Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 253(Pt 3): 126984, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37734528

ABSTRACT

The growing shortage of non-renewable resources and the burden of toxic pollutants in water have gradually become stumbling blocks in the path of sustainable human development. To this end, there has been great interest in finding renewable and environmentally friendly materials to promote environmental sustainability and combat harmful pollutants in wastewater. Of the many options, lignocellulose, as an abundant, biocompatible and renewable material, is the most attractive candidate for water remediation due to the unique physical and chemical properties of its constituents. Herein, we review the latest research advances in lignocellulose-based adsorbents, focusing on lignocellulosic composition, material modification, application of adsorbents. The modification and preparation methods of lignin, cellulose and hemicellulose and their applications in the treatment of diverse contaminated water are systematically and comprehensively presented. Also, the detailed description of the adsorption model, the adsorption mechanism and the adsorbent regeneration technique provides an excellent reference for understanding the underlying adsorption mechanism and the adsorbent recycling. Finally, the challenges and limitations of lignocellulosic adsorbents are evaluated from a practical application perspective, and future developments in the related field are discussed. In summary, this review offers rational insights to develop lignocellulose-based environmentally-friendly reactive materials for the removal of hazardous aquatic contaminants.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Humans , Lignin , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption
2.
Polymers (Basel) ; 14(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35746065

ABSTRACT

Herein, xylan-g-PMMA was synthesized by grafting poly(methyl methacrylate) (PMMA) onto xylan and characterized by FT-IR and HSQC NMR spectroscopies, and the xylan-g-PMMA/TiO2 solution was used to electrospun nanofibers at the voltage of 15 Kv, which was the first time employing xylan to electrospun nanofibers. Moreover, the electrospinning operating parameters were optimized by assessing the electrospinning process and the morphology of electrospun fibers, as follows: the mixed solvent of DMF and chloroform in a volume ratio of 5:1, an anhydroxylose unit (AXU)/MMA molar ratio lower than 1:2, the flow speed of 0.00565-0.02260 mL/min, and a receiving distance of 10-15 cm. Diameters of the electrospun fibers increased with increasing DMF content in the used solvent mixture, MMA dosage, and receiving distance. TiO2 nanoparticles were successfully dispersed in electrospun xylan-g-PMMA nanofibers and characterized by scanning electron microscopy, energy dispersive X-ray diffraction spectrum, and X-ray photoelectron spectroscopy, and their application for methylene blue (MB) degradation presented above 80% photocatalytic efficiency, showing the good potential in water treatment.

3.
J Hazard Mater ; 424(Pt A): 127365, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34879562

ABSTRACT

Aromatic compounds (ACs) releases aroused by sediment resuspension would certainly change the concentrations of suspended sediment (SPS) and organic carbon, which may alter nitrate-N transformation during aerobic-anoxic transition. To prove this, three typical ACs (aniline, nitrobenzene, and methylbenzene) with different octanol-water partition coefficients (Kow) were selected to investigate the effects of ACs releases aroused by sediment resuspension on nitrate-N transformation during aerobic-anoxic transition. ACs releases aroused by sediment resuspension accelerated nitrate-N transformation and enhanced the potential for dissimilatory nitrate reduction to ammonium (DNRA), compared to that without sediment resuspension. With sediment resuspension, methylbenzene releases affected nitrate-N transformation rates and pathways more significantly than aniline and nitrobenzene releases. Microbial analysis indicated that sediment resuspension created complicated microbial co-occurrence networks and changed the associations among bacteria; dominant bacteria abundance varied with different ACs releases. Further analysis revealed that ACs distributed in SPS, which increased with logKow, indirectly affected nitrate-N transformation rates and pathways via altering dominant bacteria abundance and electron transport system activity (ETSA). Especially, ETSA, which was positively associated with ACs distributed in SPS, affected nitrate-N transformation most directly. Overall, ACs release fate played important roles in nitrate-N transformation, causing ammonia-N retention and alterations in nitrogen cycle during aerobic-anoxic transition.


