Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Acta Pharmacol Sin ; 44(8): 1687-1700, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36964308

ABSTRACT

Aberrant NLRP3 activation has been implicated in the pathogenesis of numerous inflammation-associated diseases. However, no small molecular inhibitor that directly targets NLRP3 inflammasome has been approved so far. In this study, we show that Atranorin (C19H18O8), the secondary metabolites of lichen family, effectively prevents NLRP3 inflammasome activation in macrophages and dendritic cells. Mechanistically, Atranorin inhibits NLRP3 activation induced cytokine secretion and cell pyroptosis through binding to ASC protein directly and therefore restraining ASC oligomerization. The pharmacological effect of Atranorin is evaluated in NLRP3 inflammasome-driven disease models. Atranorin lowers serum IL-1ß and IL-18 levels in LPS induced mice acute inflammation model. Also, Atranorin protects against MSU crystal induced mice gouty arthritis model and lowers ankle IL-1ß level. Moreover, Atranorin ameliorates intestinal inflammation and epithelial barrier dysfunction in DSS induced mice ulcerative colitis and inhibits NLRP3 inflammasome activation in colon. Altogether, our study identifies Atranorin as a novel NLRP3 inhibitor that targets ASC protein and highlights the potential therapeutic effects of Atranorin in NLRP3 inflammasome-driven diseases including acute inflammation, gouty arthritis and ulcerative colitis.


Subject(s)
Arthritis, Gouty , Colitis, Ulcerative , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Mice, Inbred C57BL
2.
J Photochem Photobiol B ; 238: 112604, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36525776

ABSTRACT

Ultraviolet-B (UVB) exposure on the skin triggers apoptosis, oxidative stress and acute inflammatory responses, which eventually increases the risk of various skin disorders. Hemin, an iron-binding porphyrin, has been clinically used for porphyria treatment. However, whether hemin contributes to the skin protection against UVB injury remains to be elucidated. Here, we found that hemin treatment (10 and 20 mg/kg) by intraperitoneal administration could dramatically relieve UVB irradiation-induced skin damage featured by erythema, edema, epidermal hyperplasia and collagen loss in C57BL/6 J mice. Importantly, hemin treatment attenuated UVB irradiation-triggered cell apoptosis in skin epidermis. Consistently, hemin (10, 20 µM) treatment decreased Caspase-3 activation and protected against UVB-induced apoptosis in HaCaT cells. Besides, hemin treatment reduced the infiltration of neutrophils in skin under UVB irradiation, thus restrained neutrophil extracellular traps (NET) formation and myeloperoxidase (MPO) release. We further revealed that hemin inhibited the expression of inflammation associated cytokines and chemokines in UVB-induced HaCaT cells and blocked the chemotaxis of dHL-60 cells to preconditioned media from HaCaT culture upon UVB irradiation. Furthermore, hemin inhibited the excessive maturation and mobilization of bone marrow neutrophils and rectified the proportion of abnormally elevated neutrophils in the blood under UVB irradiation. In conclusion, our study showed that hemin treatment protects against UVB-induced skin damage through inhibiting keratinocytes apoptosis, and suppressing neutrophils infiltration in the skin via externally restraining the keratinocyte attraction and internally regulating bone marrow neutrophil maturation and mobilization, suggesting that hemin is an effective drug candidate for the therapy of UVB damage.


Subject(s)
Hemin , Skin Diseases , Mice , Animals , Hemin/pharmacology , Hemin/metabolism , Neutrophil Infiltration , Mice, Inbred C57BL , Skin/metabolism , Keratinocytes/metabolism , Apoptosis , Inflammation/metabolism , Ultraviolet Rays
3.
Emerg Microbes Infect ; 12(1): 2149353, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36395071

ABSTRACT

Numerous vaccines have been developed to address the current COVID-19 pandemic, but safety, cross-neutralizing efficacy, and long-term protectivity of currently approved vaccines are still important issues. In this study, we developed a subunit vaccine, ASD254, by using a nanoparticle vaccine platform to encapsulate the SARS-CoV-2 spike receptor-binding domain (RBD) protein. As compared with the aluminum-adjuvant RBD vaccine, ASD254 induced higher titers of RBD-specific antibodies and generated 10- to 30-fold more neutralizing antibodies. Mice vaccinated with ASD254 showed protective immune responses against SARS-CoV-2 challenge, with undetectable infectious viral loads and reduced typical lesions in lung. Besides, neutralizing antibodies in vaccinated mice lasted for at least one year and were effective against various SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, particle size, polydispersity index, and zeta-potential of ASD254 remained stable after 8-month storage at 4°C. Thus, ASD254 is a promising nanoparticle vaccine with good immunogenicity and stability to be developed as an effective vaccine option in controlling upcoming waves of COVID-19.


