIGN AND METHODS: The alcoholic liver disease model was established a mouse chronic ethanol feeding by Lieber-DeCarli control liquid feed (10 d) plus a single binge with or without CA administration. AML12 cells were exposed to ethanol for 24 h. Murine peritoneal macrophages (MPM) were stimulated with LPS and ATP. RESULTS: CA ameliorated lipid accumulation in the liver of mice in the NIAAA model, acting by inhibiting the expression of genes related to lipid synthesis. CA reduced alcohol-induced immune cell infiltration in the liver, and inhibited the activation of P2X7R-NLRP3 inflammasome, meanwhile blocked the formation of NETs in mouse livers tissue. In AML12 cells, CA attenuated the lipid accumulation triggered by ethanol stimulation, which was achieved by inhibiting the expression of SREBP1 and CA reduced the release of inflammatory factor IL-1ß by inhibiting the activation of P2X7R-NLRP3. In MPM, IL-1ß and HMGB1 were reduced after LPS/ATP stimulation in CA-treated cells and supernatant. CONCLUSIONS: CA attenuated alcohol-induced fat accumulation, suppressed the formation of NETs based on P2X7R-NLRP3 axis in mouse livers. Our data indicated that CA exerted hepatoprotective effects, which might be a promising candidate.


Subject(s)
Liver Diseases, Alcoholic , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Adenosine Triphosphate , Ethanol , Inflammasomes/metabolism , Lipopolysaccharides , Liver Diseases, Alcoholic/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
14.
Radiat Oncol ; 17(1): 138, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35941674

ABSTRACT

PURPOSE: Using real-world evidence, this study aimed to identify elderly nasopharyngeal carcinoma (NPC) patients who would benefit from chemotherapy. METHODS AND MATERIALS: 1714 elderly NPC patients between April 2007 and December 2017 were identified. Recursive partitioning analysis (RPA) was used to generate risk-stratified outcomes. Prognostic factors were performed for individual comparisons of different risk groups to assess chemotherapy benefits. RESULTS: The median follow-up was 59.3 (0.39-170.09) months. Epstein Barr virus (EBV) DNA and T stage were included in the RPA-generated risk stratification, categorizing patients into a good-prognosis group (EBV DNA ≤ 4000 copies/mL & T1-2), and a poor-prognosis group (EBV DNA ≤ 4000 copies/mL & T3-4 and EBV DNA > 4000 copies/mL & any T). Overall survival (OS) was significantly higher in the good-prognosis group compared with the training set (HR = 0.309, 95% CI 0.184-0.517; P < 0.001), and validated in the testing set (HR = 0.276, 95% CI 0.113-0.670; P = 0.002). In the poor-prognosis group, a significantly improved OS for chemoradiotherapy (CRT) compared with RT alone was observed (HR = 0.70, 95% CI 0.55-0.88; P = 0.003). Patients who received induction chemotherapy (IC) + concurrent chemoradiotherapy (CCRT) and CCRT had a significantly improved OS compared with RT alone (IC + CCRT vs. RT alone: P = 0.002; CCRT vs. RT alone: P = 0.008) but not in the IC + RT group (P = 0.306). The 5-year OS for CRT versus RT-alone with ACE-27 scores of 0, 1 and 2 were 76.0% versus 70.0% (P = 0.014), 80.5% versus 68.2% (P = 0.150) and 58.5% versus 62.2% (P = 0.490), respectively; for those aged 60-64, 65-70 and ≥ 70 years old they were 80.9% versus 75.9% (P = 0.068), 73.3% versus 63.4% (P = 0.270) and 64.8% versus 67.1% (P = 0.820), respectively. CONCLUSIONS: For elderly NPC patients a simple screening cutoff for chemotherapy beneficiaries might be EBV DNA < 4000 copies/ml & T3-4 and EBV DNA ≥ 4000 copies/ml & any T, but not for those > 70 years old and with an ACE-27 score > 1. IC + CCRT and CCRT were effective forms of chemotherapy.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Aged , Chemoradiotherapy/methods , Epstein-Barr Virus Infections/drug therapy , Epstein-Barr Virus Infections/pathology , Herpesvirus 4, Human/genetics , Humans , Induction Chemotherapy/methods , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology
15.
Inflammopharmacology ; 30(4): 1335-1349, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35708797

ABSTRACT

Gout is a chronic disease caused by monosodium urate (MSU) crystal deposition in the joints and surrounding tissues. We examined the effects of Taxifolin, a natural flavonoid mainly existing in vegetables and fruits, on MSU-induced gout. Pretreatment with Taxifolin significantly reduced IL-1ß, Caspase-1 and HMGB1 levels, upregulation of autophagy-related protein, LC3, as well as improved phagocytosis of macrophages. This study indicated that Taxifolin-attenuated inflammatory response in MSU-induced acute gout model by decreasing pro-inflammatory cytokine production and promoting the autophagy and phagocytic capacity of macrophages. Dietary supplementation with Taxifolin induces the autophagy and attenuated inflammatory response, which in consequence modulates acute gout. A preventive strategy combining dietary interventions with Taxifolin may offer a potential therapeutic alternative to pharmacological treatment to reduce inflammatory response to gout.