Subject(s)
Ammonium Compounds , Nitrates , Denitrification , Geologic Sediments , Nitrates/analysis , Nitrogen , Nitrogen Oxides
4.
Sci Total Environ ; 790: 148245, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34380284

ABSTRACT

No consensus has been achieved among researchers on the effect of dissolved oxygen (DO) on nitrate (NO3--N) transformation and the microbial community, especially during aerobic-anoxic transition. To supplement this knowledge, NO3--N transformation, microbial communities, co-occurrence networks, and functional genes were investigated during aerobic-anoxic transition via microcosm simulation. NO3--N transformation rate in the early stage (DO ≥2 mg/L) was always significantly higher than that in the later stage (DO <2 mg/L) during aerobic-anoxic transition, and NO2--N accumulation was more significant during the anoxic stage, consistent with the result obtained under constant DO conditions. These NO3--N transformation characteristics were not affected by other environmental factors, indicating the important role of DO in NO3--N transformation during aerobic-anoxic transition. Changes in DO provoked significant alterations in microbial diversity and abundance of functional bacteria dominated by Massilia, Bacillus, and Pseudomonas, leading to the variation in NO3--N transformation. Co-occurrence network analysis revealed that NO3--N transformation was performed by the interactions between functional bacteria including symbiotic and competitive relationship. In the presence of oxygen, these interactions accelerated the NO3--N transformation rate, and bacterial metabolization proceeded via increasingly varied pathways including aerobic and anoxic respiration, which was demonstrated through predicted genes. The higher relative abundance of genes narG, narH, and napA suggested the occurrence of coupled aerobic-anoxic denitrification in the early stage. NO3--N transformation rate decreased accompanied by a significant NO2--N accumulation with the weakening of coupled aerobic-anoxic denitrification during aerobic-anoxic transition. Structural equation modeling further demonstrated the relationship between DO and NO3--N transformation. DO affects NO3--N transformation by modifying microbial community, bacterial co-occurrence, and functional genes during aerobic-anoxic transition.


Subject(s)
Microbiota , Nitrates , Bioreactors , Denitrification , Nitrogen , Nitrogen Oxides , Oxygen
5.
Bull Environ Contam Toxicol ; 107(6): 1191-1201, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33606057

ABSTRACT

Fluorine (F) in water has a negative effect on the environment and human health. Schwertmannite has potential remediation to contamination in solution. In this study, the adsorption mechanism and influencing factors of synthetic schwertmannite for low-concentration F were studied through batch experiments. The results suggested that the adsorption of F by schwertmannite reached equilibrium after about 60 min, and the adsorption efficiency exceeded 94%. The experimental data can be best-fit by the pseudo-second-order kinetic and Langmuir models well. Schwertmannite showed effective adsorption at pH 4, dosage 1.5 g L-1, low temperature, and low concentration of co-existing anion. The adsorption process was a spontaneous and exothermic reaction, which was dominated by chemical adsorption. FT-IR and XPS spectra analysis revealed that F adsorption on schwertmannite through the surface complexation and anion exchange reaction between SO42- and OH- with F-, especially the primary role of OH-. The results can provide theoretical support for the schwertmannite application in the treatment of F-containing wastewater.


Subject(s)
Fluorine , Water Pollutants, Chemical , Adsorption , Humans , Hydrogen-Ion Concentration , Iron Compounds , Kinetics , Spectroscopy, Fourier Transform Infrared , Water , Water Pollutants, Chemical/analysis
6.
Environ Sci Pollut Res Int ; 28(23): 29650-29664, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33566289

