Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Toxics ; 12(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38668463

ABSTRACT

This study explores the potential efficacy of chlorogenic acid (CGA) in mitigating lipopolysaccharide (LPS)-induced cystitis in a mice model. C57BL/6J mice were divided into four groups: normal control (NC), LPS, LPS + low CGA, and LPS + high CGA. Evaluation methods included cystometrogram (CMG), histopathological, western blot, and immunohistological analysis. In the LPS group, CMG revealed abnormal voiding behavior with increased micturition pressure, voided volume (VV), and decreased voided frequency. Low CGA treatment in LPS mice demonstrated improved micturition pressure and inter-contraction intervals (ICI). However, high CGA treatment exhibited prolonged ICI and increased VV, suggesting potential adverse effects. Histological analysis of LPS-treated mice displayed bladder inflammation and interstitial edema. Low CGA treatment reduced interstitial edema and bladder inflammation, confirmed by Masson's trichrome staining. Western blotting revealed increased cytokeratin 20 (K20) expression in the low CGA group, indicating structural abnormalities in the bladder umbrella layer after LPS administration. In conclusion, low CGA treatment positively impacted voiding behavior and decreased bladder edema and inflammation in the LPS-induced cystitis mice model, suggesting its potential as a supplement for inflammation cystitis prevention. However, high CGA treatment exhibited adverse effects, emphasizing the importance of dosage considerations in therapeutic applications.

2.
Physiol Rep ; 11(24): e15887, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38110300

ABSTRACT

Muscular dystrophy (MD) is a genetic disorder that causes progressive muscle weakness and degeneration. Limb-girdle muscular dystrophy (LGMD) is a type of MD that mainly causes muscle atrophy within the shoulder and pelvic girdles. LGMD is classified into autosomal dominant (LGMD-D) and autosomal recessive (LGMD-R) inheritance patterns. Mutations in the Dysferlin gene (DYSF) are common causes of LGMD-R. However, genetic screening of DYSF mutations is rare in Taiwan. Herein, we identified a novel c.2867_2871del ACCAG deletion and a previously reported c.937+1G>A mutation in DYSF from a Taiwanese family with LGMD. The primary symptoms of both siblings were difficulty climbing stairs, walking on the toes, and gradually worsening weakness in the proximal muscles and increased creatine kinase level. Through pedigree analysis and sequencing, two siblings from this family were found to have compound heterozygous DYSF mutations (c. 937+1G>A and c. 2867_2871del ACCAG) within the separated alleles. These mutations induced early stop codons; if translated, truncated DYSF proteins will be expressed. Or, the mRNA products of these two mutations will merit the nonsense-mediated decay, might result in no dysferlin protein expressed. To our knowledge, this is the first report of a novel c.2867_2871del ACCAG deletion in DYSF. Further research is required to examine the effects of the novel DYSF mutation in Taiwanese patients with LGMD.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Humans , Dysferlin/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Muscular Atrophy , Inheritance Patterns
3.
FASEB J ; 37(4): e22826, 2023 04.
Article in English | MEDLINE | ID: mdl-36856608

ABSTRACT

Age-induced erectile dysfunction (ED) is a convoluted medical condition, and restoring erectile function (EF) under geriatric conditions is highly complicated. Platelet-rich plasma (PRP) treatment is an inexpensive cell-based therapeutic strategy. We have aimed to restore EF in aged-ED rats with PRP as a therapeutic tool. Male rats were grouped into aged and young according to age. The young rats were considered as normal control (NC) and treated with saline. Aged were further divided into 2 groups and treated with intracavernous (IC) PRP and saline. Treatment was scheduled at the 9th and 10th week for NC and 41th and 42th week for aged-ED rats, with EF analysis scheduled on the 12th week for NC and 44th week for aged-ED rats, respectively. Erectile response, immunofluorescence staining, and electron microscopic analyses were performed. IC PRP treatment effectively reduced prostate hyperplasia (PH). EF response indicated a significant increase in crucial EF parameters in PRP-treated aged-ED rats. Histological evidence denoted a rigid and restored development of tunica adventitia of the dorsal artery, decreased vacuolation of the dorsal penile nerve, and structural expansion of the epineurium. Masson's trichrome and immunostaining results affirmed an elevated expression of α-smooth muscle actin (α-SMA) in the corpus cavernosum (CC). Ultrastructure findings revealed that PRP effectively rejuvenated degenerating nerves, preserved endothelium and adherent junctions of corporal smooth muscle, and restored the axonal scaffolds by upregulating neurofilament-H (NF-H) expression. Finally, PRP enhanced neural stability by enhancing the axonal remyelination processes in aged-ED rats. Hence, PRP treatment was proven to restore EF in aged-ED rats, which was considered a safe, novel, cost-effective, and hassle-free strategy for EF restoration in geriatric patients.


