Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Drug Des Devel Ther ; 17: 1889-1906, 2023.
Article in English | MEDLINE | ID: mdl-37397788

ABSTRACT

Introduction: Anaplastic thyroid carcinoma (ATC) is the most lethal thyroid carcinoma. Doxorubicin (DOX) is the only drug approved for anaplastic thyroid cancer treatment, but its clinical use is restricted due to irreversible tissue toxicity. Berberine (BER), an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been proposed to have antitumor activity in many cancers. However, the underlying mechanisms by which BER regulates apoptosis and autophagy in ATC remain unclear. Thus, the present study aimed to assess the therapeutic effect of BER in human ATC cell lines CAL-62 and BHT-101 as well as the underlying mechanisms. In addition, we assessed the antitumor effects of a combination of BER and DOX in ATC cells. Methods: The cell viability of CAL-62 and BTH-101 with treatment of BER for different hours was measured by CCK-8 assay, and cell apoptosis was assessed by clone formation assay and flow cytometric analysis. The protein levels of apoptosis protein, autophagy-related proteins and PI3K/AKT/mTORpathway were determined Using Western blot. Autophagy in cells was observed with GFP-LC3 plasmid using confocal fluorescent microscopy. Flow cytometry was used to detect intracellular ROS. Results: The present results showed that BER significantly inhibited cell growth and induced apoptosis in ATC cells. BER treatment also significantly upregulated the expression of LC3B-II and increased the number of GFP-LC3 puncta in ATC cells. Inhibition of autophagy by 3-methyladenine (3-MA) suppressed BER-induced autophagic cell death. Moreover, BER induced the generation of reactive oxygen species (ROS). Mechanistically, we demonstrated that BER regulated the autophagy and apoptosis of human ATC cells through the PI3K/AKT/mTOR pathways. Furthermore, BER and DOX cooperated to promote apoptosis and autophagy in ATC cells. Conclusion: Taken together, the present findings indicated that BER induces apoptosis and autophagic cell death by activating ROS and regulating the PI3K/AKT/mTOR signaling pathway.


Subject(s)
Berberine , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/drug therapy , Berberine/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Apoptosis , TOR Serine-Threonine Kinases/metabolism , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Autophagy
2.
J Biochem Mol Toxicol ; 37(6): e23329, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36808658

ABSTRACT

Doxorubicin (DOX), is a high efficiency anthracycline antitumor drug. However, the clinical application of DOX is limited mainly by dose-related adverse drug reactions. Currently, the therapeutic effects of Atorvastatin (ATO) on DOX-induced hepatotoxicity were studied in vivo. The results indicated that DOX impaired hepatic function, as measured by an increased levels of liver weight index and serum concentrations of aspartate transaminase and alanine transaminase, as well as alteration of hepatic histology. In addition, DOX increased the serum levles of triglyceride (TG) and nonestesterified fatty acid. ATO prevented these changes. Mechanical analysis revealed that ATO restored the changes of malondialdehyde, reactive oxygen radical species, glutathione peroxidase and manganese superoxide dismutase. Additionally, ATO inhibited the increased expression levels of nuclear factor-kappa B and interleukin 1ß, hence suppressing inflammation. Meanwhile, ATO inhibited cell apoptosis by dramatically decreasing the Bax/Bcl-2 ratio. In addition, ATO mitigated the lipidtoxicity by inhibiting the adipolysis of TG and accelerating hepatic lipid metabolism. Taken together, the results suggest ATO has therapeutic effect on DOX-induced hepatotoxicity via inhibition of oxidative damage, inflammatory and apoptosis. In addition, ATO attenuates DOX-induced hyperlipidemia via modulation of lipid metabolism.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Atorvastatin/pharmacology , Doxorubicin/toxicity , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Apoptosis
3.
Oxid Med Cell Longev ; 2019: 2150394, 2019.
Article in English | MEDLINE | ID: mdl-31885776

ABSTRACT

Doxorubicin- (DOX-) induced cardiotoxicity is associated with oxidative stress and cardiomyocyte apoptosis. The adaptor protein p66Shc regulates the cellular redox status and determines cell susceptibility to apoptosis. This study is aimed at investigating the involvement of sirtuin 1- (SIRT1-) mediated p66Shc inhibition in DOX-induced redox signalling and exploring the possible protective mechanisms of berberine (Ber) against DOX-triggered cardiac injury in rats and a cultured H9c2 cell line. Our results showed that the Ber pretreatment markedly increased CAT, SOD, and GSH-PX activities, decreased the levels of MDA, and improved the electrocardiogram and histopathological changes in the myocardium in DOX-treated rats (in vivo). Furthermore, Ber significantly ameliorated the DOX-induced oxidative insult and mitochondrial damage by adjusting the levels of intracellular ROS, ΔΨm, and [Ca2+]m in H9c2 cells (in vitro). Importantly, the Ber pretreatment increased SIRT1 expression following DOX exposure but downregulated p66Shc. Consistent with the results demonstrating the SIRT1-mediated inhibition of p66Shc expression, the Ber pretreatment inhibited DOX-triggered cardiomyocyte apoptosis and mitochondrial dysfunction. After exposing H9c2 cells to DOX, the increased SIRT1 expression induced by Ber was abrogated by a SIRT1-specific inhibitor (EX527) or the use of siRNA against SIRT1. Accordingly, SIRT1 inhibition significantly abrogated the suppression of p66Shc expression and protection of Ber against DOX-induced oxidative stress and apoptosis. These results suggest that Ber protects the heart from DOX injury through SIRT1-mediated p66Shc suppression, offering a novel mechanism responsible for the protection of Ber against DOX-induced cardiomyopathy.


Subject(s)
Berberine/therapeutic use , Cardiotoxicity/drug therapy , Doxorubicin/toxicity , Electrocardiography/methods , Animals , Berberine/pharmacology , Cell Line , Male , Rats , Rats, Sprague-Dawley , Sirtuin 1/metabolism
4.
Oncol Lett ; 15(4): 5721-5729, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29552206

ABSTRACT

Doxorubicin (DOX) is a potent and broad-spectrum anthracycline chemotherapeutic agent, but dose-dependent cardiotoxic side effects limit its clinical application. This toxicity is closely associated with the generation of reactive oxygen species (ROS) radical during DOX metabolism. The present study investigated the effects of Berberine (Ber) on DOX-induced acute cardiac injury in a rat model and analysed its mechanism in cardiomyocytes in vitro. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB) and malondialdehyde (MDA) levels were significantly increased in the DOX group compared with the control group. This increase was accompanied by cardiac histopathological injury and a decrease in cardiomyocyte superoxide dismutase (SOD) and catalase (CAT). CK, CK-MB and MDA levels decreased and SOD and CAT levels increased in the Ber-treated group compared to the DOX group. Ber ameliorated the DOX-induced increase in cytosolic calcium concentration ([Ca2+]i), attenuated mitochondrial Ca2+ overload and restored the DOX-induced loss of mitochondrial membrane potential in vitro. These results demonstrated that Ber exhibited protective effects against DOX-induced heart tissue free radical injury, potentially via the inhibition of intracellular Ca2+ elevation and attenuation of mitochondrial dysfunction.

SELECTION OF CITATIONS
SEARCH DETAIL
...