ABSTRACT

Contrary to the fact that NO3--N can serve as electron acceptor to promote organics degradation, it was also found NO3--N reduction does not necessarily promote organics degradation. We speculate nitrogen (N) species may control the interaction between NO3--N reduction and organics degradation via shifting related microbial community structure. To prove the hypothesis, oxic-anoxic transition zone (OATZ) microcosms simulated by lake water and sediment were conducted with the addition of N species (NO3--N, NO2--N, and NH4+-N) and aniline as typical organics. High-throughput sequencing was used to analyze the microbial community structure and functional enzyme in the microcosms. Results show that, NO2--N inhibited NO3--N reduction while enhanced aniline degradation. For NH4+-N, it promoted NO3--N reduction when NH4+-N/NO3--N concentration ratio ≤ 2 and inhibited aniline degradation when NH4+-N/aniline concentration ratio ≥ 0.5. The presence of NO2--N or NH4+-N weakened the interaction between NO3--N reduction and aniline degradation, which might be caused by significant changes in the diversity and abundance of microbial communities controlled by N species. The microbial mechanism indicates that NO2--N weakened the interaction by affecting both denitrification enzyme activity and electron transfer capability, while NH4+-N weakened the interaction mainly by affecting electron transfer capability. These results imply that N species, as well as other electron acceptors and donors, in the contaminated OATZ should be fully considered, when performing in situ remediation technology of NO3--N reduction.


Subject(s)
Microbiota , Nitrogen , Aniline Compounds , Denitrification , Nitrates , Oxidation-Reduction
7.
Bull Environ Contam Toxicol ; 106(1): 134-145, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33392691

ABSTRACT

To explore the adsorption removal mechanism of Mg-Al layered double oxides (LDOs) for low-concentration (≤ 5 mg L-1) Cr(VI), the adsorption kinetics, adsorption isotherms and its influencing factors were studied by batch experiments. Cr(VI) adsorption reached equilibrium after 6, 11 and 15 h for initial Cr(VI) concentrations of 1, 3 and 5 mg L-1, respectively, and the final adsorption efficiency exceeded 99.0%. The residual concentration of Cr(VI) was within the allowable limit of Drinking Water Quality Standard of World Health Organization (0.05 mg L-1). The experimental data fitted the pseudo-second-order and Freundlich models well. Mg-Al LDOs showed effective adsorption efficiency in the range of pH 3-9, and the adsorption efficiency was influenced by anions competition (HPO42- > SO42- > CO32- > NO3- > Cl-). The analyses of XRD, SEM and FT-IR spectra suggested adsorption Cr(VI) on Mg-Al LDOs was caused by capturing dichromate ions to reconstruct its structure. Therefore, Mg-Al LDOs is promising adsorbents for the low-concentration Cr(VI) treatment in polluted surface water and groundwater.


Subject(s)
Oxides , Water Pollutants, Chemical , Adsorption , Chromium/analysis , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
8.
Environ Sci Pollut Res Int ; 28(9): 10552-10563, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33099732

ABSTRACT

The lack of information on the origin and behavior of iodine in deep groundwater restricts the development and use of groundwater resources. To address this issue, the Cangzhou region in the eastern North China Plain (NCP) was selected for a case study. In total, 296 deep groundwater samples were collected, their iodine concentrations were determined, and the distribution characteristics of iodine concentrations were analyzed. Iodine concentrations ranged from < 0.002 to 1.22 mg/L, with a mean of 0.19 mg/L; 42% of the samples had high iodine concentrations. The levels were higher in the east than in the west, and most of the samples with high iodine concentrations were obtained from sites east of the boundary between the Cangxian uplift and the Huanghua depression. The weathering and dissolution of iodine-bearing minerals and the leaching of marine sediments can facilitate iodine enrichment. In the Cangxian uplift, iodine was mainly a result of the conversion of organic iodine, while in the Huanghua depression, iodine enrichment was a factor of the conversion of IO3-. Overall, the main factors for the enrichment of iodine are the sedimentary environmental and the hydrodynamic conditions. Our results provide a theoretical basis to understand the occurrence of high iodine concentrations in deep groundwater.