Subject(s)
Antibodies, Neutralizing , COVID-19 Vaccines , COVID-19 , Nanoparticles , Animals , Humans , Mice , Antibodies, Viral , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit/immunology , COVID-19 Vaccines/immunology
4.
Mater Today Bio ; 17: 100480, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36353390

ABSTRACT

Most existing vaccines use activators that polarize the immune response to T-helper (Th) 2 response for antibody production. Our positively charged chitosan (Cs)-based nanocomplex (CNC) drives the Th1 response through unknown mechanisms. As receptors for the positively charged CNC are not determined, the physico-chemical properties are hypothesized to correlate with its immunomodulatory effects. To clarify the effects of surface charge and size on the immune response, smaller CNC and negatively charged CNC encapsulating ovalbumin are tested on dendritic cell (DC) 2.4 â€‹cells. The negatively charged CNC loses activity, but the smaller CNC does not. To further evaluate the material effects, we replace Cs by poly-amino acids. Compared with the negatively charged nanocomplex, the positively charged one preserves its activity. Using immature bone marrow-derived DCs (BMDC) enriched from BALB/c mice as a model to analyze DC differentiation, treatments with positively charged nanocomplexes evidently increase the proportions of Langerin+ dermal DC, CD11blo interstitial DC, and CD8a+ conventional DC. Additionally, vaccination with two doses containing positively charged nanocomplexes are safe and increase ovalbumin-specific IgG and recall T-cell responses in mice. Overall, a positive charge seems to contribute to the immunological effect of nanocomplexes on elevating the Th1 response by modulating DC differentiation.

5.
Colloids Surf B Biointerfaces ; 220: 112897, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36215893

ABSTRACT

Poor long-term stability and formation of irreversible aggregates when subjected to a freeze-drying process greatly limits the clinical application of gold nanoparticles (GNPs) as a vaccine carrier. In this study, we synthesized a GNP-antigen conjugate with high colloidal stability by using a thiolated polyethylene glycol (PEG) linker to conjugate a model antigen (ovalbumin; OVA) onto the GNP surface (i.e. GNP-OVA) and demonstrated this conjugate had self-adjuvanting properties to augment antigen-specific immune responses. The synthesized GNP had an average hydrodynamic size of 13.8 ± 2.1 nm (n = 3); after conjugation of OVA, the diameter increased to 28.6 ± 7.3 nm (n = 3). The obtained GNP-OVA can maintain a stable dispersion state in aqueous solutions for at least 12 months and withstand stresses during lyophilization without creating irreversible aggregates. Compared with OVA alone or a mixture of PEG-functionalized GNP (GNP-PEG) and OVA (i.e. GNP-PEG/OVA), the chemical conjugation of OVA onto GNP-PEG substantially increased antigen uptake and upregulated major histocompatibility complex class II expression in macrophages. This indicated that the GNP can function as not only an adjuvant to promote the phagocytic activity of macrophages but also a carrier to deliver the conjugated antigen into the immune cells for the enhancement of its antigen presentation capability. Importantly, OVA-specific immunoglobulin G levels in the mice immunized with GNP-OVA were 4.1 and 2.9 times higher than those in the mice injected with OVA and GNP-PEG/OVA, respectively. These results demonstrated that the GNP-antigen conjugate exhibited remarkable stability either in liquid or freeze-dried form, which makes it attractive for further pharmaceutical applications. Moreover, covalently linking antigens onto the GNP surface was enabled to enhance the immunogenicity of antigens and boost immune responses, showing the potential of the GNP conjugation strategy for vaccine development.


Subject(s)
Gold , Metal Nanoparticles , Mice , Animals , Gold/chemistry , Metal Nanoparticles/chemistry , Antigens/chemistry , Adjuvants, Immunologic/chemistry , Ovalbumin/chemistry , Polyethylene Glycols , Immunity
6.
Eur J Med Chem ; 240: 114598, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35849940

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and ranks third in mortality rate worldwide. Brefeldin A (BFA, 1), a natural Arf1 inhibitor, qualifies extremely superior antitumor activity against HCC while its low aqueous solubility, poor bioavailability, and high toxicity have greatly hindered its translation to the clinic. Herein, a series of BFA-cinnamic acid ester derivatives was rationally designed and synthesized via introducing active cinnamic acid and its analogues into the structure of 1. Their in vitro cytotoxic activities on five cancer cell lines, including HepG2, BEL-7402, HeLa, Eca-109 and PANC-1, were evaluated using MTT assay. As expected, favorable cytotoxic activity was observed on majority of the mono-substituted derivatives. Especially, the most potent brefeldin A 4-O-(4)-dimethylaminocinnamate (CHNQD-01269, 33) with improved aqueous solubility, demonstrated the strong cytotoxic activity against HepG2 and BEL-7402 cell lines with IC50 values of 0.29 and 0.84 µM, respectively. More importantly, 33 performed low toxicity on normal liver cell line L-02 with the selectivity index (SI) of 9.69, which was more than 17-fold higher than that of 1. Results from mechanistic studies represented that 33 blocked the cell cycle in the G1 phase, and induced apoptosis via elevating reactive oxygen species (ROS) production and increasing expression of apoptosis-related proteins of HepG2 cells. Docking experiment also suggested 33 a promising Arf1 inhibitor, which was confirmed by the cellular thermal shift assay that 33 displayed a significant effect on the stability of Arf1 protein. Furthermore, 33 possessed high safety profile (MTD >100 mg/kg, ip) and favorable pharmacokinetic properties. Notably, the superior antiproliferative activity was verified in HepG2 tumor-bearing xenograft model in which 33 markedly suppressed the tumor growth (TGI = 46.17%) in nude mice at a dose of 10 mg/kg once a day for 16 d. The present study provided evidence of exploiting this series of highly efficacious derivatives, especially 33, for the treatment of HCC.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Antineoplastic Agents/chemistry , Apoptosis , Brefeldin A/chemistry , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation , Cinnamates , Drug Screening Assays, Antitumor , Esters/pharmacology , Humans , Liver Neoplasms/drug therapy , Mice , Mice, Nude , Structure-Activity Relationship
7.
Antiviral Res ; 203: 105347, 2022 07.
Article in English | MEDLINE | ID: mdl-35643150