Subject(s)
Arthritis, Gouty , Gout , Arthritis, Gouty/chemically induced , Arthritis, Gouty/drug therapy , Autophagy , Gout/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-1beta/metabolism , Phagocytosis , Quercetin/analogs & derivatives , Uric Acid/metabolism
16.
Phytochemistry ; 200: 113247, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35597316

ABSTRACT

Acanthoic acid (AA) is a pimaradiene diterpene isolated from the root bark of Acanthopanax koreanum Nakai (Araliaceae) with a wide range of pharmacological activities, including anti-cancer, anti-inflammatory, anti-diabetes, liver protection, gastrointestinal protection, and cardiovascular protection. In addition, AA promotes its pharmacological effects by targeting liver X receptors (LXRs), nuclear factor-kappa B (NF-κB), Toll-Like Receptor 4 (TLR4) and IL-1 receptor-associated kinase (IRAK) signaling pathways, or AMP-activated protein kinase (AMPK) signaling pathway, etc. Also, some studies focus on the structural modification of AA to improve its pharmacological activities. The review summarizes the pharmacological activities, molecular mechanism, and the structural modification of AA, which might supply information for the development of AA in the future.


Subject(s)
Araliaceae , Diterpenes , Eleutherococcus , Anti-Inflammatory Agents/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Eleutherococcus/chemistry , NF-kappa B/metabolism
17.
Life Sci ; 302: 120651, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35597548

ABSTRACT

AIMS: In this study, a series of novel naphthalimide-benzotriazole conjugates (1a-3c) based on 1, 8-naphthalimide as a core skeleton, aiming at G-quadruplexes, were designed and synthesized, and their anti-cancer activity and mechanism were studied. MATERIALS AND METHODS: Using the CCK-8 assay, FRET melting, EMSA, CD, and molecular docking, intracellular assays, western blotting, immunofluorescence, and flow cytometry. KEY FINDINGS: By the CCK-8 assay, it was found that the compound, 2-(3-(piperazin-1-yl)propyl)-6-(1H-benzo [d][1,2,3]triazol-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (3a), has better activity against A549 cells. Through extracellular assays, including FRET melting, EMSA, CD, and molecular docking, results showed that 3a selectively interacted with BCL2 G-quadruplex(es). Further studies by intracellular assays, including western blotting, immunofluorescence, flow cytometry, etc., verified that 3a mediated the death of A549 cells by two pathways: inhibition of the expression of the BCL2 gene, causing tumor cell apoptosis, and promotion of genetic instability, causing autophagy. This study suggests that the type of compounds, in particular, 3a, may be a potential molecule to explore for BCL2 G-quadruplex-targeted drugs against lung cancer. SIGNIFICANCE: Our findings demonstrate that compound 3a as a BCL2 G-quadruplex ligand induces DNA damage, autophagy, and apoptosis in A549 cells. This study provides us with a type of lead compound as an anti-tumor drug.


Subject(s)
Antineoplastic Agents , G-Quadruplexes , Humans , A549 Cells , Naphthalimides/pharmacology , Molecular Docking Simulation , Sincalide , Antineoplastic Agents/pharmacology , Apoptosis , Proto-Oncogene Proteins c-bcl-2/genetics , Autophagy , Cell Line, Tumor
18.
Food Funct ; 13(8): 4678-4690, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35377371

ABSTRACT

Siberian onions (SOs) are delicious wild vegetables. Their taste is most unique, not only like scallions but also like leeks or garlic. They also have a traditional medicinal value for anti-inflammation, anti-oxidation, and anti-pyretic analgesia, particularly facilitating hepatoprotective effects. The current study investigates the potential mechanism of SOs against toxin-induced liver dysfunction. BALB/c mice were administrated with SO or silymarin by oral gavage for one week, followed by injecting carbon tetrachloride (CCl4) to induce hepatic fibrosis. The effect of SO against hepatic fibrosis was evaluated by examining the liver tissue for serum transaminase, oxidative stress, extracellular matrix, histological alterations, cytokine levels, and apoptosis. In vitro, HSC-T6 cells were cultured with the supernatant from Raw 264.7 cells stimulated with lipopolysaccharides, followed by SO extracts or Niclosamide (Signal Transducer and Activator of Transcription 3 (STAT3) inhibitor) at indicated time periods and doses. SO decreased serum transaminase levels and oxidative stress, and regulated the balance of ECM in CCl4-induced mice, including α-SMA, collagen-I and TIMP-1. SO reduced the release of inflammatory factors and regulated apoptosis-associated proteins, which is related to the inhibition of STAT3 phosphorylation. Moreover, SO reduced the positive expressions of α-SMA and NLRP3 by inhibiting STAT3 phosphorylation in activated HSCs. SO could show health-promoting effects for liver dysfunction by alleviating hepatic fibrogenesis, apoptosis and inflammation in the development of hepatic fibrosis potential depending on the STAT3 signaling pathway.


