Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Water Res ; 257: 121684, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723348

ABSTRACT

Natural manganese oxides could induce the intermolecular coupling reactions among small-molecule organics in aqueous environments, which is one of the fundamental processes contributing to natural humification. These processes could be simulated to design novel advanced oxidation technology for water purification. In this study, periodate (PI) was selected as the supplementary electron-acceptor for colloidal manganese oxides (Mn(IV)aq) to remove phenolic contaminants from water. By introducing polyferric sulfate (PFS) into the Mn(IV)aq/PI system and exploiting the flocculation potential of Mn(IV)aq, a post-coagulation process was triggered to eliminate soluble manganese after oxidation. Under acidic conditions, periodate exists in the H4IO6- form as an octahedral oxyacid capable of coordinating with Mn(IV)aq to form bidentate complexes or oligomers (Mn(IV)-PI*) as reactive oxidants. The Mn(IV)-PI* complex could induce cross-coupling process between phenolic contaminants, resulting in the formation of oligomerized products ranging from dimers to hexamers. These oligomerized products participate in the coagulation process and become stored within the nascent floc due to their catenulate nature and strong hydrophobicity. Through coordination between Mn(IV)aq and H4IO6-, residual periodate is firmly connected with manganese oxides in the floc after coagulation and could be simultaneously separated from the aqueous phase. This study achieves oxidizing oligomerization through a homogeneous process under mild conditions without additional energy input or heterogeneous catalyst preparation. Compared to traditional mineralization-driven oxidation techniques, the proposed novel cascade processes realize transformation, convergence, and separation of phenolic contaminants with high oxidant utilization efficiency for low-carbon purification.

2.
Sci Total Environ ; 928: 172476, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38621536

ABSTRACT

The potential applications of nanomaterials in agriculture for alleviating diverse biotic and abiotic stresses have garnered significant attention. The reported mechanisms encompass promoting plant growth and development, alleviating oxidative stress, inducing defense responses, modulating plant-microbe interactions, and more. However, individual studies may not fully uncover the common pathways or distinguish the effects of different nanostructures. We examined Arabidopsis thaliana transcriptomes exposed to biotic, abiotic, and metal or carbon-based nanomaterials, utilizing 24 microarray chipsets and 17 RNA-seq sets. The results showed that: 1) from the perspective of different nanostructures, all metal nanomaterials relieved biotic/abiotic stresses via boosting metal homeostasis, particularly zinc and iron. Carbon nanomaterials induce hormone-related immune responses in the presence of both biotic and abiotic stressors. 2) Considering the distinct features of various nanostructures, metal nanomaterials displayed unique characteristics in seed priming for combating abiotic stresses. In contrast, carbon nanomaterials exhibited attractive features in alleviating water deprivation and acting as signaling amplifiers during biotic stress. 3) For shared pathway analysis, response to hypoxia emerges as the predominant and widely shared regulatory mechanism governing diverse stress responses, including those induced by nanomaterials. By deciphering shared and specific pathways and responses, this research opens new avenues for precision nano-agriculture, offering innovative strategies to optimize plant resilience, improve stress management, and advance sustainable crop production practices.


Subject(s)
Arabidopsis , Nanostructures , Stress, Physiological , Transcriptome , Arabidopsis/genetics , Arabidopsis/physiology , Nanostructures/toxicity , Transcriptome/drug effects
3.
Pharmgenomics Pers Med ; 16: 949-958, 2023.
Article in English | MEDLINE | ID: mdl-37933333

