Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Med Phys ; 38(4): 1867-76, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21626920

ABSTRACT

PURPOSE: To improve the performance of a computer-aided detection (CAD) system for mass detection by using four-view information in screening mammography. METHODS: The authors developed a four-view CAD system that emulates radiologists' reading by using the craniocaudal and mediolateral oblique views of the ipsilateral breast to reduce false positives (FPs) and the corresponding views of the contralateral breast to detect asymmetry. The CAD system consists of four major components: (1) Initial detection of breast masses on individual views, (2) information fusion of the ipsilateral views of the breast (referred to as two-view analysis), (3) information fusion of the corresponding views of the contralateral breast (referred to as bilateral analysis), and (4) fusion of the four-view information with a decision tree. The authors collected two data sets for training and testing of the CAD system: A mass set containing 389 patients with 389 biopsy-proven masses and a normal set containing 200 normal subjects. All cases had four-view mammograms. The true locations of the masses on the mammograms were identified by an experienced MQSA radiologist. The authors randomly divided the mass set into two independent sets for cross validation training and testing. The overall test performance was assessed by averaging the free response receiver operating characteristic (FROC) curves of the two test subsets. The FP rates during the FROC analysis were estimated by using the normal set only. The jackknife free-response ROC (JAFROC) method was used to estimate the statistical significance of the difference between the test FROC curves obtained with the single-view and the four-view CAD systems. RESULTS: Using the single-view CAD system, the breast-based test sensitivities were 58% and 77% at the FP rates of 0.5 and 1.0 per image, respectively. With the four-view CAD system, the breast-based test sensitivities were improved to 76% and 87% at the corresponding FP rates, respectively. The improvement was found to be statistically significant (p < 0.0001) by JAFROC analysis. CONCLUSIONS: The four-view information fusion approach that emulates radiologists' reading strategy significantly improves the performance of breast mass detection of the CAD system in comparison with the single-view approach.


Subject(s)
Breast Neoplasms/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Mammography/methods , Humans , ROC Curve , Retrospective Studies , Sensitivity and Specificity
2.
Radiology ; 260(1): 42-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21406634

ABSTRACT

PURPOSE: To develop a computerized mammographic parenchymal pattern (MPP) measure and investigate its association with breast cancer risk. MATERIALS AND METHODS: A pilot case-control study was conducted by collecting mammograms from 382 subjects retrospectively. The study was institutional review board approved and HIPAA compliant. Informed consent was waived. The cases included the contralateral mammograms of cancer patients (n = 136) obtained at least 1 year before diagnosis. The controls included mammograms of healthy subjects (n = 246) who had cancer-free follow-up for at least 5 years. The data set was historically divided into a training set and an independent test set. An MPP measure was designed to analyze the texture patterns of fibroglandular tissue in the retroareolar region. Odds ratios (ORs) were used to assess the association between breast cancer risk and MPP. To test the trend in ORs, we divided the MPP measure into three categories (C1, C2, and C3) on the basis of its values from low to high, with C1 as the baseline. The confounding factors in this study included patient age, body mass index, first-degree relatives with history of breast cancer, number of previous breast biopsies, and percentage density (PD). RESULTS: Among all of the subjects from the training and test data sets, the Pearson product-moment correlation coefficient between MPP and PD was 0.13. With logistic regression to adjust the confounding, the adjusted ORs for C2 and C3 relative to C1 in the test set were 2.82 (P = .041) and 13.89 (P < .001), respectively. CONCLUSION: The proposed MPP measure demonstrated a strong association with breast cancer risk and has the potential to serve as an independent factor for risk prediction.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Mammography/statistics & numerical data , Mass Screening/statistics & numerical data , Radiographic Image Interpretation, Computer-Assisted/methods , Case-Control Studies , Female , Humans , Michigan , Middle Aged , Pilot Projects , Prevalence , Reproducibility of Results , Risk Assessment , Risk Factors , Sensitivity and Specificity
3.
Med Phys ; 37(7): 3576-86, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20831065