Subject(s)
Groundwater , Iodine , Water Pollutants, Chemical , China , Environmental Monitoring , Iodides , Iodine/analysis , Water Pollutants, Chemical/analysis
9.
Environ Res ; 189: 109962, 2020 10.
Article in English | MEDLINE | ID: mdl-32980029

ABSTRACT

Although nitrogen (N) transformations have been widely studied under oxic or anoxic condition, few studies have been carried out to analyze the transformation accompanied with NO2--N accumulation. Particularly, the control of mixed N species in N-transformation remains unclear in an oxic-anoxic transition zone (OATZ), a unique and ubiquitous redox environment. To bridge the gap, in this study, OATZ microcosms were simulated by surface water and sediments of a shallow lake. The N-transformation processes and rates at different NH4+-N/NO3--N ratios, and NO2--N accumulations in these processes were evaluated. N-transformation process exhibited a turning point. Simultaneous nitrification and denitrification occurred in its early stage (first 10 days, dissolved oxygen (DO) ≥ 2 mg/L) and then denitrification dominated (after 10 days, DO < 2 mg/L), which were not greatly affected by the NH4+-N/NO3--N ratio, on the contrary, the transformation rates of NH4+-N and NO3--N were distinctly affected. The NH4+-N transformation rates were positively correlated with the NH4+-N/NO3--N ratio. The highest NO3--N transformation rate was observed at an NH4+-N/NO3--N ratio of 1:1 with organic carbon/NO3--N of 3.09. The NO2--N accumulation, which increased with the decrease in NH4+-N/NO3--N ratio, was also controlled by organic carbon concentration and type. The peak concentration of NO2--N accumulation occurred only when the NO3--N transformation rate was particularly low. Thus, NO2--N accumulation may be reduced by adjusting the control parameters related to N and organic carbon sources, which enhances the theoretical insights for N-polluted aquatic ecosystem bioremediation.


Subject(s)
Denitrification , Nitrogen Dioxide , Ecosystem , Nitrates , Nitrification , Nitrogen
10.
Environ Res ; 191: 110069, 2020 12.
Article in English | MEDLINE | ID: mdl-32828759

ABSTRACT

The present study investigated the nitrogen removal characteristics and metabolic pathway of bacteria in aquatic ecosystem, with a focus on heterotrophic nitrification and aerobic denitrification. The bacteria demonstrated significant heterotrophic nitrification and aerobic denitrification capacity. The highest ammonium-N, nitrate-N, and nitrite-N removal efficiencies were 95.31 ± 0.11%, 98.91 ± 0.05%, and 98.79 ± 0.09%, respectively. The Monod model was used to estimate the maximum rate of substrate utilization (Rmo) and the half-saturation concentration (Ks) for the two substrates, i.e., ammonium and nitrate. The kinetic coefficients were 3.34 mg/L/d (Rmo) and 30.59 mg/L (Ks) for ammonium-N, respectively, and 14.23 mg/L/d (Rmo) and 215.24 mg/L (Ks) for nitrate-N, respectively. The effects of initial nitrogen (ammonium-N or nitrate-N) concentration, temperature, and dissolved oxygen (DO) on nitrogen removal rate were investigated using response surface methodology (RSM), and the optimal conditions for nitrogen removal were determined. The principal nitrogen removal pathway of the bacteria was proposed as complete heterotrophic nitrification and aerobic denitrification, which was performed by six key genera: Arthrobacter, Pseudomonas, Rhodococcus, Bacillus, Massilia, and Rhizobium. Chryseobacterium and other denitrifying species may also reduce nitrification products (NOX-) via aerobic denitrification.


Subject(s)
Ammonium Compounds , Nitrification , Aerobiosis , Bacteria , Denitrification , Ecosystem , Metabolic Networks and Pathways , Nitrates , Nitrites , Nitrogen
11.
Braz J Microbiol ; 51(3): 1191-1207, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32406050

