Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Wound Repair Regen ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602090

ABSTRACT

An argon-based low-temperature plasma jet (LTPJ) was used to treat chronically infected wounds in Staphylococcus aureus-laden mice. Based on physicochemical property analysis and in vitro antibacterial experiments, the effects of plasma parameters on the reactive nitrogen and oxygen species (RNOS) content and antibacterial capacity were determined, and the optimal treatment parameters were determined to be 4 standard litre per minute and 35 W. Additionally, the plasma-treated activation solution had a bactericidal effect. Although RNOS are related to the antimicrobial effect of plasma, excess RNOS may be detrimental to wound remodelling. In vivo studies demonstrated that medium-dose LTPJ promoted MMP-9 expression and inhibited bacterial growth during the early stages of healing. Moreover, LTPJ increased collagen deposition, reduced inflammation, and restored blood vessel density and TGF-ß levels to normal in the later stages of wound healing. Therefore, when treating chronically infected wounds with LTPJ, selecting the medium dose of plasma is more advantageous for wound recovery. Overall, our study demonstrated that low-temperature plasma jets may be a potential tool for the treatment of chronically infected wounds.

2.
Sensors (Basel) ; 24(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474966

ABSTRACT

To enhance the specificity and sensitivity, cut the cost, and realize joint detection of multiple indicators, an immunoassay system based on the technology of time-resolved fluorescence resonance energy transfer (TR-FRET) was studied. Due to the FRET of the reagent, the donor probe and acceptor probe emitted specific fluorescence to enhance specificity. Long-lifetime specific fluorescence from the acceptor probe was combined with time-resolved technology to enhance sensitivity. A xenon flash lamp and a photomultiplier tube (PMT) were selected as the light source and detector, respectively. A filter-switching mechanism was placed in the light path, so the fluorescence signal from the donor and acceptor was measured alternately. The instrument's design is given, and some specificI parts are described in detail. Key technical specifications of the instrument and procalcitonin (PCT), C-reactive protein (CRP), and interleukin-6(IL-6) were tested, and the test results were presented subsequently. The CV value of the self-designed counting module is better than 0.01%, and the instrument noises for 620 nm and 665 nm are 41.44 and 10.59, respectively. When set at 37 °C, the temperature bias (B) is 0.06 °C, and the temperature fluctuation is 0.10 °C. The CV and bias are between ±3% and 5%, respectively, when pipetting volumes are between 10 µL and 100 µL. Within the concentration range of 0.01 nM to 10 nM, the luminescence values exhibit linear regression correlation coefficients greater than 0.999. For PCT detection, when the concentration ranges from 0.02 ng/mL to 50 ng/mL, the correlation coefficient of linear fitting exceeds 0.999, and the limit of quantification is 0.096 ng/mL. For CRP and IL-6, the detection concentration ranges from 0 ng/mL to 500 ng/mL and 0 ng/mL to 20 ng/mL, respectively, with limits of quantification of 2.70 ng/mL and 2.82 ng/mL, respectively. The experimental results confirm the feasibility of the technical and instrumental solutions.


Subject(s)
Fluorescence Resonance Energy Transfer , Interleukin-6 , Fluorescence Resonance Energy Transfer/methods , Immunoassay/methods , Procalcitonin , Luminescence , C-Reactive Protein
3.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256154

ABSTRACT

Three-dimensional (3D) hepatocyte models have become a research hotspot for evaluating drug metabolism and hepatotoxicity. Compared to two-dimensional (2D) cultures, 3D cultures are better at mimicking the morphology and microenvironment of hepatocytes in vivo. However, commonly used 3D culture techniques are not suitable for high-throughput drug screening (HTS) due to their high cost, complex handling, and inability to simulate cell-extracellular matrix (ECM) interactions. This article describes a method for rapid and reproducible 3D cell cultures with ECM-cell interactions based on 3D culture instrumentation to provide more efficient HTS. We developed a microsphere preparation based on a high-voltage electrostatic (HVE) field and used sodium alginate- and collagen-based hydrogels as scaffolds for 3D cultures of HepG2 cells. The microsphere-generating device enables the rapid and reproducible preparation of bioactive hydrogel microspheres. This 3D culture system exhibited better cell viability, heterogeneity, and drug-metabolizing activity than 2D and other 3D culture models, and the long-term culture characteristics of this system make it suitable for predicting long-term liver toxicity. This system improves the overall applicability of HepG2 spheroids in safety assessment studies, and this simple and controllable high-throughput-compatible method shows potential for use in drug toxicity screening assays and mechanistic studies.