ABSTRACT

PURPOSE: In digital breast tomosynthesis (DBT), quasi-three-dimensional (3D) structural information is reconstructed from a small number of 2D projection view (PV) mammograms acquired over a limited angular range. The authors developed preliminary computer-aided diagnosis (CADx) methods for classification of malignant and benign masses and compared the effectiveness of analyzing lesion characteristics in the reconstructed DBT slices and in the PVs. METHODS: A data set of MLO view DBT of 99 patients containing 107 masses (56 malignant and 51 benign) was collected at the Massachusetts General Hospital with IRB approval. The DBTs were obtained with a GE prototype system which acquired 11 PVs over a 50 degree arc. The authors reconstructed the DBTs at 1 mm slice interval using a simultaneous algebraic reconstruction technique. The region of interest (ROI) containing the mass was marked by a radiologist in the DBT volume and the corresponding ROIs on the PVs were derived based on the imaging geometry. The subsequent processes were fully automated. For classification of masses using the DBT-slice approach, the mass on each slice was segmented by an active contour model initialized with adaptive k-means clustering. A spiculation likelihood map was generated by analysis of the gradient directions around the mass margin and spiculation features were extracted from the map. The rubber band straightening transform (RBST) was applied to a band of pixels around the segmented mass boundary. The RBST image was enhanced by Sobel filtering in the horizontal and vertical directions, from which run-length statistics texture features were extracted. Morphological features including those from the normalized radial length were designed to describe the mass shape. A feature space composed of the spiculation features, texture features, and morphological features extracted from the central slice alone and seven feature spaces obtained by averaging the corresponding features from three to 19 slices centered at the central slice were compared. For classification of masses using the PV approach, a feature extraction process similar to that described above for the DBT approach was performed on the ROIs from the individual PVs. Six feature spaces obtained from the central PV alone and by averaging the corresponding features from three to 11 PVs were formed. In each feature space for either the DBT-slice or the PV approach, a linear discriminant analysis classifier with stepwise feature selection was trained and tested using a two-loop leave-one-case-out resampling procedure. Simplex optimization was used to guide feature selection automatically within the training set in each leave-one-case-out cycle. The performance of the classifiers was evaluated by the area (Az) under the receiver operating characteristic curve. RESULTS: The test Az values from the DBT-slice approach ranged from 0.87 +/- 0.03 to 0.93 +/- 0.02, while those from the PV approach ranged from 0.78 +/- 0.04 to 0.84 +/- 0.04. The highest test Az of 0.93 +/- 0.02 from the nine-DBT-slice feature space was significantly (p = 0.006) better than the highest test Az of 0.84 +/- 0.04 from the nine-PV feature space. CONCLUSION: The features of breast lesions extracted from the DBT slices consistently provided higher classification accuracy than those extracted from the PV images.


Subject(s)
Artificial Intelligence , Mammography , Radiographic Image Enhancement , Radiographic Image Interpretation, Computer-Assisted/methods , Breast Neoplasms/diagnostic imaging , Discriminant Analysis , Humans , ROC Curve
4.
Med Phys ; 37(1): 391-401, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20175501

ABSTRACT

PURPOSE: Automated detection of breast boundary is one of the fundamental steps for computer-aided analysis of mammograms. In this study, the authors developed a new dynamic multiple thresholding based breast boundary (MTBB) detection method for digitized mammograms. METHODS: A large data set of 716 screen-film mammograms (442 CC view and 274 MLO view) obtained from consecutive cases of an Institutional Review Board approved project were used. An experienced breast radiologist manually traced the breast boundary on each digitized image using a graphical interface to provide a reference standard. The initial breast boundary (MTBB-Initial) was obtained by dynamically adapting the threshold to the gray level range in local regions of the breast periphery. The initial breast boundary was then refined by using gradient information from horizontal and vertical Sobel filtering to obtain the final breast boundary (MTBB-Final). The accuracy of the breast boundary detection algorithm was evaluated by comparison with the reference standard using three performance metrics: The Hausdorff distance (HDist), the average minimum Euclidean distance (AMinDist), and the area overlap measure (AOM). RESULTS: In comparison with the authors' previously developed gradient-based breast boundary (GBB) algorithm, it was found that 68%, 85%, and 94% of images had HDist errors less than 6 pixels (4.8 mm) for GBB, MTBB-Initial, and MTBB-Final, respectively. 89%, 90%, and 96% of images had AMinDist errors less than 1.5 pixels (1.2 mm) for GBB, MTBB-Initial, and MTBB-Final, respectively. 96%, 98%, and 99% of images had AOM values larger than 0.9 for GBB, MTBB-Initial, and MTBB-Final, respectively. The improvement by the MTBB-Final method was statistically significant for all the evaluation measures by the Wilcoxon signed rank test (p < 0.0001). CONCLUSIONS: The MTBB approach that combined dynamic multiple thresholding and gradient information provided better performance than the breast boundary detection algorithm that mainly used gradient information.