ABSTRACT

Zika virus (ZIKV) is a flavivirus that causes severe neuropathology in newborns and adults. There is no ZIKV-specific treatment or preventative. Therefore, it is urgent to develop safe and effective anti-ZIKV agents. Hemin, an iron-binding porphyrin, has been authorized by FDA to treat acute porphyria since the 1970s. Here, we aim to evaluate the anti-ZIKV effect of hemin in SNB-19 cells (a human glioma cell line) and explore the underlying mechanism based on the virus life cycle and functions of the host cell. Our study found that hemin has a strong activity to protect SNB-19 cells from ZIKV infection presented by decreased expression of viral proteins and virus yield. Meanwhile, ZIKV infection caused STAT1/IRF1 signaling activation and induced inflammatory responses in SNB-19 cells, which was relieved by hemin treatment. HO-1 has been reported to be potently induced by hemin and play a broad-spectrum antiviral effect. Intriguingly, hemin could still exert anti-ZIKV activity upon HO-1 siRNA treatment. Then, we conducted a time-of-addition assay, the result indicated hemin works mainly by interfering with the virus entry process. Further experiments excluded the effects of hemin on AXL-dependent viral adsorption and clathrin-mediated endocytosis processes. Subsequently, by fluorescence spectroscopy studies, intracellular fusion assay and syncytia formation assay, we revealed that hemin acts on the process of virus-endosome fusion. This study elaborated that hemin could play anti-ZIKV activity by disrupting the virus-endosome fusion process and shed new light on developing novel agents against ZIKV infection.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , DNA Viruses , Endosomes , Hemin/pharmacology , Humans , Infant, Newborn , Vero Cells , Virus Internalization , Virus Replication , Zika Virus Infection/metabolism
8.
Acta Pharmacol Sin ; 43(8): 2055-2066, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34907359

ABSTRACT

Acute lung injury (ALI) is a common and devastating clinical disorder featured by excessive inflammatory responses. Stimulator of interferon genes (STING) is an indispensable molecule for regulating inflammation and immune response in multiple diseases, but the role of STING in the ALI pathogenesis is not well elucidated. In this study, we explored the molecular mechanisms of STING in regulating lipopolysaccharide (LPS)-induced lung injury. Mice were pretreated with a STING inhibitor C-176 (15, 30 mg/kg, i.p.) before LPS inhalation to induce ALI. We showed that LPS inhalation significantly increased STING expression in the lung tissues, whereas C-176 pretreatment dose-dependently suppressed the expression of STING, decreased the production of inflammatory cytokines including TNF-α, IL-6, IL-12, and IL-1ß, and restrained the expression of chemokines and adhesion molecule vascular cell adhesion protein-1 (VCAM-1) in the lung tissues. Consistently, in vitro experiments conducted in TNF-α-stimulated HMEC-1cells (common and classic vascular endothelial cells) revealed that human STING inhibitor H-151 or STING siRNA downregulated the expression levels of adhesion molecule and chemokines in HMEC-1cells, accompanied by decreased adhesive ability and chemotaxis of immunocytes upon TNF-α stimulation. We further revealed that STING inhibitor H-151 or STING knockdown significantly decreased the phosphorylation of transcription factor STAT1, which subsequently influenced its binding to chemokine CCL2 and adhesive molecule VCAM-1 gene promoter. Collectively, STING inhibitor can alleviate LPS-induced ALI in mice by preventing vascular endothelial cells-mediated immune cell chemotaxis and adhesion, suggesting that STING may be a promising therapeutic target for the treatment of ALI.


Subject(s)
Acute Lung Injury , Membrane Proteins , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Animals , Cell Adhesion , Chemokines/metabolism , Chemotaxis , Cytokines/metabolism , Endothelial Cells/metabolism , Humans , Lipopolysaccharides/pharmacology , Lung/pathology , Membrane Proteins/antagonists & inhibitors , Mice , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/adverse effects , Vascular Cell Adhesion Molecule-1/metabolism
9.
Mar Life Sci Technol ; 4(1): 88-97, 2022 Feb.
Article in English | MEDLINE | ID: mdl-37073350