Subject(s)
Carbon Tetrachloride , Onions , Animals , Carbon Tetrachloride/adverse effects , Hepatic Stellate Cells , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Mice , Transaminases/metabolism
19.
Eur J Pharm Sci ; 174: 106189, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35429602

ABSTRACT

Targeting hepatic stellate cells (HSCs) can improve the therapeutic efficacy of medicines used to treat hepatic fibrosis. The present work aimed to study the feasibility of homing devices with vitamin A(VA) chemically attached for delivering betulin(Bt)specifically to HSCs. The manufacture and characterisation of VA modified poly (ethylene glycol) -poly (lactide-co-glycolide) block copolymer micelles loaded with Bt (Bt/ VAPPMs) and their potential therapeutic benefits in vitro and in vivo are described in this paper. Bt/VAPPMs were made in a nearly spherical core-shell configuration with diameters under 200nm.In vitro release study showed that Bt/VAPPMs exhibited steady and continuous release for over 168 hours. Bt/VAPPMs had good biocompatibility at the cellular level, according to the safety evaluation, and elicited no inflammatory response in mice. More importantly, as uptake behavior studied in cells and bioimaging experiments in vivo, Bt/VAPPMs exhibited an instinctive liver- targeting capability to focus on activated HSCs. Efficacy tests revealed that administering Bt/VAPPMs effectively inhibits collagen I expression in LX-2 cells in vitro, and this effect was also seen in a mouse model of liver fibrosis. Overall, results demonstrated that Bt/VAPPMs is a promising drug delivery system that possesses specific HSCs targeting ability for treating hepatic fibrosis.


Subject(s)
Micelles , Vitamin A , Animals , Hepatic Stellate Cells , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Mice , Polymers/therapeutic use , Triterpenes , Vitamin A/metabolism , Vitamin A/pharmacology , Vitamin A/therapeutic use
20.
Br J Pharmacol ; 179(17): 4378-4399, 2022 09.
Article in English | MEDLINE | ID: mdl-35481896

ABSTRACT

BACKGROUND AND PURPOSE: Interleukin-36 is induced by proinflammatory cytokines and promotes inflammatory responses, creating an IL-36-based inflammation loop. Although hepatocytes, produce IL-36 responses to drug-induced liver injury, little is known about the mechanistic role of IL-36 signalling during the progression of alcoholic steatohepatitis (ASH). Regarding IL-36/IL-36R and P2X7R coregulating the inflammatory response, we elucidated that modulation of IL-36R-P2X7R-TLR axis affected hepatocyte steatosis as well as the IL-36-based inflammatory feedback loop that accompanies the onset of ASH. EXPERIMENTAL APPROACH: C57BL/6J mice were subjected to either chronic-plus-binge ethanol feeding or acute gavage with multiple doses of ethanol to establish ASH, followed by pharmacological inhibition or genetic silencing of IL-36R and P2X7R. AML12 cells or mouse primary hepatocytes were stimulated with alcohol, LPS plus ATP or Poly(I:C) plus ATP, followed by silencing of IL-36γ, IL-36R or P2X7R. KEY RESULTS: P2X7R and IL-36R deficiency blocked the inflammatory loop, specifically initiated by IL-36 cytokines, in hepatocytes of mice suffering from ASH. Pharmacological inhibition to P2X7R or IL-36R alleviated lipid accumulation and inflammatory response in ASH. IL-36R was indispensable for P2X7R modulated NLRP3 inflammasome activation in ASH, and IL-36 led to a vicious cycle of P2X7R-driven inflammation in alcohol-treated hepatocytes. TLR ligands promoted IL-36γ production in hepatocytes, based on synergism with P2X7R. CONCLUSIONS AND IMPLICATIONS: Blockade of IL-36 based inflammatory feedback loop, via IL-36R-P2X7R-TLRs-modulated NLRP3 inflammasome activation, circumvented steatosis and inflammation that accompanies the onset of ASH, suggesting that targeting IL-36 can serve as a novel therapeutic approach to combat ASH.


Subject(s)
Fatty Liver, Alcoholic , Fatty Liver , Adenosine Triphosphate , Animals , Cytokines/therapeutic use , Ethanol , Feedback , Hepatocytes , Inflammasomes , Inflammation , Interleukins , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...