ABSTRACT

As one of the most important components of the lake ecosystem, microorganisms from the freshwater and sediment play an important role in many ecological processes. However, the difference and correlation of bacterial community between these two niches were not clear. This study investigated the diversity of microbial community of freshwater and sediment samples from fifteen locations in Poyang Lake wetland. The correlation between the bacterial community and physicochemical property of Poyang Lake wetland was analyzed by artificial neural network (ANN). Our results demonstrated that the freshwater and sediment bacterial community were dominated by groups of the Bacteroidetes (23.33%) and ß-Proteobacteria (22.54%) separately, whereas, Canalipalpata, Bacillariophyta, Gemmatimonadetes, and Verrucomicrobia were detected in freshwater niches only. Phylogenetic analysis further indicated that bacterial composition in freshwater significantly differed with the sediment niches. There are 34 unique species accounted for 85% in fresh water samples and 28 unique species accounted for 82% in sediment samples. Cluster analysis further proved that all the samples from freshwater niches clustered closely together, far from the rest sediment samples. ANN analysis revealed that the freshwater with high N and P nutrients will greatly increase the diversity of the bacterial communities. In general, both environmental physicochemical properties, not each factor independently, contributed to the shift in the bacterial community structure. The five tributaries (Gan, Fu, Xin, Rao, Xiu Rivers) play a vital role in shaping the bacterial communities of Poyang Lake. This study provides new insights for understanding of microbial community compositions and structures of Poyang Lake wetland.


Subject(s)
Bacteria/isolation & purification , Geologic Sediments/microbiology , Lakes/microbiology , Microbiota , Bacteria/classification , Bacteria/genetics , China , Geologic Sediments/chemistry , Lakes/chemistry , Neural Networks, Computer , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Phylogeny , Wetlands
12.
Bull Environ Contam Toxicol ; 104(4): 511-519, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32193570

ABSTRACT

Through batch adsorption and column leaching experiments, this study aimed to investigate the adsorption and transport behavior of aniline in loess and related mechanism under different hydrochemical conditions. Batch experiments results indicated that aniline adsorption reached equilibrium after about 120 min, and the adsorption fitted the pseudo-second-order kinetic and Freundlich models well. The adsorption was spontaneous and exothermic process, indicating the aniline adsorbed by inherent colloidal particles (ICPs) tended to transport. Low pH value, ionic strength and temperature benefitted the adsorption. Column experiments results under different ionic strengths (100, 10 and 1 mM) confirmed the potential transport of aniline. The FT-IR spectra have further suggested that aniline was adsorbed by the ICPs through hydrogen-bond, hydrophobic effect and cation exchange interactions. Low ionic strength was advantageous for the adsorption of aniline in loess and the stabilities of ICPs in solution, but enhanced the co-transport probability of ICPs with aniline in loess.


Subject(s)
Aniline Compounds/analysis , Environmental Pollutants/analysis , Geologic Sediments/chemistry , Models, Theoretical , Soil/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Osmolar Concentration , Temperature
13.
Environ Sci Pollut Res Int ; 27(9): 9307-9317, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31916165

ABSTRACT

Nitrogen (N) loss is generally caused by denitrification under anaerobic conditions and the N loss in the heterotrophic nitrification_aerobic denitrification (HN_AD) system is of recent research interest. However, previous studies are generally focused on pure cultures-based system and the information on HN_AD in the complex aquatic ecosystem is limited. In this study, HN-AD system was established in the mixed cultures of the sediments and the performances of HN-AD were evaluated under different conditions. Further, the N loss mechanism in HN_AD system was explored. The study found that the N was lost in the sediment cultures with ammonium-N (NH4+_N) (or) and nitrate-N (NO3-_N) as N source under aerobic conditions. The highest N loss rate was achieved under the TOC/TN mass ratio of 10 with citrate as the carbon source. Under this condition, the N loss percentages of NH4+_N (201.91 mg/L) and NO3-_N (130.00 mg/L) reached 99.61% and 100.00%, respectively, which were higher than those in the pure HN_AD strains reported in the literature. High NH4+_N removal efficiencies were also achieved at low C/N mass ratio and high NH4+_N concentration (493.12 mg L-1). The N loss pathway in the system was investigated by adding Na2WO4 as the nitrate reductase inhibitor. The study found that the N was not lost via partial nitrification/denitrification pathway, i.e., NH4+ → NH2OH → NO2- → N2O (N2), instead via full nitrification/denitrification pathway, i.e., NH4+ → NH2OH → NO2- → NO3- → NO2- → N2O (N2), since nitrate was a key intermediate. The variation in NH4+_N, NO3-_N, and NO2-_N concentrations in the HN_AD processes further confirmed the N transformation pathway. Therefore, HN_AD may occur and cause N loss in natural aquatic ecosystems. The results of this study demonstrate that N was lost through HN-AD and that the well-cultured HN-AD sediments could be useful biological tool to remediate eutrophic water bodies.