ABSTRACT

Hepatocellular carcinoma (HCC) recurrence, which encompasses both true recurrence resulting from cancer spread and de novo tumors developing within the same cancer-prone liver, presents a complication in approximately 70% of cases within a 5-year timeframe. The efficacy of neoadjuvant therapy for recurrence after hepatectomy for hepatocellular carcinoma is still unclear. We report a case of recurrent massive advanced hepatocellular carcinoma with pathological complete remission was treated by continuous hepatic arterial infusion chemotherapy (HAIC) and sequential transcatheter arterial embolization (TAE) combined with secondary operation. One month after resection, the patient recurred (massive type 141mm×76mm). After 4 times of HAIC sequential TAE conversion therapy, the tumor shrank significantly (70mm×29mm), alpha-fetoprotein(AFP) and protein induced by vitamin K absence or antagonist-II (PIVKA-II) levels decreased significantly, residual liver volume[left half liver accounted for 39.85% of standard liver volume(left half liver + right anterior lobe) accounted for 80.17% of standard liver volume] and Indocyanine green 15-minute retention(ICG R15 8.0%) complies with surgical requirement.The second operation was performed, and the tumor was completely resected after hepatic blood flow occlusion Requirement. The postoperative pathological results showed complete remission (PCR) of the tumor, and no recurrence was found during the follow-up of 16 months. In this case, HAIC sequential TAE conversion therapy has good short-term effect on patients with postoperative recurrence of hepatocellular carcinoma, tumor burden is significantly reduced, the second surgery pathology achieves complete remission, safety and tolerance, it is worthy of study and promotion.

4.
J Biomech ; 158: 111738, 2023 09.
Article in English | MEDLINE | ID: mdl-37562276

ABSTRACT

Historically, impaired lower limb function has resulted in heavy health burden and large economic loss in society. Although experts from various fields have put large amounts of effort into overcoming this challenge, there is still not a single standard treatment that can completely restore the lost limb function. During the past half century, with the advancing understanding of human biomechanics and engineering technologies, exoskeletons have achieved certain degrees of success in assisting and rehabilitating patients with loss of limb function, and therefore has been spotlighted in both the medical and engineering fields. In this article, we review the development milestones of lower limb exoskeletons as well as the neuromuscular interactions between the device and wearer throughout the past 50 years. Fifty years ago, the lower-limb exoskeletons just started to be devised. We review several prototypes and present their designs in terms of structure, sensor and control systems. Subsequently, we introduce the development milestones of modern lower limb exoskeletons and discuss the pros and cons of these differentiated devices. In addition, we summarize current important neuromuscular control systems and sensors; and discuss current evidence demonstrating how the exoskeletons may affect neuromuscular control of wearers. In conclusion, based on our review, we point out the possible future direction of combining multiple current technologies to build lower limb exoskeletons that can serve multiple aims.


Subject(s)
Exoskeleton Device , Humans , Lower Extremity , Biomechanical Phenomena
5.
Nat Commun ; 14(1): 4509, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37495568

ABSTRACT

Oxidation of renewable polyol/sugar into formic acid using molecular O2 over heterogeneous catalysts is still challenging due to the insufficient activation of both O2 and organic substrates on coordination-saturated metal oxides. In this study, we develop a defective MnO2 catalyst through a coordination number reduction strategy to enhance the aerobic oxidation of various polyols/sugars to formic acid. Compared to common MnO2, the tri-coordinated Mn in the defective MnO2 catalyst displays the electronic reconstruction of surface oxygen charge state and rich surface oxygen vacancies. These oxygen vacancies create more Mnδ+ Lewis acid site together with nearby oxygen as Lewis base sites. This combined structure behaves much like Frustrated Lewis pairs, serving to facilitate the activation of O2, as well as C-C and C-H bonds. As a result, the defective MnO2 catalyst shows high catalytic activity (turnover frequency: 113.5 h-1) and formic acid yield (>80%) comparable to noble metal catalysts for glycerol oxidation. The catalytic system is further extended to the oxidation of other polyols/sugars to formic acid with excellent catalytic performance.

