Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nutrients ; 12(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339220

ABSTRACT

Spinal muscular atrophy (SMA), the main genetic cause of infant death, is a neurodegenerative disease characterized by the selective loss of motor neurons in the anterior horn of the spinal cord, accompanied by muscle wasting. Pathomechanically, SMA is caused by low levels of the survival motor neuron protein (SMN) resulting from the loss of the SMN1 gene. However, emerging research extends the pathogenic effect of SMN deficiency beyond motor neurons. A variety of metabolic abnormalities, especially altered fatty acid metabolism and impaired glucose tolerance, has been described in isolated cases of SMA; therefore, the impact of SMN deficiency in metabolic abnormalities has been speculated. Although the life expectancy of these patients has increased due to novel disease-modifying therapies and standardization of care, understanding of the involvement of metabolism and nutrition in SMA is still limited. Optimal nutrition support and metabolic monitoring are essential for patients with SMA, and a comprehensive nutritional assessment can guide personalized nutritional therapy for this vulnerable population. It has recently been suggested that metabolomics studies before and after the onset of SMA in patients can provide valuable information about the direct or indirect effects of SMN deficiency on metabolic abnormalities. Furthermore, identifying and quantifying the specific metabolites in SMA patients may serve as an authentic biomarker or therapeutic target for SMA. Here, we review the main epidemiological and mechanistic findings that link metabolic changes to SMA and further discuss the principles of metabolomics as a novel approach to seek biomarkers and therapeutic insights in SMA.


Subject(s)
Muscular Atrophy, Spinal/metabolism , Nutrition Therapy/methods , Nutritional Physiological Phenomena/genetics , SMN Complex Proteins/deficiency , Survival of Motor Neuron 1 Protein , Biomarkers/metabolism , Humans , Metabolome , Metabolomics/methods , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Nutrition Assessment
3.
Int J Mol Sci ; 21(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096728

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD)-the worldwide third most common inherited muscular dystrophy caused by the heterozygous contraction of a 3.3 kb tandem repeat (D4Z4) on a chromosome with a 4q35 haplotype-is a progressive genetic myopathy with variable onset of symptoms, distribution of muscle weakness, and clinical severity. While much is known about the clinical course of adult FSHD, data on the early-onset infantile phenotype, especially on the progression of the disease, are relatively scarce. Contrary to the classical form, patients with infantile FSHD more often have a rapid decline in muscle wasting and systemic features with multiple extramuscular involvements. A rough correlation between the phenotypic severity of FSHD and the D4Z4 repeat size has been reported, and the majority of patients with infantile FSHD obtain a very short D4Z4 repeat length (one to three copies, EcoRI size 10-14 kb), in contrast to the classical, slowly progressive, form of FSHD (15-38 kb). With the increasing identifications of case reports and the advance in genetic diagnostics, recent studies have suggested that the infantile variant of FSHD is not a genetically separate entity but a part of the FSHD spectrum. Nevertheless, many questions about the clinical phenotype and natural history of infantile FSHD remain unanswered, limiting evidence-based clinical management. In this review, we summarize the updated research to gain insight into the clinical spectrum of infantile FSHD and raise views to improve recognition and understanding of its underlying pathomechanism, and further, to advance novel treatments and standard care methods.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral/etiology , Muscular Dystrophy, Facioscapulohumeral/therapy , Age of Onset , Humans , Muscular Dystrophy, Facioscapulohumeral/pathology , Retina/physiopathology
4.
Front Pediatr ; 8: 167, 2020.
Article in English | MEDLINE | ID: mdl-32373562

ABSTRACT

Background: Acute gastroenteritis (AGE) accompanied by seizures is not a rare scenario in childhood. We investigated the clinical features of children with febrile or afebrile seizures during AGE and aimed to identify the impact of fever in this situation-related seizure. Methods: We retrospectively reviewed the medical charts of children admitted due to seizures associated with mild AGE between January 2008 and December 2017. These consecutive patients were divided into two groups: an "afebrile group" whose diagnosis was compatible with "benign convulsion with mild gastroenteritis (CwG)" and a "febrile group" who had a fever within 24 h of the onset of an AGE-related seizure. We compared the two groups' clinical and laboratory characteristics, electroencephalograms (EEG), neuroimaging, and outcomes. Results: Of the children suffering from AGE and seizures, 41 were afebrile and 30 were febrile, with a mean age of 32.2 ± 27.6 months. The gender, seizure semiology, frequency, duration of seizures, the time interval between AGE symptoms onset and first seizure, and levels of serum sodium, and hepatic enzymes were significantly different between the two groups. The most frequently identified enteropathogen was rotavirus (33%), especially in the male and febrile subjects. Afebrile patients had more EEG abnormalities initially, but all returned to normal later. All cases had an uneventful outcome. Of note, seizure clusters (≥2 episodes) occurred more frequently in the afebrile patients who had a duration of AGE symptoms lasting 2 days or more, or white blood cell counts ≥ 10,000/µL (p-values: 0.05 and 0.04, respectively). In comparison with seven similar studies, all showed more seizure clusters, partial seizures, and a shorter interval between AGE onset and seizures in afebrile patients than in febrile patients. Contrarily, afebrile patients had longer seizure duration and lower serum hepatic transaminases than febrile patients. Conclusion: Although fever partially influenced the clinical features of AGE-related seizures, febrile CwG might have pathophysiology distinctly different from that of febrile seizures. Comprehensive knowledge in discerning febrile and afebrile CwG can help to avoid unnecessary diagnostics tests, and anticonvulsants use.

5.
Clin Diagn Lab Immunol ; 12(5): 575-80, 2005 May.
Article in English | MEDLINE | ID: mdl-15879017

ABSTRACT

Traditional herbal formulas used to treat inflammatory arthritis in China and India include Boswellia carterii or Boswellia serrata. They both contain boswellic acids (BAs) which have been shown to exhibit anti-inflammatory and antiarthritic properties. This study tests the hypothesis that mixtures of BAs derived from B. carterii have immunomodulatory properties. B. carterii plant resin obtained from China was prepared as an ethanol extract, and the presence of seven BAs was confirmed by column chromatography, high-performance liquid chromatography, and UV laser desorption/ionization tandem mass spectroscopy. The extract was then tested for its ability to alter in vitro production of TH1 cytokines (interleukin-2 [IL-2] and gamma interferon) and TH2 cytokines (IL-4 and IL-10) by murine splenocytes. Delivery of the resin extract using ethanol as a solvent resulted in significant cellular toxicity not seen with the addition of ethanol alone. By contrast, delivery of the resin extract using a sesame oil solvent resulted in a dose-dependent inhibition of TH1 cytokines coupled with a dose-dependent potentiation of TH2 cytokines. These results indicate that a purified mixture of BAs from B. carterii plant resin exhibits carrier-dependent immunomodulatory properties in vitro.


Subject(s)
Boswellia/chemistry , Cytokines/drug effects , Plant Extracts/pharmacology , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Cells, Cultured , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Immunity, Cellular/drug effects , Immunologic Factors/isolation & purification , Mice , Mice, Inbred Strains , Triterpenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...