ABSTRACT

Marine natural products play critical roles in the chemical defense of many marine organisms and are essential, reputable sources of successful drug leads. Sixty-seven 14-membered resorcylic acid lactone derivatives 3-27 and 30-71 of the natural product zeaenol (1) isolated from the marine-derived fungus Cochliobolus lunatus were semisynthesized by chlorination, acylation, esterification, and acetalization in one to three steps. The structures of these new derivatives were established by HRESIMS and NMR techniques. All the compounds (1-71) were evaluated for their antialgal and antiplasmodial activities. Among them, 14 compounds displayed antifouling activities against adhesion of the fouling diatoms. In particular, 9 and 34 exhibited strong and selective inhibitory effects against the diatoms Navicula laevissima and Navicula exigua (EC50 = 6.67 and 8.55 µmol/L), respectively, which were similar in efficacy to those of the positive control SeaNine 211 (EC50 = 2.90 and 9.74 µmol/L). More importantly, 38, 39, and 69-71 showed potent antiplasmodial activities against Plasmodium falciparum with IC50 values ranging from 3.54 to 9.72 µmol/L. Very interestingly, the five antiplasmodial derivatives displayed non-toxicity in the cytotoxicity assays and the zebrafish embryos model, thus, representing potential promising antiplasmodial drug agents. The preliminary structure-activity relationships indicated that biphenyl substituent at C-2, acetonide at positions C-5' and C-6', and tri- or tetra-substituted of acyl groups increased the antiplasmodial activity. Therefore, combining evaluation of chemical ecology with pharmacological models will be implemented as a systematic strategy, not only for environmentally friendly antifoulants but also for structurally novel drugs. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-021-00103-0.

10.
Acta Biomater ; 130: 223-233, 2021 08.
Article in English | MEDLINE | ID: mdl-34087444

ABSTRACT

Epigallocatechin gallate (EGCG) is a potential therapeutic agent for treatment of atopic dermatitis (AD) due to its antioxidant and anti-inflammatory activities. However, inherent instability of EGCG greatly limits its bioavailability and clinical efficacy. In this study, we developed a poly-γ-glutamate (γ-PGA)-based microneedle (MN) formulation capable of maintaining EGCG's stability and efficiently delivering EGCG into the skin to ameliorate AD symptoms. The γ-PGA MN can not only protect EGCG from oxidation, but also serve as an immunomodulator to downregulate T helper type 2 (Th2)-type immune responses. Encapsulation of EGCG into the γ-PGA MN and utilization of L-ascorbic acid (AA) as a stabilizer preserved 95% of its structural stability and retained 93% of its initial antioxidant activity after 4 weeks of storage. Once-weekly administration of EGCG/AA-loaded MNs to an Nc/Nga mouse model of AD for 4 weeks significantly ameliorated skin lesions and epidermal hyperplasia by reducing serum IgE (from 12156 ± 1344 to 5555 ± 1362 ng/mL) and histamine levels (from 81 ± 18 to 40 ± 5 pg/mL) and inhibiting IFN-γ (from 0.10 ± 0.01 to 0.01 pg/mg total protein) and Th2-type cytokine production, when compared to the AD (no treatment) group (p < 0.05). Notably, once-weekly MN therapy was at least as effective as the daily topical application of an EGCG + AA solution but markedly reduced the administration frequency and required dose. These results show that EGCG/AA-loaded γ-PGA MNs may be a convenient and promising therapeutic option for AD treatment. STATEMENT OF SIGNIFICANCE: This study describes epigallocatechin gallate (EGCG)/L-ascorbic acid (AA)-loaded poly-γ-glutamate (γ-PGA) microneedles (MN) capable of providing antioxidant, anti-inflammatory, and immunomodulatory effects on inflamed skin for ameliorating atopic dermatitis (AD) symptoms in Nc/Nga mice. After skin insertion, the γ-PGA MN can be quickly dissolved in the skin and remain in the dermis for sustained release of encapsulated active ingredients for 6 days. We demonstrated that once-weekly MN therapy effectively alleviated skin lesions and modulated immune response to relieve Th2-polarized allergic response in mice. Once-weekly MN dosing regimen may provide patients with a more convenient, therapeutically equivalent option to daily topical dosing, and may increase compliance and long-term persistence with AD therapy.


Subject(s)
Dermatitis, Atopic , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Ascorbic Acid/pharmacology , Catechin/analogs & derivatives , Cytokines , Dermatitis, Atopic/drug therapy , Humans , Immunity , Mice , Polyglutamic Acid/analogs & derivatives , Skin
11.
Mar Drugs ; 20(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35049881

ABSTRACT

Brefeldin A (1), a potent cytotoxic natural macrolactone, was produced by the marine fungus Penicillium sp. (HS-N-29) from the medicinal mangrove Acanthus ilicifolius. Series of its ester derivatives 2-16 were designed and semi-synthesized, and their structures were characterized by spectroscopic methods. Their cytotoxic activities were evaluated against human chronic myelogenous leukemia K562 cell line in vitro, and the preliminary structure-activity relationships revealed that the hydroxy group played an important role. Moreover, the monoester derivatives exhibited stronger cytotoxic activity than the diester derivatives. Among them, brefeldin A 7-O-2-chloro-4,5-difluorobenzoate (7) exhibited the strongest inhibitory effect on the proliferation of K562 cells with an IC50 value of 0.84 µM. Further evaluations indicated that 7 induced cell cycle arrest, stimulated cell apoptosis, inhibited phosphorylation of BCR-ABL, and thereby inactivated its downstream AKT signaling pathway. The expression of downstream signaling molecules in the AKT pathway, including mTOR and p70S6K, was also attenuated after 7-treatment in a dose-dependent manner. Furthermore, molecular modeling of 7 docked into 1 binding site of an ARF1-GDP-GEF complex represented well-tolerance. Taken together, 7 had the potential to be served as an effective antileukemia agent or lead compound for further exploration.