6.
ACS Omega ; 8(23): 21341-21350, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37332830

ABSTRACT

Irreversible colloidal asphaltene adsorption layers are formed on formation rock surfaces due to long-term contact with crude oil, and large amounts of crude oil adhere to these oil-wet layers to form residual oil films. This oil film is difficult to peel off due to the strong oil-solid interface effect, which seriously restricts further improvement in oil recovery. In this paper, the novel anionic-nonionic surfactant sodium laurate ethanolamide sulfonate (HLDEA) exhibiting strong wetting control was synthesized by introducing sulfonic acid groups into the nonionic surfactant laurate diethanolamide (LDEA) molecule through the Williamson etherification reaction. The introduction of the sulfonic acid groups greatly improved the salt tolerance and the absolute value of the zeta potential of the sand particles. The experimental results showed that HLDEA altered the wettability of the rock surface from oleophilic to strongly hydrophilic, and the underwater contact angle increased substantially from 54.7 to 155.9°. In addition, compared with LDEA, HLDEA exhibited excellent salt tolerance and enhanced oil recovery performance (the oil recovery was improved by 19.24% at 2.6 × 104 mg/L salinity). Based on nanomechanical experimental results, HLDEA was efficiently adsorbed on the core surfaces and regulated microwetting. Moreover, HLDEA effectively reduced the adhesion force between the alkane chains and the core surface, which facilitated residual oil stripping and oil displacement. This new anionic-nonionic surfactant affording great oil-solid interface wetting control has practical significance for the efficient development of residual oil.

7.
Front Pharmacol ; 14: 1165356, 2023.
Article in English | MEDLINE | ID: mdl-37324456

ABSTRACT

Purpose: Intravitreal injection of conbercept (IVC) is a novel anti-vascular endothelial growth factor (anti-VEGF) treatment for retinopathy of prematurity (ROP). This study aimed to assess the intraocular pressure (IOP) effect of IVC. Methods: All IVC surgeries were performed in the Department of Ophthalmology, Guangdong Women and Children Hospital, from January 2021 to May 2021. In this study, 30 eyes of 15 infants who received intravitreal injections of conbercept at a dose of 0.25 mg/0.025 mL were included. The IOP of all participants was measured prior to administering the injection and subsequently at 2 min, 1 h, 1 day, and 1 week thereafter. Results: We included 30 eyes (10 boys and 5 girls) with ROP. For the male group, the mean birth weight, mean gestational age at birth, and the mean time of postmenstrual age (PMA) at IVC treatment were 1,174.0 ± 446.0 g, 28.4 ± 3.0 weeks, and 37.1 ± 1.6 weeks, respectively; for the female group, they were 1,108 ± 285.5 g, 28.2 ± 2.5 weeks, and 36.8 ± 2.1 weeks, respectively. For the male group, the IOP at baseline, 2 min, 1 h, 1 day, and 1 week after IVC were 12.4 ± 1.5 mmHg, 49.0 ± 3.1 mmHg, 26.3 ± 2.5 mmHg, 13.4 ± 2.2 mmHg, and 11.6 ± 1.7 mmHg, respectively; for the female group, they were 10.7 ± 2.0 mmHg, 47.3 ± 3.2 mmHg, 26.4 ± 3.2 mmHg, 10.7 ± 1.8 mmHg, and 10.2 ± 1.8 mmHg, respectively. In both groups, the IOP immediately (2 min) after the operation was significantly higher than that at any other time point (p < 0.01). IOP values returned to the preoperative baseline level on the first day after surgery, with no significant difference compared with that before injection (p > 0.05). IOP continued to be maintained at the preoperative baseline level on the first week after surgery, with no significant difference compared with that before surgery (p > 0.05). Conclusion: Infants with ROP who received IVC experienced a sharp increase in the IOP immediately after injection, which decreased to below 30 mmHg after 1 h and maintain that level for 1 week or longer.