Subject(s)
Erectile Dysfunction , Platelet-Rich Plasma , Prostatic Hyperplasia , Male , Animals , Rats , Humans , Hyperplasia , Prostate , Aging , Nerve Degeneration
4.
Biomed Pharmacother ; 158: 114155, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36916397

ABSTRACT

BACKGROUND: Solute carrier family nine isoform 3 (SLC9A3) is an Na+/H+ exchanger that regulates Ca2+ homeostasis. SLC9A3 is largely involved in the transepithelial absorption of Na+/H+ and frequently functions in pair with a Cl-/HCO3- exchanger. OBJECTIVE: To investigate the impact and pathophysiological mechanisms of long-term SLC9A3 deficiency on lower urinary tract symptoms (LUTS) in a mouse model MATERIALS AND METHODS: Slc9a3 knockout and wild-type mice (average >6 months) were used. The effects of SLC9A3 depletion on bladder and urethral functions and effectiveness of voiding were assessed using a cystometrogram (CMG). Histology, blood electrolytes, and gene expression were also analyzed. RESULTS: The SLC9A3-deficient mice had smaller gross bladders than the wild-type mice. The CMG analysis revealed normal peak micturition pressure, higher threshold pressure, short intercontraction interval, less voided volume, and poor compliance in the SLC9A3-deficient mice, similar to clinical LUTS. Histological analysis revealed loose detrusor muscle and loss of transformability of the urothelium in the SLC9A3-deficient mice. Masson's trichrome analysis revealed severe collagen deposition in the detrusor muscle. Immunofluorescence staining also demonstrated a significant decrease in cytokeratins 5 and 20. Gene and protein expression analyses confirmed that SLC9A3 does not act directly on bladder tissue. Homeostasis was correlated with bladder dysfunction in the SLC9A3-deficient mice. DISCUSSION: Fibrosis and collagen deposition in the bladder of the SLC9A3-deficient mice is due to bladder inflammation because of decreased blood flow and deregulated systemic homeostasis. Long-term SLC9A3 depletion causes progressive bladder dysfunction, similar to human LUTS. CONCLUSION: Electrolyte imbalance causes SLC9A3 deficiency-mediated progressive micturition dysfunction.


Subject(s)
Urinary Bladder , Urination , Animals , Humans , Mice , Electrolytes , Sodium-Hydrogen Exchangers , Urinary Bladder/pathology
5.
Biomed Pharmacother ; 161: 114499, 2023 May.
Article in English | MEDLINE | ID: mdl-36913891

ABSTRACT

BACKGROUND: Despite the widespread use of nerve-sparing prostatectomy techniques, the incidence of post-operative erectile dysfunction (ED) remains high. Early intracavernous (IC) injection of platelet-rich plasma (PRP) after nerve crushing improves erectile function (EF) in rats by promoting cavernous nerve (CN) regeneration and preventing structural changes in the corpus cavernosum. However, the neuroprotective effects of the in situ application of PRP glue in rats after CN-sparing prostatectomy (CNSP) remain unclear. AIM: This study aimed to investigate the effects of PRP glue treatment on EF and CN preservation in rats after CNSP. METHODS: After prostatectomy, male Sprague-Dawley rats were treated with PRP glue, IC PRP injection, or their combination. The intracavernous pressure (ICP), mean arterial pressure (MAP), and CN preservation status in the rats were evaluated after 4 weeks. Results were corroborated using histology, immunofluorescence, and transmission electron microscopy. RESULTS: The PRP glue-treated rats showed 100% CN preservation and significantly higher ICP responses (the ratio of maximum ICP to MAP (0.79 ± 0.09)) than the CNSP rats (the ratio of maximum ICP to MAP (0.33 ± 0.04)). PRP glue also significantly increased neurofilament-1 expression, indicating its positive effect on the CNs. Furthermore, this treatment significantly increased the expression of α-smooth muscle actin. Electron micrographs revealed that PRP glue preserved the myelinated axons and prevented atrophy of the corporal smooth muscle by maintaining the adherens junctions. CONCLUSIONS: These results indicate that PRP glue is a potential solution for EF preservation by neuroprotection in patients with prostate cancer who are likely to undergo nerve-sparing radical prostatectomy.