Subject(s)
Antineoplastic Agents/pharmacology , Brefeldin A/pharmacology , Penicillium , Wetlands , Animals , Antineoplastic Agents/chemistry , Aquatic Organisms , Brefeldin A/chemistry , Cell Proliferation/drug effects , Humans , K562 Cells/drug effects , Structure-Activity Relationship
12.
Front Cell Dev Biol ; 9: 779287, 2021.
Article in English | MEDLINE | ID: mdl-34993197

ABSTRACT

Background: Periodontitis is a chronic and progressive disease accompanied by bone loss. It is still a challenge to restore the bone structure. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a decisive role in bone restoration and regeneration. Marine natural products (MNPs) have multiple biological activities, including anti-tumor and anti-inflammatory properties. However, the exploration of MNPs in osteogenesis is far from sufficient. Methods: We obtained a series of derivatives through structural optimization from 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloid isolated from Scopulariopsis sp. Some preliminary cytological experiments showed that CHNQD-00603, obtained by adding a methoxy group to the position C3 and a hydroxyl group to the position C4 of 4-phenyl-3,4-dihydroquinolin-2(1H)-one, might promote the osteogenic differentiation of BMSCs. To further investigate the effects of CHNQD-00603 on BMSCs, we performed a CCK-8 assay and qRT-PCR, alkaline phosphatase staining (ALP), and alizarin red S staining to assess the cytotoxicity and the ability of osteogenic differentiation of CHNQD-00603. The autophagy level was assessed and validated by WB, qRT-PCR, and transmission electron microscopy. Then, 3-methyladenine (3-MA) was added to further examine the role of autophagy. Based on the expression of autophagy-related genes, we predicted and examined the potential miRNAs by bioinformatics. Results: CCK-8 assay showed that CHNQD-00603 at 1 µg/ml did not influence BMSCs activity. However, the proliferation rate decreased from the seventh day. qRT-PCR, ALP staining, ALP activity assay, and Alizarin red S staining showed that the best concentration of CHNQD-00603 to promote osteogenic differentiation was 1 µg/ml. Further investigations indicated that CHNQD-00603 activated autophagy, and the inhibition of autophagy by 3-MA attenuated CHNQD-00603-enhanced osteogenic differentiation. Subsequently, the findings from bioinformatics and qRT-PCR indicated that miR-452-3p might be a regulator of autophagy and osteogenesis. Furthermore, we transfected BMSCs with miR-452-3p NC and mimics separately to further determine the function of miR-452-3p. The data showed that the overexpression of miR-452-3p moderated the level of autophagy and osteogenic differentiation of CHNQD-00603-treated BMSCs. Conclusion: Our data suggested that CHNQD-00603 promoted the osteogenic differentiation of BMSCs by enhancing autophagy. Meanwhile, miR-452-3p played a regulatory role in this process.

13.
Acta Biomater ; 114: 183-192, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32688089

ABSTRACT

Atopic dermatitis (AD), a common, relapsing, inflammatory disorder of the skin, is associated with T helper type 2 (Th2)-biased immune responses. Despite the efficacy of existing drugs for AD treatment, their safety and side effects cause concern. The present study describes the use of dissolvable poly-γ-glutamate (γ-PGA) microneedles (MNs) with immunomodulatory effects for effectively relieving AD-like symptoms in Nc/Nga mice. γ-PGA MNs can easily penetrate the epidermis and release γ-PGA into the dendritic cell-rich dermis to interact with dendritic cells for modulating immune responses. Transdermal administration of high-molecular-weight (HMW, 1100 kDa) γ-PGA MNs significantly reduced clinical dermatitis scores, epidermal thickness, and mast cell infiltration in mice by downregulating immunoglobulin (Ig)E and IgG1 levels (Th2-associated antibodies) compared with the AD control group. However, low-molecular-weight (200-400 kDa) γ-PGA MNs ameliorated AD-like skin lesions less effectively than HMW γ-PGA MNs, thus indicating that the MW of γ-PGA may affect its immunomodulatory properties. Notably, the mouse skin quickly recovered its barrier function within 4 h after MN application. No weight loss or abnormality was observed in the MN-treated mice during the 8-week treatment period. These results suggest that the γ-PGA MNs represent an innovative, safe, and reliable therapeutic strategy for AD management. STATEMENT OF SIGNIFICANCE: This study is the first to explore the feasibility of using poly-γ-glutamate (γ-PGA) microneedles (MNs) as transdermal immunomodulators for improving atopic dermatitis (AD) symptoms and to evaluate their immunomodulatory effect in mice with spontaneously developed AD. Transdermal administration of γ-PGA MNs enables the γ-PGA to localize in the skin for activation of dermal dendritic cells, thus modulating immune responses. We demonstrate that high-molecular-weight γ-PGA MNs can be retained in the skin for at least 6 days and effectively suppress AD-like skin lesions in mice by reducing infiltration of mast cells and downregulating Th2-associated antibody production (IgE and IgG1). The developed MN device has the potential to replace conventional therapy and to become an innovative treatment strategy for AD.