8.
Gels ; 9(5)2023 May 11.
Article in English | MEDLINE | ID: mdl-37232994

ABSTRACT

The mechanical strength of dispersed particle gels (DPGs), which can be directly characterized by Young's modulus, is an important parameter affecting reservoir regulation performance. However, the effect of reservoir conditions on the mechanical strength of DPGs, as well as the desired range of mechanical strength for optimum reservoir regulation performance, have not been systematically studied. In this paper, DPG particles with different Young's moduli were prepared and their corresponding migration performances, profile control capacities and enhanced oil recovery abilities were studied by simulated core experiments. The results showed that with increase in Young's modulus, the DPG particles exhibited improved performance in profile control as well as enhanced oil recovery. However, only the DPG particles with a modulus range of 0.19-0.762 kPa could achieve both adequate blockage in large pore throats and migration to deep reservoirs through deformation. Considering the material costs, applying DPG particles with moduli within the range of 0.19-0.297 kPa (polymer concentration: 0.25-0.4%; cross-linker concentration: 0.7-0.9%) would ensure optimum reservoir control performance. Direct evidence for the temperature and salt resistance of DPG particles was also obtained. When aged in reservoir conditions below 100 °C and at a salinity of 10 × 104 mg·L-1, the Young's modulus values of the DPG particle systems increased moderately with temperature or salinity, indicating a favorable impact of reservoir conditions on the reservoir regulation abilities of DPG particles. The studies in this paper indicated that the practical reservoir regulation performances of DPGs can be improved by adjusting the mechanical strength, providing basic theoretical guidance for the application of DPGs in efficient oilfield development.

9.
Cancer Med ; 12(11): 12639-12652, 2023 06.
Article in English | MEDLINE | ID: mdl-37081748

ABSTRACT

BACKGROUND: Exosomes are critical mediators of tumor cell-microenvironment cross talk. However, the mechanisms by which hypoxic Lung adenocarcinoma (LUAD)-derived exosomes modulate macrophage polarization remain largely unknown. The aim of this study was to investigate the effects of hypoxic LUAD-derived exosome on macrophage polarization and explore the underlying molecular mechanism. MATERIALS AND METHODS: LUAD-derived exosomes were isolated, and then confirmed by transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Internalization of exosomes in macrophages was detected by confocal microscope. Gain- and loss-of-function experiments, rescue experiments, and xenograft models were performed to uncover the underlying mechanisms of exosomal miR-1290 induced macrophage polarization in vitro and in vivo. RESULTS: miR-1290 was enriched in hypoxic LUAD cancer cell-derived exosomes and could be transferred to macrophages. Overexpression of miR-1290 in macrophages-induced polarization of M2 phenotype. Luciferase assay verified SOCS3 was the target of miR-1290. Hypoxic LUAD cell-derived exosomal miR-1290 activated the STAT3 signaling pathway by targeting SOCS3 to promote M2 macrophage polarization. CONCLUSION: Hypoxic LUAD cells generate miR-1290-rich exosomes that promote M2 polarization of macrophages. Targeting exosomal miR-1290 may provide a potential immunotherapeutic strategy for LUAD.


Subject(s)
Adenocarcinoma of Lung , Exosomes , MicroRNAs , Humans , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins , Adenocarcinoma of Lung/pathology , Exosomes/genetics , Exosomes/metabolism , Tumor Microenvironment/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism
10.
Environ Sci Technol ; 57(16): 6723-6732, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37043741

ABSTRACT

Identifying reactive species in advanced oxidation process (AOP) is an essential and intriguing topic that is also challenging and requires continuous efforts. In this study, we exploited a novel AOP technology involving peracetic acid (PAA) activation mediated by a MnII-nitrilotriacetic acid (NTA) complex, which outperformed iron- and cobalt-based PAA activation processes for rapidly degrading phenolic and aniline contaminants from water. The proposed MnII/NTA/PAA system exhibited non-radical oxidation features and could stoichiometrically oxidize sulfoxide probes to the corresponding sulfone products. More importantly, we traced the origin of O atoms from the sulfone products by 18O isotope-tracing experiments and found that PAA was the only oxygen-donor, which is different from the oxidation process mediated by high-valence manganese-oxo intermediates. According to the results of theoretical calculations, we proposed that NTA could tune the coordination circumstance of the MnII center to elongate the O-O bond of the complexed PAA. Additionally, the NTA-MnII-PAA* molecular cluster presented a lower energy gap than the MnII-PAA complex, indicating that the MnII-peroxy complex was more reactive in the presence of NTA. Thus, the NTA-MnII-PAA* complex exhibited a stronger oxidation potential than PAA, which could rapidly oxidize organic contaminants from water. Further, we generalized our findings to the CoII/PAA oxidation process and highlighted that the CoII-PAA* complex might be the overlooked reactive cobalt species. The significance of this work lies in discovering that sometimes the metal-peroxy complex could directly oxidize the contaminants without the further generation of high-valence metal-oxo intermediates and/or radical species through interspecies oxygen and/or electron transfer.