Subject(s)
Erectile Dysfunction , Platelet-Rich Plasma , Humans , Rats , Male , Animals , Erectile Dysfunction/etiology , Erectile Dysfunction/prevention & control , Rats, Sprague-Dawley , Disease Models, Animal , Penile Erection , Penis , Prostatectomy/adverse effects
6.
Biomed J ; 46(6): 100571, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36442793

ABSTRACT

BACKGROUND: Extracorporeal shockwave therapy (ESWT) and adipose-derived mesenchymal stem cells (ADSCs) have been used clinically for the treatment of osteonecrosis of the femoral head (ONFH). The study elucidated that ESWT, ADSCs, and combination therapy modulated pro-inflammatory cytokines in the articular cartilage and subchondral bone of early rat ONFH. METHODS: ESWT and ADSCs were prepared and isolated for treatment. Micro-CT, pathological analysis, and immunohistochemistry were performed and analysed. RESULTS: After treatments, subchondral bone of ONFH was improved in trabecular bone volume (BV/TV) (p < 0.001), thickness (Tb.Th) (p < 0.01 and 0.001), and separation (Tb.Sp) (p < 0.001) and bone mineral density (BMD) (p < 0.001) using micro-CT analysis. The articular cartilage was protected and decreased apoptosis markers after all the treatments. The expression of IL33 (p < 0.001), IL5 (p < 0.001), IL6 (p < 0.001), and IL17A (p < 0.01) was significantly decreased in the ESWT, ADSCs, and Combination groups as compared with ONFH group. The IL33 receptor ST2 was significantly increased after treatment (p < 0.001) as compared with ONFH group. The Combination group (p < 0.01) decreased the expression of IL6 better than the ESWT and ADSCs groups. CONCLUSION: ESWT, ADSCs and combination therapy significantly protected articular cartilage and subchondral bone of early rat ONFH by modulating the expression of pro-inflammatory cytokines including, IL33 and its receptor ST2, IL5, IL6, and IL17A.

7.
J Control Release ; 351: 970-988, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36220488

ABSTRACT

Cancer vaccines have recently garnered tremendous interest. However, the targeted delivery of antigens and adjuvants to dendritic cells (DCs) still remains challenging. In this study, we developed glycosylated poly(lactic-co-glycolic acid) nanoparticles (NPs) loaded with the SIINFEKL peptide (OVA) as a tumor-specific antigen and CpG oligodeoxynucleotide (CpG) as an adjuvant for an effective DC-targeted cancer vaccine. Surface modification of NPs with galactose (Gal) or mannose (Man) was carried out by a double-emulsion solvent evaporation method, and the products were respectively named OVA-CpG Gal-NPs and OVA-CpG Man-NPs. They exhibited a uniform particle size, high loading capacity, robust stability, and extended release. The OVA-CpG Gal-NPs were found to rapidly enhance antigen uptake and DC maturation. In the in vivo study, OVA-CpG Gal-NPs via intravenous (i.v.), intranasal (i.n.) and subcutaneous (s.c.) routes had rapidly accumulated in the spleen. Moreover, the non-glycosylated OVA-CpG NPs after s.c. immunization could rapidly be trafficked to distal lymph nodes and sustained higher levels. All of these formulations increased the level of cluster of differentiation 4-positive (CD4+) T cells and interferon (IFN)-γ in the spleen, then promoted the cytotoxic CD8+ tumor-infiltrating lymphocytes against E.G7-OVA lymphomas. In conclusion, galactosylated NPs provided an effective platform to enhance the DC targeting to induce cellular immunity and T-cell recruitment into tumor sites in vivo, thus showing great potential to be developed as a prophylactic vaccine for cancer immunotherapy.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Humans , Animals , Mice , Polylactic Acid-Polyglycolic Acid Copolymer , Glycosylation , Ovalbumin , Adjuvants, Immunologic , Antigens, Neoplasm/metabolism , Vaccination , Neoplasms/prevention & control , Dendritic Cells , Mice, Inbred C57BL
8.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35328437