Subject(s)
Dermatitis, Atopic , Administration, Cutaneous , Animals , Cytokines , Dermatitis, Atopic/drug therapy , Immunologic Factors/therapeutic use , Mice , Polyglutamic Acid/analogs & derivatives , Skin
14.
Chem Biodivers ; 17(7): e2000207, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32367656

ABSTRACT

A small library of 120 compounds was established with seventy new alkylated derivatives of the natural product terphenyllin, together with 45 previous reported derivatives and four natural p-terphenyl analogs. The 70 new derivatives were semi-synthesized and evaluated for cytotoxic activities against four cancer cell lines. Interestingly, 2',4''-diethoxyterphenyllin, 2',4,4''-triisopropoxyterphenyllin, and 2',4''-bis(cyclopentyloxy)terphenyllin showed potent activities with IC50 values in a range from 0.13 to 5.51 µM, which were similar to those of the positive control, adriamycin. The preliminary structure-activity relationships indicated that the introduction of alkyl substituents including ethyl, allyl, propargyl, isopropyl, bromopropyl, isopentenyl, cyclopropylmethyl, and cyclopentylmethyl are important for improving the cytotoxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Small Molecule Libraries/chemistry , Terphenyl Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aspergillus/chemistry , Aspergillus/isolation & purification , Biological Products/chemical synthesis , Biological Products/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship , Terphenyl Compounds/chemical synthesis , Terphenyl Compounds/chemistry
15.
Acta Biomater ; 97: 230-238, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31362139

ABSTRACT

This study details effective influenza vaccination via sustained intradermal (ID) release of vaccines using implantable and patch-free chitosan microneedles (MNs). The microneedle (MN) patch is composed of vaccine-loaded chitosan MNs with a dissolvable supporting array that gives extra length for complete insertion of MNs and is dissolved within the skin during insertion. Chitosan MNs can be quickly and entirely implanted into the dermis to function as a depot and an immune-boosting agent for the extended release of vaccines and simultaneous activation of the immune system. We found the influenza virus-specific antibody levels induced by chitosan MN vaccination were significantly higher than those elicited by intramuscular (IM) immunization with influenza vaccine alone. The MN induced immune-enhancing effect was obvious 4 week after the vaccination and lasted for at least 16 weeks. Most importantly, MN-immunized mice were completely protected from H1N1 viral challenge without major weight loss, whereas mice receiving IM injection at the same dose had a mortality rate of 60% and experienced notable weight loss after challenge. Our results suggest that the chitosan MNs cannot only be a viable tool for precise ID vaccine delivery but also exert strong adjuvanticity to enhance vaccine potency and induce protective immunity against influenza virus infections. STATEMENT OF SIGNIFICANCE: There is an urgent need for generating a new vaccination strategy to address the threat of global pandemic influenza. This study presents implantable chitosan microneedles (MNs) with immune-boosting function for effective influenza vaccination. We demonstrate that the chitosan MN can not only be an efficient tool for sustained intradermal delivery but also serve as an immunological adjuvant to boost vaccine efficacy. Continuous antigen exposure and immune stimulation provided by the implanted MNs may enhance the immunogenicity of influenza vaccines and evoke long-lasting immune responses to completely protect mice from lethal influenza challenge. The proposed MN system has great potential to be used as a new adjuvanted vaccine formulation and make influenza vaccination more effective and more accessible.


Subject(s)
Immunization, Secondary , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines , Needles , Orthomyxoviridae Infections/prevention & control , Animals , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Injections, Intradermal , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Swine
16.
Cell Death Discov ; 4: 33, 2018.
Article in English | MEDLINE | ID: mdl-30245856

ABSTRACT

Autophagy is one of the induced mechanisms in metastatic cancer to escape death due to starvation, hypoxia, metabolic stresses, chemotherapy, and radiation. Some publications have revealed that chemotherapy combined with autophagy inhibitor will overcome drug resistance. We modified AS2 cells with PTEN overexpression, mTOR knockdown, or Keap1 knockdown, and made modification of A549 cells with PTEN knockdown, Atg5 knockdown, and Keap1 overexpression. Our study was aimed toward an exploration of how autophagy modulates Keap1, ROS generation, and vinorelbine-induced apoptosis in these cell lines. We found that lung cancer PC14PE6/AS2 (AS2) had higher mTOR and Akt and also lower PTEN expression than A549 cells. Descended autophagy was demonstrated with more decreased p62 accumulation and LC3 II conversion in AS2 cells as compared to A549 cells. The A549 cells had lower Keap1/Nrf2 and more active anti-oxidant response element (ARE) activity than the AS2 cells. We modified AS2 cells with PTEN overexpression, mTOR knockdown, Keap1 knockdown, and revealed amplified p62 and LC3 expression accompanied with decreased Akt, Keap1, ROS, and vinorelbine-induced apoptosis. Declined p62, LC3 expression were accompanied with increased Akt, Keap1, ROS, and vinorelbine-induced apoptosis after modification of A549 cells with PTEN knockdown, Atg5 knockdown, and Keap1 overexpression. Keap1 overexpression lowered ARE levels in A549 cells, and ARE level exhibited up-growth in Keap1 knockdown AS2 cells. The autophagy inhibitor caused more ROS generation and vinorelbine-induced apoptosis in the A549 and CL1-5 cells. According to these findings, autophagy regulates vinorelbine sensitivity by continuing Keap1-mediated ROS generation in lung adenocarcinoma cells.