Subject(s)
Denitrification , Nitrification , Nitrogen/analysis , Aerobiosis , Ecosystem , Heterotrophic Processes , Nitrogen/chemistry
14.
RSC Adv ; 11(2): 1066-1076, 2020 Dec 24.
Article in English | MEDLINE | ID: mdl-35423689

ABSTRACT

Mixed cultures were established by a sediment to investigate the changes in organic carbon (C) in a combined ammonium and phenanthrene biotransformation process in aquatic ecosystems. The microorganisms in the sediment demonstrated significant ammonium-N and phenanthrene biotransformation capacity with removal efficiencies of 99.96% and 99.99%, respectively. The changes in the organic C characteristics were evaluated by the fluorescence intensity, degradability (humification index (HIX) and UV absorbance at 254 nm (A 254)), aromaticity (specific UV absorbance at 254 nm (SUVA254) and fluorescence index (FI)). Compared with C2 (the second control), the lower values of fluorescence intensity (after the 15th d), HIX (after the 8th d), A 254 (after the 11th d), and SUVA254 (after the 8th d) and the higher FI value (after the 8th d) in ammonium and phenanthrene-fed mixed cultures (N_PHE) suggest that aromatic structures and some condensed molecules were easier to break down in N_PHE. Similar results were obtained from Fourier transformation infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR) spectra. Changes in organic C characteristics may be due to two key organisms Massilia and Azohydromonas. The biodiversity also suggested that the selective pressure of ammonium and phenanthrene is the decisive factor for changes in organic C characteristics. This study will shed light on theoretical insights into the interaction of N and aromatic compounds in aquatic ecosystems.

15.
Bull Environ Contam Toxicol ; 103(1): 75-81, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30840086

ABSTRACT

In present study, batch and column tests were conducted to investigate the kinetic and thermodynamic characteristics of the adsorption and transport of 2,4,6-trinitrotoluene (TNT) in Chinese loess with specific focus on the role of inherent colloid particles. Batch tests showed that a lot of TNT was absorbed in suspended colloid particles, and its adsorption reached equilibrium after about 10 h, the adsorption process can be best-fit by the pseudo-second order kinetic and Freundlich model. The adsorption was spontaneous, endothermic process, implying the adsorbed TNT is likely to release from soil matrix. These portend that the adsorbed TNT has a potential to co-transport with inherent colloid particles in loess. The column tests identified the potential, and showed TNT transport had obvious retardation effect, which may be ascribed to the release and transport of inherent colloidal particles as a key carrier. These findings are helpful to evaluate the loess interception and antifouling performance.


Subject(s)
Models, Chemical , Soil Pollutants/analysis , Trinitrotoluene/analysis , Adsorption , Colloids , Kinetics , Soil , Thermodynamics
16.
Chemosphere ; 208: 793-799, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29906753