ABSTRACT

Erectile dysfunction (ED) is an agonizing complication of diabetes mellitus (DM) and it is challenging to treat ED in DM patients. Platelet-rich plasma (PRP) is a unique therapeutic strategy comprising intrinsic growth factors. An attempt was made to explore the potentiality of the PRP treatment in DM-induced ED rats in various groups (control, DM-non-ED, DM-ED, and DM-ED treated with PRP). Streptozotocin (STZ) was used to induce DM in rats. The blood glucose levels of the DM rats were maintained at >300 mg/dl. In the 18-week experiment, survival rate, body weight, intracavernous pressure (ICP) variations, and arterial blood pressure were analyzed. The tissue restoration results were validated by histological, immunofluorescence, and transmission electron microscopic analysis. PRP treatment of DM-ED rats significantly increased all parameters of erectile function compared to pre-treatment of PRP and DM-ED treated with vehicle. The histological results revealed that PRP treatment substantially enhanced the regeneration of myelinated nerves and decreased the atrophy of corporal smooth muscle. Notably, the PRP treatment immensely enhanced the survival rate in post-surgery DM-ED rats. These results indicated certain benefits of PRP treatment in delaying damage and preventing post-surgery complications in DM patients. Hence, PRP treatment is a novel multifactorial strategy for DM-ED patients.


Subject(s)
Diabetes Mellitus, Experimental , Erectile Dysfunction , Platelet-Rich Plasma , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/therapy , Erectile Dysfunction/drug therapy , Erectile Dysfunction/therapy , Humans , Male , Penile Erection/physiology , Penis/innervation , Rats , Rats, Sprague-Dawley , Streptozocin
9.
Int J Med Sci ; 19(2): 242-256, 2022.
Article in English | MEDLINE | ID: mdl-35165510

ABSTRACT

The paper displayed the pathological changes and relationships of the modified Mankin score, tidemark roughness and calcified cartilage (CC) thickness by extracorporeal shockwave therapy (ESWT) (0.25 mJ/ mm2 with 800 impulses) on different positions of the medial and lateral rat knee OA joint. After the experiments, the articular cartilage was assessed using histomorphometry, image analysis and statistical method. In the micro-CT analysis, ESWT on medial groups were better than lateral groups in the trabecular volume and trabecular number. The data showed a strong negative correlation between the modified Mankin score and tidemark roughness (r = -0.941; P < 0.001). In terms of the relationship of tidemark roughness with CC thickness, the medial and Sham groups showed a significant negative correlation (r = -0.788, P = 0.022). Additionally, the Euclidean distance derived from 3D scatter plot analysis was an indicator of chondropathic conditions, exhibiting a strong correlation with OA stage in the articular cartilage of the femur (r = 0.911, P < 0.001) and tibia (r = 0.890, P < 0.001) after ESWT. Principle component analysis (PCA) further demonstrated that ESWT applied to medial locations had a better outcome than treatment at lateral locations for knee OA by comparing with Sham and OA groups, and CC thickness was the most important factor affecting hyaline cartilage repair after ESWT.


Subject(s)
Calcinosis/pathology , Calcinosis/therapy , Extracorporeal Shockwave Therapy , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/therapy , Animals , Calcinosis/diagnostic imaging , Cartilage, Articular/pathology , Disease Models, Animal , Knee Joint/pathology , Osteoarthritis, Knee/diagnostic imaging , Rats , X-Ray Microtomography
10.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216309

ABSTRACT

This study explored the specific effects of ketamine on bladder function followed by a sequence of histological changes in a rat bladder at fixed time course intervals. The rats were grouped into normal control and experimental animals, and ketamine (100 mg/kg/day) was administrated to the experimental animals for 2, 4, and 8 weeks, respectively; similarly, the control animals received saline. All animals were evaluated for bladder function and histological responses to the treatment. Ultrastructural changes were observed by transmission electron microscopy (TEM). The results showed progressive bladder dysfunctions with hyperactive bladder conditions according to the time course and frequency of exposure to ketamine. Significantly, decreased inter contraction intervals, residual urine volume, peak micturition pressure, and increased micturition frequency were observed. Bladder histology results revealed substantial inflammation and comprehensive submucosa edema in week 2 and 4 rats along with fibrosis and significant bladder detrusor hypertrophy in week 8 rats. TEM analysis revealed bladder wall thickening, deformed blood vessels, detrusor hypertrophy, wobbled gap junction, and barrier dysfunction at different time course levels in experimental animals. These results provided a profound knowledge about the prognosis and step-by-step pathophysiology of the disease, which might help in developing new therapeutic interventions.