Subject(s)
Algorithms , Breast Neoplasms/diagnostic imaging , Mammography/methods , Pattern Recognition, Automated/methods , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Artificial Intelligence , Female , Humans , Reproducibility of Results , Sensitivity and Specificity
5.
Med Phys ; 35(1): 280-90, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18293583

ABSTRACT

Computer-aided diagnosis (CAD) for characterization of mammographic masses as malignant or benign has the potential to assist radiologists in reducing the biopsy rate without increasing false negatives. The purpose of this study was to develop an automated method for mammographic mass segmentation and explore new image based features in combination with patient information in order to improve the performance of mass characterization. The authors' previous CAD system, which used the active contour segmentation, and morphological, textural, and spiculation features, has achieved promising results in mass characterization. The new CAD system is based on the level set method and includes two new types of image features related to the presence of microcalcifications with the mass and abruptness of the mass margin, and patient age. A linear discriminant analysis (LDA) classifier with stepwise feature selection was used to merge the extracted features into a classification score. The classification accuracy was evaluated using the area under the receiver operating characteristic curve. The authors' primary data set consisted of 427 biopsy-proven masses (200 malignant and 227 benign) in 909 regions of interest (ROIs) (451 malignant and 458 benign) from multiple mammographic views. Leave-one-case-out resampling was used for training and testing. The new CAD system based on the level set segmentation and the new mammographic feature space achieved a view-based Az value of 0.83 +/- 0.01. The improvement compared to the previous CAD system was statistically significant (p = 0.02). When patient age was included in the new CAD system, view-based and case-based Az values were 0.85 +/- 0.01 and 0.87 +/- 0.02, respectively. The study also demonstrated the consistency of the newly developed CAD system by evaluating the statistics of the weights of the LDA classifiers in leave-one-case-out classification. Finally, an independent test on the publicly available digital database for screening mammography with 132 benign and 197 malignant ROIs containing masses achieved a view-based Az value of 0.84 +/- 0.02.


Subject(s)
Breast/pathology , Mammography , Medical Records , Radiographic Image Interpretation, Computer-Assisted/methods , Adult , Age Factors , Biopsy , Calcinosis , False Negative Reactions , Female , Humans , Middle Aged , Patients
6.
Med Phys ; 34(9): 3603-13, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17926964

ABSTRACT

Digital tomosynthesis mammography (DTM) is one of the most promising techniques that can potentially improve early detection of breast cancers. DTM can provide three-dimensional (3D) structural information by reconstructing the whole imaged volume from a sequence of projection-view (PV) mammograms that are acquired at a small number of projection angles over a limited angular range. Our previous study showed that simultaneous algebraic reconstruction technique (SART) can produce satisfactory tomosynthesized image quality compared to maximum likelihood-type algorithms. To improve the efficiency of DTM reconstruction and address the problem of boundary artifacts, we have developed methods to incorporate both two-dimensional (2D) and 3D breast boundary information within the SART reconstruction algorithm in this study. A second generation GE prototype tomosynthesis mammography system with a stationary digital detector was used for PV image acquisition from 21 angles in 3 degrees increments over a +/- 30 degrees angular range. The 2D breast boundary curves on all PV images were obtained by automated segmentation and were used to restrict the SART reconstruction to be performed only within the breast volume. The computation time of SART reconstruction was reduced by 76.3% and 69.9% for cranio-caudal and mediolateral oblique views, respectively, for the chosen example. In addition, a 3D conical trimming method was developed in which the 2D breast boundary curves from all PVs were back projected to generate the 3D breast surface. This 3D surface was then used to eliminate the multiple breast shadows outside the breast volume due to reconstruction by setting these voxels to a constant background value. Our study demonstrates that, by using the 2D and 3D breast boundary information, all breast boundary and most detector boundary artifacts can be effectively removed on all tomosynthesized slices.