ABSTRACT

To exploit the advantages of less electron donor consumptions in partial-denitrification (denitratation, NO3- → NO2-) as well as less sludge production in autotrophic denitrification (AD) and anammox, a novel biological nitrogen removal (BNR) process through combined anammox and thiosulfate-driven denitratation was proposed here. In this study, the ratio of S2O32--S/NO3--N and pH are confirmed to be two key factors affecting the thiosulfate-driven denitratation activity and nitrite accumulation. Simultaneous high denitratation activity and substantial nitrite accumulation were observed at initial S2O32--S/NO3--N ratio of 1.5:1 and pH of 8.0. The optimal pH for the anammox reaction is determined to be 8.0. A sequential batch reactor (SBR) and an up-flow anaerobic sludge blanket (UASB) reactor were established to proceed the anammox and the high-rate thiosulfate-driven denitratation, respectively. Under the ambient temperature of 35 °C, the total nitrogen removal efficiency and capacity are 73% and 0.35 kg N/day/m3 in the anammox-SBR. At HRT of 30 min, the NO3- removal efficiency could achieve above 90% with the nitrate-to-nitrite transformation ratio of 0.8, implying the great potential to apply the thiosulfate-driven denitratation & anammox system for BNR with minimal sludge production. Without the occurrence of denitritation (NO2- → N2O → N2), theoretically no N2O could be emitted from this BNR system. This study could shed light on how to operate a high rate BNR system targeting to electron donor and energy savings as well as biowastes minimization and greenhouse gas reductions.


Subject(s)
Denitrification , Nitrogen/chemistry , Sewage/chemistry , Thiosulfates/chemistry , Anaerobiosis , Bioreactors , Feasibility Studies , Nitrates/chemistry , Nitrites/chemistry , Oxidation-Reduction
17.
Environ Sci Pollut Res Int ; 25(17): 16702-16709, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29611121

ABSTRACT

In the Hebei Plain of North China, 70% of the inhabitants depend on groundwater for drinking water. Little is known regarding high-iodine concentrations in groundwater because there have been few systematic studies on high levels of iodine in groundwater in this region. To help identify the mechanisms that control the spatial distribution of iodine in groundwater, 61 samples of shallow groundwater and 161 samples of deep groundwater were collected along a sample section from Taihang Mountain to the Bo Sea. There were four pockets of high-iodine concentrations along the sample section. As the groundwater depth increased, the ratio of undetected iodine decreased, and the ratio of high-iodine concentrations increased. The high-iodine concentrations in the groundwater reflect the geological and sedimentary settings, and were mainly controlled by pH and Eh. Iodine concentrations were particularly high when the pH was between 7.3 and 8.5, and there was an inflection point at 150 µg/L in the curve of the relationship between iodine concentrations and Eh.


Subject(s)
Groundwater , Iodine/chemistry , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Water Pollutants, Chemical/chemistry
18.
Chemosphere ; 186: 322-330, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28797950

ABSTRACT

A comparative study on denitrifying sludge granulation with different electron donors (sulfide, thiosulfate and organics) was carried out. Longer time was spent on sulfide-denitrifying granular sludge (DGS) cultivation (88 days) than thiosulfate- and organics-DGS cultivations (57 days). All the three DGS were characterized in terms of particle size distribution, sludge settling ability (indicated by sludge volume index and settling velocity), permeability (indicated by fractal dimension) and extracellular polymeric substances (EPS, including polysaccharide and protein) secretion. Sludge productions in the three DGS-reactors were also monitored. The key functional microorganisms in three granular reactors were revealed via high through-put pyrosequencing analysis. Batch tests were performed to measure the denitrification activities of each DGS, including both denitratation (NO3- â†’ NO2-) and denitritation (NO2- â†’ N2). We found that thiosulfate-driven denitrifying sludge granulation (TDDSG) should be the most efficient and compact technology for effective BNR in municipal wastewater treatment. The findings of this study suggests the TDDSG could further increase the nitrogen removal potential in an enhanced sulfur cycle-driven bioprocess for co-treatment of wet flue gas desulfurization wastes with fresh sewage depending on three short-cut biological reactions, including: 1) short-cut biological sulfur reduction (SO42-/SO32- â†’ S2O32-); 2) thiosulfate-driven denitritation (S2O32- + NO2- â†’ SO42- + N2↑); and 3) nitritation (NH4+ + O2 â†’ NO2-).