Subject(s)
Coordination Complexes , Water Pollutants, Chemical , Peracetic Acid , Oxygen , Metals , Coordination Complexes/chemistry , Cobalt , Oxidation-Reduction , Water , Hydrogen Peroxide
11.
Environ Sci Pollut Res Int ; 30(26): 68258-68270, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37119488

ABSTRACT

In arid soil with low-iron and high-calcium carbonate contents, the fate of arsenic (As) is mainly controlled by the contents of calcium and organic matter in the soil. However, there is still a lack of knowledge about their interaction and that effect on their absorption by maize. The purpose of this study was to explore the long-term immobilization and repair mechanism of in situ As-contaminated farmland. We designed three treatments: iron-oxidizing bacteria (FeOB), organic fertilizer, FeOB and organic fertilizer added in combination. After 140-day field farmland remediation trial, the results showed that the FeOB can effectively immobilize the water-soluble As (FS1) in soil, and the organic fertilizer promoted the remediation of FeOB. In addition, the content of As in maize grains was reduced after treatment by FeOB and organic fertilizer. The XRD and XPS analysis of the topsoil showed that the combined treatment of FeOB and organic fertilizer promoted the formation of calcium arsenate mineral with low solubility and high stability; As(III) would gradually transform into As(V). The biological iron (hydr)oxide can increase the contents of Fe and As in the rhizosphere and form iron plaques on the surface of the roots by SEM-EDS analysis of maize root. Collectively, these results clarify the main biogeochemical ways to control the fate of As in calcareous soils with low-iron and low-organic matter contents and provide a basis for in situ remediation of As.


Subject(s)
Arsenic , Environmental Restoration and Remediation , Soil Pollutants , Arsenic/analysis , Fertilizers/analysis , Soil Pollutants/analysis , Iron/chemistry , Soil/chemistry , Bacteria , Oxidation-Reduction
12.
J Hazard Mater ; 454: 131502, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37121040

ABSTRACT

Black phosphorus (BP) shows encouraging utility in many fields, and metal doping has been suggested as an efficient way to improve stability. However, controversial results and inconsistent mechanisms have been reported for doping modulation and stability change. We observed the unforeseen evolution of singlet oxygen (1O2) from BP integrated with gold nanoparticles (BP@Au) under dark conditions, and this led to rapid BP deterioration, even though enhanced stability is commonly thought via surface doping. Briefly, the BP reacted with oxygen and water to yield superoxide (O2•-) and hydrogen peroxide. Au0 acted as an enzyme mimic and catalyzed the conversion of these derivatives, and Au0 was converted to a mixture of Au3+ and Au+. The O2•- was converted to 1O2 via direct donation of electrons to the Au3+/+. The Au-catalyzed redox reactions accelerated the degradation of the BP nanosheets. BP@Au showed significant toxicity toward marine alga that produce O2•- in the dark, as indicated by a more than 30% reduction in cell viability after 12 h of incubation with 7.56 mg/L BP@Au. The novelty of this work lies in the demonstration of a dopant-related degradation pathway of BP that shows unrevealed toxicity toward O2•--producing marine algae.