Subject(s)
Mammography/methods , Radiographic Image Interpretation, Computer-Assisted , Breast/anatomy & histology , Female , Humans
7.
Med Phys ; 34(8): 3334-44, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17879797

ABSTRACT

We have developed a false positive (FP) reduction method based on analysis of bilateral mammograms for computerized mass detection systems. The mass candidates on each view were first detected by our unilateral computer-aided detection (CAD) system. For each detected object, a regional registration technique was used to define a region of interest (ROI) that is "symmetrical" to the object location on the contralateral mammogram. Texture features derived from the spatial gray level dependence matrices and morphological features were extracted from the ROI containing the detected object on a mammogram and its corresponding ROI on the contralateral mammogram. Bilateral features were then generated from corresponding pairs of unilateral features for each object. Two linear discriminant analysis (LDA) classifiers were trained from the unilateral and the bilateral feature spaces, respectively. Finally, the scores from the unilateral LDA classifier and the bilateral LDA asymmetry classifier were fused with a third LDA whose output score was used to distinguish true mass from FPs. A data set of 341 cases of bilateral two-view mammograms was used in this study, of which 276 cases with 552 bilateral pairs contained 110 malignant and 166 benign biopsy-proven masses and 65 cases with 130 bilateral pairs were normal. The mass data set was divided into two subsets for twofold cross-validation training and testing. The normal data set was used for estimation of FP rates. It was found that our bilateral CAD system achieved a case-based sensitivity of 70%, 80%, and 85% at average FP rates of 0.35, 0.75, and 0.95 FPs/image, respectively, on the test data sets with malignant masses. In comparison to the average FP rates for the unilateral CAD system of 0.58, 1.33, and 1.63, respectively, at the corresponding sensitivities, the FP rates were reduced by 40%, 44%, and 42% with the bilateral symmetry information. The improvement was statistically significance (p < 0.05) as estimated by JAFROC analysis.


Subject(s)
Breast Neoplasms/diagnosis , Breast/pathology , Diagnosis, Computer-Assisted/methods , Mammography/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms , Computers , False Positive Reactions , Female , Humans , Image Processing, Computer-Assisted , Pattern Recognition, Automated , Reproducibility of Results
8.
Med Phys ; 34(4): 1336-47, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17500464

ABSTRACT

An automated method is being developed in order to identify corresponding nodules in serial thoracic CT scans for interval change analysis. The method uses the rib centerlines as the reference for initial nodule registration. A spatially adaptive rib segmentation method first locates the regions where the ribs join the spine, which define the starting locations for rib tracking. Each rib is tracked and locally segmented by expectation-maximization. The ribs are automatically labeled, and the centerlines are estimated using skeletonization. For a given nodule in the source scan, the closest three ribs are identified. A three-dimensional (3D) rigid affine transformation guided by simplex optimization aligns the centerlines of each of the three rib pairs in the source and target CT volumes. Automatically defined control points along the centerlines of the three ribs in the source scan and the registered ribs in the target scan are used to guide an initial registration using a second 3D rigid affine transformation. A search volume of interest (VOI) is then located in the target scan. Nodule candidate locations within the search VOI are identified as regions with high Hessian responses. The initial registration is refined by searching for the maximum cross-correlation between the nodule template from the source scan and the candidate locations. The method was evaluated on 48 CT scans from 20 patients. Experienced radiologists identified 101 pairs of corresponding nodules. Three metrics were used for performance evaluation. The first metric was the Euclidean distance between the nodule centers identified by the radiologist and the computer registration, the second metric was a volume overlap measure between the nodule VOIs identified by the radiologist and the computer registration, and the third metric was the hit rate, which measures the fraction of nodules whose centroid computed by the computer registration in the target scan falls within the VOI identified by the radiologist. The average Euclidean distance error was 2.7 +/- 3.3 mm. Only two pairs had an error larger than 10 mm. The average volume overlap measure was 0.71 +/- 0.24. Eighty-three of the 101 pairs had ratios larger than 0.5, and only two pairs had no overlap. The final hit rate was 93/101.