Subject(s)
Cystitis , Ketamine , Animals , Hypertrophy/pathology , Ketamine/pharmacology , Microscopy, Electron, Transmission , Rats , Rats, Sprague-Dawley , Urinary Bladder/pathology
11.
J Formos Med Assoc ; 121(1 Pt 1): 14-24, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33781654

ABSTRACT

BACKGROUND: The intracavernosal (IC) injection of chitosan activated platelet rich plasma (cPRP) has shown to improve the erectile dysfunction in cavernous nerve injury rat model. However, the action target of PRP in improving neurogenic erectile dysfunction remains unclear. We aimed to determine the effect of cPRP action at early stage that further mediates its effect on erectile function (EF) recovery in the bilateral cavernous nerve crushing (BCNC) injury rat model. METHODS: Fifty-four rats were randomly divided into two equal groups: intracavernosal ( IC) injection of saline after BCNC (group 1) and IC injection of cPRP after BCNC (group 2). Five animals in each group were euthanized at 3, 7 and 14 day (d) post-injection, and the tissues were harvested to conduct transmission electron microscopy and histological assays. Six animals in each group were used to determine the recovery of EF at 14 and 28 d post-injury. RESULTS: IC injections of cPRP increased all EF parameters at 28 d and 14 d post-injury (p < 0.05). cPRP injections simultaneously prevented the loss of neuronal nitric oxide synthase-positive neurons (p < 0.05) and nerve fibers (p < 0.05) in the major pelvic ganglion and cavernous nerve (CN), respectively, compared with saline injections. This simultaneous accelerated the regeneration of myelinated axons of the CN, reduced apoptosis, and enhanced the proliferation of the corporal smooth muscle cells at an earlier stage. CONCLUSION: These results suggest that the application of cPRP was beneficial to restore EF via neuroprotective and tissue-protective effects at early stage.


Subject(s)
Chitosan , Erectile Dysfunction , Platelet-Rich Plasma , Animals , Erectile Dysfunction/drug therapy , Humans , Male , Rats
12.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34769483

ABSTRACT

Interstitial cystitis (IC) is a chronic inflammatory disease characterized by bladder pain and increased urinary frequency. Although the C57BL/6J (B6) and FVB/NJ (FVB) mouse strains are commonly used as animal models for studies involving the urinary system, few reports have compared their lower urinary tract anatomy, despite the importance of such data. Our study aimed to characterize bladder function changes in FVB and B6 mouse strains with lipopolysaccharide (LPS)-induced IC, to understand mouse model-based bladder research. The bladder function parameters were measured by cystometrogram. Histological assay was examined by hematoxylin and eosin stain, Masson's trichrome stain, and immunofluorescence staining. Results indicated that the two strains in the control group exhibited different bladder structures and functions, with significant anatomical differences, including a larger bladder size in the FVB than in the B6 strain. Furthermore, cystometry tests revealed differences in bladder function pressure. LPS-treated B6 mice presented significant changes in peak pressure, with decreased intercontraction intervals; these results were similar to symptoms of IC in humans. Each strain displayed distinct characteristics, emphasizing the care required in choosing the appropriate strain for bladder-model studies. The results suggested that the B6 mouse strain is more suitable for IC models.


Subject(s)
Cystitis, Interstitial/pathology , Lipopolysaccharides/toxicity , Pelvic Pain/pathology , Urinary Bladder/pathology , Urinary Tract/pathology , Animals , Cystitis, Interstitial/chemically induced , Disease Models, Animal , Mice , Mice, Inbred C57BL
13.
Biomedicines ; 9(10)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34680516

ABSTRACT

The dose-dependent effects of adipose-derived mesenchymal stem cell-conditioned medium (ADSC-CM) were compared with those of shockwave (SW) therapy in the treatment of early osteoarthritis (OA). Anterior cruciate ligament transaction (ACLT) with medial meniscectomy (MMx) was performed in rats divided into sham, OA, SW, CM1 (intra-articular injection of 100 µL ADSC-CM into knee OA), and CM2 (intra-articular injection of 200 µL ADSC-CM) groups. Cartilage grading, grading of synovium changes, and specific molecular analysis by immunohistochemistry staining were performed. The OARSI and synovitis scores of CM2 and SW group were significantly decreased compared with those of the OA group (p < 0.05). The inflammatory markers interleukin 1ß, terminal deoxynucleotidyl transferase dUTP nick end labeling and matrix metalloproteinase 13 were significantly reduced in the CM2 group compared to those in the SW and CM1 groups (p < 0.001). Cartilage repair markers (type II collagen and SRY-box transcription factor 9, SOX9) expression were significantly higher in the CM2 group than in the other treatment groups (p < 0.001; p < 0.05). Furthermore, inflammation-induced growth factors such as bone morphogenetic protein 2 (BMP2), BMP5, and BMP6 were significantly reduced in the treatment groups, and the CM2 group showed the best results among the treatments (p < 0.05). In conclusion, ADSC-CM and SW ameliorated the expression of inflammatory cytokines and inflammation-induced BMPs to protect the articular cartilage of the OA joint.