17.
Acta Pharmacol Sin ; 39(10): 1633-1644, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29849131

ABSTRACT

Ulcerative colitis (UC) is a chronic, nonspecific inflammatory bowel disease (IBD) characterized by complicated and relapsing inflammation in the gastrointestinal tract. SM934 is a water-soluble artemisinin analogue that shows anti-inflammatory and immuno-regulatory effects. In this study, we investigated the effects of SM934 on UC both in vivo and in vitro. A mouse model of colitis was established in mice by oral administration of 5% dextran sulfate sodium (DSS). SM934 (3, 10 mg/kg per day, ig) was administered to the mice for 10 days. After the mice were sacrificed, colons, spleens and mesenteric lymph nodes (MLNs) were collected for analyses. We showed that SM934 administration restored DSS-induced body weight loss, colon shortening, injury and inflammation scores. Furthermore, SM934 administration significantly decreased the disease activity index (DAI), histopathological scores, and myeloperoxidase (MPO) activities in colonic tissues. Moreover, SM934 administration dose-dependently decreased the mRNA and protein levels of DSS-induced pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α), and the percentage of macrophages and neutrophils in colon tissues. The effects of SM934 on LPS-stimulated RAW 264.7 cells and THP-1-derived macrophages were examined in vitro. Treatment with SM934 (0.8, 8, 80 µmol/L) dose-dependently decreased the production of pro-inflammatory mediators in LPS-stimulated RAW264.7 cells and THP-1-derived macrophages via inhibiting activation of the NF-κB signaling. Our results reveal the protective effects of SM934 on DSS-induced colitis can be attributed to its suppressing effects on neutrophils and macrophages and its inhibitory role in the NF-κB signaling, suggests that SM934 might be a potential effective drug for ulcerative colitis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Artemisinins/therapeutic use , Colitis, Ulcerative/drug therapy , Macrophages/drug effects , Neutrophils/drug effects , Animals , Colitis, Ulcerative/chemically induced , Colon/metabolism , Cytokines/metabolism , Dextran Sulfate , Female , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects
18.
mBio ; 8(4)2017 07 25.
Article in English | MEDLINE | ID: mdl-28743815

ABSTRACT

Group A streptococcus (GAS) is an important human pathogen that causes a wide variety of cutaneous and systemic infections. Although originally thought to be an extracellular bacterium, numerous studies have demonstrated that GAS can trigger internalization into nonimmune cells to escape from immune surveillance or antibiotic-mediated killing. Epithelial cells possess a defense mechanism involving autophagy-mediated targeting and killing of GAS within lysosome-fused autophagosomes. In endothelial cells, in contrast, we previously showed that autophagy is not sufficient for GAS killing. In the present study, we showed higher galectin-3 (Gal-3) expression and lower Gal-8 expression in endothelial cells than in epithelial cells. The recruitment of Gal-3 to GAS is higher and the recruitment of Gal-8 to GAS is lower in endothelial cells than in epithelial cells. We further showed that Gal-3 promotes GAS replication and diminishes the recruitment of Gal-8 and ubiquitin, the latter of which is a critical protein for autophagy sequestration. After knockdown of Gal-3 in endothelial cells, the colocalization of Gal-8, parkin, and ubiquitin-decorated GAS is significantly increased, as is the interaction of Gal-8 and parkin, an E3 ligase. Furthermore, inhibition of Gal-8 in epithelial cells attenuates recruitment of parkin; both Gal-8 and parkin contribute to ubiquitin recruitment and GAS elimination. Animal studies confirmed that Gal-3-knockout mice develop less-severe skin damage and that GAS replication can be detected only in the air pouch and not in organs and endothelial cells. These results demonstrate that Gal-3 inhibits ubiquitin recruitment by blocking Gal-8 and parkin recruitment, resulting in GAS replication in endothelial cells.IMPORTANCE In epithelial cells, GAS can be efficiently killed within the lysosome-fused autophaosome compartment. However, we previously showed that, in spite of LC-3 recruitment, the autophagic machinery is not sufficient for GAS killing in endothelial cells. In this report, we provide the first evidence that Gal-3, highly expressed in endothelial cells, blocks the tagging of ubiquitin to GAS by inhibiting recruitment of Gal-8 and parkin, leading to an enhancement of GAS replication. We also provide the first demonstration that Gal-8 can interact with parkin, the critical E3 ligase, for resistance to intracellular bacteria by facilitating the decoration of bacteria with ubiquitin chains. Our findings reveal that differential levels of Gal-3 and Gal-8 expression and recruitment to GAS between epithelial cells and endothelial cells may contribute to the different outcomes of GAS elimination or survival and growth of GAS in these two types of cells.