Subject(s)
Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Ribs/diagnostic imaging , Solitary Pulmonary Nodule/diagnostic imaging , Subtraction Technique , Tomography, X-Ray Computed/methods , Algorithms , Artificial Intelligence , Humans , Lung Neoplasms/diagnostic imaging , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
9.
Acad Radiol ; 14(6): 659-69, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17502255

ABSTRACT

RATIONALE AND OBJECTIVES: To compare the performance of computer aided detection (CAD) systems on pairs of full-field digital mammogram (FFDM) and screen-film mammogram (SFM) obtained from the same patients. MATERIALS AND METHODS: Our CAD systems on both modalities have similar architectures that consist of five steps. For FFDMs, the input raw image is first log-transformed and enhanced by a multiresolution preprocessing scheme. For digitized SFMs, the input image is smoothed and subsampled to a pixel size of 100 microm x 100 microm. For both CAD systems, the mammogram after preprocessing undergoes a gradient field analysis followed by clustering-based region growing to identify suspicious breast structures. Each of these structures is refined in a local segmentation process. Morphologic and texture features are then extracted from each detected structure, and trained rule-based and linear discriminant analysis classifiers are used to differentiate masses from normal tissues. Two datasets, one with masses and the other without masses, were collected. The mass dataset contained 131 cases with 131 biopsy proven masses, of which 27 were malignant and 104 benign. The true locations of the masses were identified by an experienced Mammography Quality Standards Act (MQSA) radiologist. The no-mass data set contained 98 cases. The time interval between the FFDM and the corresponding SFM was 0 to 118 days. RESULTS: Our CAD system achieved case-based sensitivities of 70%, 80%, and 90% at 0.9, 1.5, and 2.6 false positive (FP) marks/image, respectively, on FFDMs, and the same sensitivities at 1.0, 1.4, and 2.6 FP marks/image, respectively, on SFMs. CONCLUSIONS: The difference in the performances of our FFDM and SFM CAD systems did not achieve statistical significance.


Subject(s)
Breast Neoplasms/diagnosis , Diagnosis, Computer-Assisted/methods , Mammography/methods , Radiographic Image Enhancement/methods , Adult , Aged , Aged, 80 and over , Diagnosis, Differential , Discriminant Analysis , False Positive Reactions , Female , Humans , Middle Aged , ROC Curve , Sensitivity and Specificity
10.
IEEE Trans Syst Man Cybern B Cybern ; 36(1): 24-31, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16468564

ABSTRACT

Steganalytic techniques are used to detect whether an image contains a hidden message. By analyzing various image features between stego-images (the images containing hidden messages) and cover-images (the images containing no hidden messages), a steganalytic system is able to detect stego-images. In this paper, we present a new concept of developing a robust steganographic system by artificially counterfeiting statistic features instead of the traditional strategy by avoiding the change of statistic features. We apply genetic algorithm based methodology by adjusting gray values of a cover-image while creating the desired statistic features to generate the stego-images that can break the inspection of steganalytic systems. Experimental results show that our algorithm can not only pass the detection of current steganalytic systems, but also increase the capacity of the embedded message and enhance the peak signal-to-noise ratio of stego-images.


Subject(s)
Algorithms , Computer Graphics , Computer Security , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Pattern Recognition, Automated/methods , Signal Processing, Computer-Assisted , Computer Simulation , Models, Genetic , Product Labeling/methods
11.
IEEE Trans Image Process ; 13(8): 1078-91, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15326850

ABSTRACT

Euclidean distance transformation (EDT) is used to convert a digital binary image consisting of object (foreground) and nonobject (background) pixels into another image where each pixel has a value of the minimum Euclidean distance from nonobject pixels. In this paper, the improved iterative erosion algorithm is proposed to avoid the redundant calculations in the iterative erosion algorithm. Furthermore, to avoid the iterative operations, the two-scan-based algorithm by a deriving approach is developed for achieving EDT correctly and efficiently in a constant time. Besides, we discover when obstacles appear in the image, many algorithms cannot achieve the correct EDT except our two-scan-based algorithm. Moreover, the two-scan-based algorithm does not require the additional cost of preprocessing or relative-coordinates recording.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Pattern Recognition, Automated , Reproducibility of Results , Sensitivity and Specificity , Subtraction Technique
SELECTION OF CITATIONS
SEARCH DETAIL