14.
Toxics ; 9(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209184

ABSTRACT

This study aimed to determine the mechanism of ketamine-induced cystitis without metabolism. A total of 24 adult male Sprague-Dawley rats were separated into control, ketamine, and norketamine groups. To induce cystitis, rats in the ketamine and norketamine groups were treated with intravesical instillation of ketamine and norketamine by mini-osmotic pump, which was placed in subcutaneous space, daily for 24 h for 4 weeks. After 4 weeks, all rats were subjected to bladder functional tests. The bladders were collected for histological and pathological evaluation. Compared to control, ketamine treatment demonstrated an increase in the bladder weight, high bladder/body coefficient, contractive pressure, voiding volume, collagen deposition, reduced smooth muscle content, damaged glycosaminoglycan layer, and low bladder compliance. Compared to ketamine, norketamine treatment showed more severe collagen deposition, smooth muscle loss, damaged glycosaminoglycan layer, and increased residual urine. Intravesical administration of ketamine and norketamine induced cystitis with different urodynamic characteristics. Norketamine treatment caused more severe bladder dysfunction than ketamine treatment. Direct treatment of the bladder with norketamine induced symptoms more consistent with those of bladder outlet obstruction than ketamine cystitis. Detailed studies of cellular mechanisms are required to determine the pathogenesis of ketamine cystitis.

15.
J Sex Med ; 18(4): 698-710, 2021 04.
Article in English | MEDLINE | ID: mdl-33741291

ABSTRACT

BACKGROUND: The neuro-protective and tissue-protective properties of platelet-rich plasma (PRP) have been demonstrated through treating bilateral cavernous nerve (CN) injury in rats, although the underlying mechanisms have not been fully clarified. AIM: To determine factors released from PRP and explore their role in mediating preservation of erectile function (EF) in a rat model of CN injury. METHODS: Male Sprague-Dawley rats (aged 10 weeks) were used in this study. 6 rats were used to obtain blood for PRP and whole plasma preparation. We probed samples using a cytokine antibody array and performed enzyme-linked immunosorbent assay (ELISA). We determined the expression patterns of C-X-C motif chemokine ligand 5 (CXCL5) and receptors in the major pelvic ganglion (MPG) and corpus cavernosum via immunostaining. 32 rats were divided into 4 groups based on the type of injection received: (i) sham, (ii) vehicle, (iii) 400 µL of PRP, and (iv) 30 ng/kg of CXCL5. Groups 2-4 were subjected to bilateral CN crush (BCNC) injury. 4 weeks later, EF was assessed by CN electrostimulation, and CNs and penile tissue were collected for histological analysis. OUTCOME: Cytokine antibody array, ELISA, erectile response, and immunofluorescence staining readings. RESULTS: The PRP contained high levels of CXCL5. MPG neurons expressed CXCL5 and CXCR2. PRP intracavernous injection stabilized CXCR2 and increased CXCL5 expression in the MPG after BCNC, thus enhancing neuroprotection. CXCL5 injection improved BCNC-induced erectile dysfunction by preventing smooth muscle atrophy. CLINICAL IMPLICATIONS: The therapeutic efficacy of PRP in CN injury-induced erectile dysfunction may arise from the synergy among multiple biomolecules. Our study serves as a basis for future studies on PRP formulation to provide safe and effective medications for the maintenance of EF after radical prostatectomy in patients with prostate cancer. STRENGTHS & LIMITATIONS: A strength of our study is that our model was able to isolate the role of cytokines, specifically CXCL5, as part of the mechanism responsible for PRP's protective properties. However, the rat cytokine array provided limited experimental targets. The rats used were not at the age corresponding to prostate cancer patients in clinical settings. Our study did not explore CXCL5 blocking in the PRP group. Finally, the main protein quantification results by western blotting were hampered because of small tissue samples. CONCLUSIONS: This study provides evidence for the role of CXCL5 and CXCR2 as mediators of PRP effects in the preservation of EF after CN injury. Wu YN, Liao CH, Chen KC, et al. CXCL5 Cytokine Is a Major Factor in Platelet-Rich Plasma's Preservation of Erectile Function in Rats After Bilateral Cavernous Nerve Injury. J Sex Med 2021;18:698-710.