Subject(s)
Hydrogels , Liver , Humans , Microspheres , Hep G2 Cells , Hydrogels/pharmacology , Static Electricity
4.
Int J Low Extrem Wounds ; : 15347346221139519, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36380558

ABSTRACT

As a common complication of diabetes, diabetic foot ulcers serious affect the life quality even lead to amputation if it's not properly treated. In this paper, we developed a Low Temperature Plasma Jet (LTPJ) system for treating diabetic foot ulcers on streptozotocin-induced diabetic mice. This system generates time-dependent reactive nitrogen and oxygen species (RNOS), which have temperature below 40°C. The wound area of normal mice was significantly reduced after LTPJ treatment. Histological and immunohistochemistry analysis showed faster deposition of collagen and more vessel formation both in plasma-treated normal and diabetic mice on Day 3. However, diabetic wounds showed poor collagen deposition and angiogenesis on Day 8, which might be the reason of slow wound healing. Reactive nitrogen species (RNS) that generated by LTPJ can promote endogenous nitric oxide (NO) production in diabetic wounds, thus promoting inflammation, stromal deposition, angiogenesis, cell proliferation and remodeling, while excess reactive oxygen species (ROS) will exacerbate oxidative stress in wound tissues of diabetic mice. In conclusion, LTPJ improved acute wound healing in normal mice, increased collagen deposition and angiogenesis in initial diabetic wound healing, but had no significant effect on diabetic wound healing rate.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(2): 505-9, 2014 Feb.
Article in Chinese | MEDLINE | ID: mdl-24822429

ABSTRACT

The spectral absorption features are very similar between some minerals, especially hydrothermal alteration minerals related to mineralization, and they are also influenced by other factors such as spectral mixture. As a result, many of the spectral identification approaches for the minerals with similar spectral absorption features are prone to confusion and misjudgment. Therefore, to solve the phenomenon of "same mineral has different spectrums, and same spectrum belongs to different minerals", this paper proposes an accurate approach to hyperspectral mineral identification based on naive bayesian classification model. By testing and analyzing muscovite and kaolinite, the two typical alteration minerals, and comparing this approach with spectral angle matching, binary encoding and spectral feature fitting, the three popular spectral identification approaches, the results show that this approach can make more obvious differences among different minerals having similar spectrums, and has higher classification accuracy, since it is based on the position of absorption feature, absorption depth and the slope of continuum.

6.
Talanta ; 105: 379-85, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23598034

ABSTRACT

A non-enzymatic electrochemical method was developed for glucose detection using a glassy carbon electrode modified with platinum nanoflowers supported on graphene oxide (PtNFs-GO). PtNFs-GO was synthesized using a nontoxic, rapid, one-pot and template-free method. Low-cost, green solvent ethanol acted as the reductant, and the advanced and effective 2D carbon material-GO nanosheet acted as the stabilizing material. Their morphologies were characterized using transmission electron microscopy. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity towards glucose in neutral media. The modified electrode exhibited strong and sensitive amperometric responses to glucose even in the presence of a high concentration of chloride ions. The response time was within 5s. The interference effects from ascorbic acid and uric acid were comparatively small when operated at suitable potential. Under optimal detection potential (0.47 V with a saturated calomel reference electrode) the PtNFs-GO modified electrode performed a current response towards glucose at a broad concentration range from 2 µM to 20.3mM. Two linear regions could be observed at 2 µM to 10.3mM with a sensitivity of 1.26 µA mM(-1)cm(-2) (correlation coefficient 0.9968), and at 10.3mM to 20.3mM with a sensitivity of 0.64 µA mM(-1)cm(-2)(correlation coefficient 0.9969). The LOD of 2 µM was lower than many non-enzymatic electrochemical glucose sensors. The modified electrode was also applied to the determination of glucose in glucose injection solutions, and the satisfactory results obtained indicated that it was promising for the development of a novel non-enzymatic electrochemical glucose sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...