Subject(s)
Bioreactors/microbiology , Denitrification , Electrons , Sewage/chemistry , Sulfides/chemistry , Thiosulfates/chemistry , Nitrogen/chemistry , Sewage/microbiology , Waste Management/methods
19.
Environ Sci Pollut Res Int ; 24(27): 21750-21760, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28766146

ABSTRACT

Dissolved organic matter (DOM), as the most active organic carbon in the soil, has a coherent affinity with heavy metals from inherent and exogenous sources. Although the important roles of DOM in the adsorption of heavy metals in soil have previously been demonstrated, the heterogeneity and variability of the chemical constitution of DOM impede the investigation of its effects on heavy metal adsorption onto soil under natural conditions. Fresh DOM (FDOM) and degraded DOM (DDOM) from sugarcane rind were prepared, and their chemical properties were measured by Fourier-transform infrared spectrometry (FTIR), excitation-emission matrix (EEM) fluorescence spectroscopes, nuclear magnetic resonance (NMR), and molecular weight distribution (MWD). They were also used in batch experiments to evaluate their effects on the adsorption of Cu(II) onto farmland red soil. Based on our results, the chemical structure and composition of DDOM greatly varied; compared with FDOM, the C/O ratio (from 24.0 to 9.6%) and fluorescence index (FI) (from 1.4 to 1.0) decreased, and high molecular weight (>10 kDa) compounds increased from 23.18 to 70.51%, while low molecular weight (<3 kDa) compounds decreased from 56.13 to 12.13%; aromaticity and humification degree were markedly enhanced. The discrepancy of FDOM and DDOM in terms of chemical properties greatly influenced Cu(II) adsorption onto red soil by affecting DOM-Cu(II) complex capacity. The FDOM inhibited the adsorption of Cu(II), while DDOM promoted adsorption, which was significantly influenced by soil pH. Maximum adsorption capacity (Q m) was 0.92 and 5.76 mg g-1 in the presence of FDOM and DDOM, respectively. The adsorption process with DDOM could be better described by the Langmuir model, while that with FDOM was better described by the Freundlich model. The impacts caused by the dynamic changes of the chemical properties of DOM under natural conditions should therefore be considered in the risk assessment and remediation of soils contaminated with heavy metals.


Subject(s)
Copper/chemistry , Organic Chemicals/chemistry , Saccharum , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Metals, Heavy/analysis
20.
Chemosphere ; 176: 212-220, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28264778

ABSTRACT

A sulfur cycle-based bioprocess for co-treatment of wet flue gas desulfurization (WFGD) wastes with freshwater sewage has been developed. In this process the removal of organic carbon is mainly associated with biological sulfate or sulfite reduction. Thiosulfate is a major intermediate during biological sulfate/sulfite reduction, and its reduction to sulfide is the rate-limiting step. In this study, the impacts of saline sulfite (the ionized form: HSO3- + SO32-) and free sulfurous acid (FSA, the unionized form: H2SO3) sourced from WGFD wastes on the biological thiosulfate reduction (BTR) activities were thoroughly investigated. The BTR activity and sulfate/sulfite-reducing bacteria (SRB) populations in the thiosulfate-reducing up-flow anaerobic sludge bed (UASB) reactor decreased when the FSA was added to the UASB influent. Batch experiment results confirmed that FSA, instead of saline sulfite, was the true inhibitor of BTR. And BTR activities dropped by 50% as the FSA concentrations were increased from 8.0 × 10-8 to 2.0 × 10-4 mg H2SO3-S/L. From an engineering perspective, the findings of this study provide some hints on how to ensure effective thiosulfate accumulation in biological sulfate/sulfite reduction for the subsequent denitrification/denitritation. Such manipulation would result in higher nitrogen removal rates in this co-treatment process of WFGD wastes with municipal sewage.


Subject(s)
Biodegradation, Environmental , Sewage/microbiology , Sulfur/chemistry , Thiosulfates/metabolism , Wastewater/chemistry , Bioreactors/microbiology , Denitrification , Desulfovibrio/metabolism , Fresh Water/microbiology , Oxidation-Reduction , Thiosulfates/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...