Subject(s)
Chemokine CXCL5 , Erectile Dysfunction , Peripheral Nerve Injuries , Platelet-Rich Plasma , Animals , Cytokines , Disease Models, Animal , Erectile Dysfunction/etiology , Humans , Male , Penile Erection , Penis , Rats , Rats, Sprague-Dawley
16.
Biomed Res Int ; 2019: 8520523, 2019.
Article in English | MEDLINE | ID: mdl-31828135

ABSTRACT

Radical prostatectomy causes erectile dysfunction (ED) and irreversible morphologic changes, including induction of endothelial and smooth muscle cell (SMC) apoptosis in the corpus cavernosum (CC). The injection of smooth muscle progenitor cells (SPCs) thickens the vascular intima and has demonstrated therapeutic benefit in cardiovascular disease animal. Herein, we investigated the effect of SPCs on the recovery of erectile function (EF) in rat models with bilateral cavernous nerve (CN) injury. Twenty-four male Sprague-Dawley rats were randomized into sham, vehicle only, or SPC treatment groups. Rats in the SPC treatment and vehicle groups were subjected to bilateral CN injury before intracavernosal injection. Intracavernosal injections of SPCs increased all EF parameters at day 28 after injury and simultaneously reduced apoptosis of the SMCs. Ultrastructural analysis revealed that SPCs maintained the integrity of the CC by preserving the structure of the adherens junctions. Tracking transplanted SPCs labeled with EdU showed that transplanted SPCs remained in the CC 28 days after treatment. Intracavernosal SPC injection restored EF after bilateral CN injury by reducing SMC apoptosis, which favored the maintenance of the structure of adherens junctions and regulated the stability of corporal vessels. These findings demonstrate the therapeutic potential of SPCs for treating ED in humans.


Subject(s)
Apoptosis/physiology , Erectile Dysfunction/surgery , Myocytes, Smooth Muscle , Peripheral Nerve Injuries/surgery , Stem Cell Transplantation , Animals , Disease Models, Animal , Erectile Dysfunction/pathology , Male , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/transplantation , Penile Erection/physiology , Penis/cytology , Penis/pathology , Penis/surgery , Rats , Rats, Sprague-Dawley
17.
Biomed Res Int ; 2019: 3562719, 2019.
Article in English | MEDLINE | ID: mdl-30956978

ABSTRACT

BACKGROUND: The pathophysiology of Taiwanese congenital bilateral absence of the vas deferens (CBAVD) is different from that in Caucasians. In particular, major cystic fibrosis transmembrane conductance regulator (CFTR) mutations and cystic fibrosis are absent in the former. Instead, deficiency in solute carrier family 9 sodium/hydrogen exchanger isoform 3 (SLC9A3) may play a role by generating obstructive azoospermia and degraded epithelial structure in the reproductive tract. OBJECTIVES: The objective of the study was to test whether SLC9A3 variants cause Taiwanese CBAVD. MATERIALS AND METHODS: Six-month-old Slc9a3 -/-male mice were used to evaluate the effect of long-term SLC9A3 loss on the reproductive system. A case-control cohort of 29 men with CBAVD and 32 fertile men were genotyped for SLC9A3 variants. RESULTS: SLC9A3 was expressed and localized in the apical border of the epithelium of human vas deferens and glandular epithelium of the seminal vesicle. SLC9A3 deficiency specifically induces atrophy of vas deferens and unfolding of seminal vesicle mucosa in mice. Loss of SLC9A3 increased the incidence of CBAVD in humans from 3.1% to 37.9% (p < 0.001). Up to 75.9% of CBAVD patients carry at least one variant in either SLC9A3 or CFTR. DISCUSSION: Our findings build upon previous data associated with CBAVD pathogenesis. Here, we now report for the first time an association between CBAVD and loss of SLC9A3 and propose that specific defects in the reproductive duct due to SLC9A3 variants drive CBAVD development. CONCLUSION: The data implicate loss of SLC9A3 as a basis of Taiwanese CBAVD and highlight SLC9A3 function in reproduction.