Subject(s)
Galectin 3/metabolism , Galectins/metabolism , Streptococcus pyogenes/metabolism , Ubiquitin-Protein Ligases/metabolism , A549 Cells , Animals , Autophagy , Blood Proteins , Endothelial Cells/microbiology , Epithelial Cells/microbiology , Galectin 3/deficiency , Galectin 3/genetics , Galectins/antagonists & inhibitors , Galectins/deficiency , Galectins/genetics , Gene Silencing , Humans , Mice , Mice, Knockout , RNA Interference , Skin/microbiology , Skin/pathology , Streptococcus pyogenes/growth & development , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
19.
Sci Rep ; 7: 42998, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28216632

ABSTRACT

Dengue is one of the most significant mosquito-borne virus diseases worldwide, particularly in tropical and subtropical regions. This study sought to examine the antiviral activity of resveratrol (RESV), a phytoalexin secreted naturally by plants, against dengue virus (DENV) infection. Our data showed that RESV inhibits the translocation of high mobility group box 1 (HMGB1), a DNA binding protein that normally resides in the nucleus, into the cytoplasm and extracellular milieu. HMGB1 migrates out of the nucleus during DENV infection. This migration is inhibited by RESV treatment and is mediated by induction of Sirt1 which leads to the retention of HMGB1 in the nucleus and consequently helps in the increased production of interferon-stimulated genes (ISGs). Nuclear HMGB1 was found to bind to the promoter region of the ISG and positively regulated the expression of ISG. The enhanced transcription of ISGs by nuclear HMGB1 thus contributes to the antiviral activity of RESV against DENV. To the best of our knowledge, this is the first report to demonstrate that RESV antagonizes DENV replication and that nuclear HMGB1 plays a role in regulating ISG production.


Subject(s)
Antiviral Agents/pharmacology , HMGB1 Protein/metabolism , Interferon Type I/metabolism , Stilbenes/pharmacology , Virus Replication/drug effects , Antiviral Agents/therapeutic use , Cell Line, Tumor , Cell Nucleus/metabolism , Dengue/drug therapy , Dengue/pathology , Dengue/virology , Dengue Virus/isolation & purification , Dengue Virus/physiology , HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/genetics , Humans , Interferon Type I/genetics , Interferon-beta/genetics , Interferon-beta/metabolism , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Promoter Regions, Genetic , Protein Binding , RNA Interference , RNA, Small Interfering/metabolism , Resveratrol , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/genetics , Sirtuin 1/metabolism , Stilbenes/therapeutic use
20.
Am J Physiol Renal Physiol ; 312(4): F769-F777, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28100505

ABSTRACT

(5R)-5-hydroxytriptolide (LLDT-8), a triptolide derivative with low toxicity, was previously reported to have strong immunosuppressive effects both in vitro and in vivo, but it remains unknown whether LLDT-8 has a therapy effect on systemic lupus erythematosus. In this study, we aimed to investigate the therapeutic effects of LLDT-8 on lupus nephritis in MRL/lpr mice, a model of systemic lupus erythematosus. Compared with the vehicle group, different clinical parameters were improved upon LLDT-8 treatment as follows: prolonged life span of mice, decreased proteinuria, downregulated blood urea nitrogen and serum creatinine, reduced glomerular IgG deposits, and ameliorated histopathology. A decreased expression of the inflammatory cytokines IFN-γ, IL-17, IL-6, and TNF-α was also observed in the kidney of LLDT-8 treated MRL/lpr mice. Moreover, infiltration of T cells in the kidney was mitigated after LLDT-8 treatment, corresponding with decreased expression of related chemokines IP-10, Mig, and RANTES in the kidney. The proportion of macrophage and neutrophil cells and related chemokines expression was also reduced in kidneys of LLDT-8-treated mice. In the human proximal tubule epithelial cell line and mouse mesangial cell line, consistent with our in vivo experimental results, LLDT-8 suppressed the expression of related chemokines and IL-6. In summary, LLDT-8 has a therapeutic benefit for lupus nephritis via suppressing chemokine expression and inhibiting immune cell infiltration in kidneys of MRL/lpr mice.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacology , Kidney Glomerulus/drug effects , Lupus Nephritis/prevention & control , Macrophages/drug effects , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , T-Lymphocytes/drug effects , Animals , Biomarkers/blood , Blood Urea Nitrogen , Cell Line , Creatinine/blood , Cytokines/metabolism , Disease Models, Animal , Down-Regulation , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Inflammation Mediators/metabolism , Kidney Glomerulus/immunology , Kidney Glomerulus/metabolism , Kidney Glomerulus/physiopathology , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/physiopathology , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred MRL lpr , Neutrophils/immunology , Neutrophils/metabolism , Proteinuria/immunology , Proteinuria/prevention & control , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...