Subject(s)
Gene Deletion , Male Urogenital Diseases , Sodium-Hydrogen Exchanger 3 , Vas Deferens/abnormalities , Vas Deferens/embryology , Animals , Asian People , Humans , Male , Male Urogenital Diseases/embryology , Male Urogenital Diseases/epidemiology , Male Urogenital Diseases/genetics , Mice , Mice, Knockout , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchanger 3/metabolism , Taiwan
18.
J Formos Med Assoc ; 118(12): 1576-1583, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30797621

ABSTRACT

Congenital bilateral absence of vas deferens (CBAVD) is a special entity in obstructive azoospermia. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are involved in Taiwanese CBAVD but most heterozygous 5T variant. The solute carrier family 9 isoform 3 (SLC9A3) is the Na+/H+ exchanger, which interacts with CFTR and regulates the Ca2+ homeostasis. Loss of SLC9A3 decreases CFTR protein and causes obstructive azoospermia in mice. It also causes mal-reabsorption by the efferent tubules, which leads to the obstructive phenomenon and eventually results in testicular atrophy. In 6-month old SLC9A3 deficiency mice, the atrophy of their vas deferens and seminal vesicles become more prominent. Decreases of CFTR expression in the reproductive organ in the SLC9A3 deficient (-/-) mice prove the interaction between CFTR and SLC9A3 in the reproductive tract. Most of Taiwanese CBAVD have at least one variant of SLC9A3 deletion and CFTR IVS8-5T, which co-contribute to Taiwanese CBAVD. The report indicates SLC9A3 deficiency can reverse the pathological changes in the gastrointestinal tract of CF mice. Further research can explore the definite mechanism of SLC9A3 and its role interacting with CFTR in different organ systems, which can contribute to novel treatment for the patients with cystic fibrosis and CBAVD.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Infertility, Male/genetics , Male Urogenital Diseases/genetics , Sodium-Hydrogen Exchanger 3/genetics , Vas Deferens/abnormalities , Vas Deferens/pathology , Animals , Asian People/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Gene Expression Regulation, Developmental , Heterozygote , Humans , Infertility, Male/pathology , Male , Mice , Mice, Knockout , Mutation
19.
Oncotarget ; 9(5): 6402-6415, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29464081

ABSTRACT

PURPOSE: Impotence is one of the major complications occurring in prostate cancer patients after radical prostectomy (RP). Self-repair of the injured nerve has been observed in animal models and in patients after RP. However, the downstream signalling is not well documented. Here, we found that the DAPK/CIP2A complex is involved in GAS6/AXL-related Schwann cell proliferation. MATERIALS AND METHODS: The 3 groups were a sham group, a 14-day post-bilateral cavernous nerve injury (BCNI) group and a 28-day post-BCNI group. Erectile function was assessed and immunohistochemistry was performed. The rat Schwann cell RSC96 line was chosen for gene knockdown, cell viability, western blot, immunofluorescence and co-immunoprecipitation assays. RESULTS: The intracavernosal pressure was low on the 14th day after BCNI and partially increased by the 28th day. GAS6 and p-AXL expression gradually increased in the cavernous nerve after BCNI. RSC96 cells incubated with a GAS6 ligand showed increased levels of p-ERK1/2 and p-AKT. Moreover, DAPK and CIP2A.p-AXL and p-DAPK and CIP2A complexes were identified by both immunoblotting and co-immunoprecipitation. CONCLUSION: The DAPK/CIP2A complex is involved in GAS6/AXL-related Schwann cell proliferation. CIP2A inhibits PP2A activity, which results in p-DAPK(S308) maintenance and promotes Schwann cell proliferation. CIP2A is a potential target for the treatment of nerve injury after RP.

20.
Sci Rep ; 8(1): 929, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343793

ABSTRACT

The changes in neuronal nitric oxide synthases (nNOS) in the dorsal penile nerves (DPNs) are consistent with cavernous nerve (CN) injury in rat models. However, the anatomical relationship and morphological changes between the minor branches of the DPNs and the CNs after injury have never been clearly explored. There were forty 12 week old male Sprague-Dawley rats receiving bilateral cavernous nerve injury (BCNI). Erectile function of intracavernous pressure and mean arterial pressure were measured. The histology and ultrastructure with H&E stain, Masson's trichrome stain and immunohistochemical stains were applied on the examination of CNs and DPNs. We demonstrated communicating nerve branches between the DPNs and the CNs in rats. The greatest damage and lowest erectile function were seen in the 14th day and partially recovered in the 28th day after BCNI. The nNOS positive DPN minor branches' number was significantly correlated with erectile function. The sub-analysis of the number of nNOS positive DPN minor branches also matched with the time course of the erectile function after BCNI. We suggest the regeneration of the DPNs minor branches would ameliorate the erectile function in BCNI rats.


Subject(s)
Erectile Dysfunction/metabolism , Erectile Dysfunction/pathology , Nitric Oxide Synthase Type I/metabolism , Penis/metabolism , Penis/pathology , Pudendal Nerve/metabolism , Pudendal Nerve/pathology , Animals , Disease Models, Animal , Male , Penile Erection/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...