Subject(s)
Metal Nanoparticles , Singlet Oxygen , Superoxides , Gold/toxicity , Phosphorus , Metal Nanoparticles/toxicity , Oxygen
13.
Environ Sci Pollut Res Int ; 30(17): 50471-50483, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36795208

ABSTRACT

Soil samples and native plants were collected from abandoned farmlands with a long history of sewage irrigation along Dongdagou stream, Baiyin City. We investigated the concentrations of heavy metal(loid)s (HMMs) in soil-plant system to evaluate the accumulation and transportation ability of HMMs in native plants. Results indicated that soils in study area were severely polluted by Cd, Pb, and As. With the exception of Cd, the correlation between total HMM concentrations in soil and plant tissues was poor. Among all investigated plants, no one was close to the criteria for the HMM concentrations of hyperaccumulators. The concentrations of HMMs in most plants were reached the phytotoxic level and the abandoned farmlands could not be used as forages, which showed that native plants may possess resistance capabilities or high tolerance for As, Cu, Cd, Pb, and Zn. The FTIR (Fourier transform infrared spectrometer) results suggested that the detoxification of HMMs in plants may depend on the functional groups (-OH, C-H, C-O, and N-H) of some compounds. Bioaccumulation factor (BAF), bioconcentration factor (BCF), and biological transfer factor (BTF) were used to identify the accumulation and translocation characteristics of HMMs by native plants. S. glauca had the highest mean values of BTF for Cd (8.07) and Zn (4.75). C. virgata showed the highest mean BAFs for Cd (2.76) and Zn (9.43). P. harmala, A. tataricus, and A. anethifolia also presented high accumulation and translocation abilities for Cd and Zn. High HMMs (As, Cu, Cd, Pb, and Zn) accumulation in the aerial parts of plants may lead to increased accumulation of HMMs in the food chain; additional research is desperately required. This study demonstrated the HM enrichment characteristics of weeds and provided a basis for the management of abandoned farmlands.


Subject(s)
Metals, Heavy , Soil Pollutants , Sewage , Cadmium/analysis , Farms , Lead , Metals, Heavy/analysis , Plants , Soil , Soil Pollutants/analysis , Environmental Monitoring , China
14.
Pharmgenomics Pers Med ; 16: 111-120, 2023.
Article in English | MEDLINE | ID: mdl-36785780

ABSTRACT

Situs inversus totalis (SIT) is a rare congenital condition in which abdominal and thoracic organs are transposed from normal positions. Two-stage hepatectomy (TSH) combined with translational therapy for hepatocellular carcinoma (HCC) with SIT has been rarely reported. We report a 41-year-old man with giant hepatocellular carcinoma (71 mm × 55 mm × 51 mm) whose future residual liver (FLR) and standard liver volume (SLV) ratio at first diagnosis was 37.4%. Preoperative volume assessment of portal vein ligation (PVL) revealed inadequate hypertrophy of FLR. After a multidisciplinary group discussion (MDT), the patient decided to follow conversion therapy. Three months later, ratio of the FLR/SLV increased from 37.4% to 71% after operation, which met the surgical requirements. Second hepatectomy, right lobectomy was successful. There was no recurrence after six months of follow-up. In our case, conversion therapy appears to be effective in maintaining residual liver hyperplasia, reducing tumor load, and preventing tumor progression in patients with large HCC during TSH.

15.
Sci Total Environ ; 859(Pt 1): 160171, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36379339

ABSTRACT

It is not known what the buffering capacity of soils and arsenic (As) enrichment by crops is for calcareous agricultural soils after the end of long-term effluent irrigation. In this study, changes in soil physicochemical properties and factors of influencing As uptake by wheat were investigated in agricultural soils where sewage irrigation had been ceased for nearly 20 years. The results showed that the content of CaCO3 and pH in soil increased compared to the period before the cessation of sewage irrigation, but remained below the soil background value. Furthermore, CaCO3 is by far the main buffering substance in agricultural soils and indirectly contributes to the increase in pH. The As concentration in the soil was 36.4 ± 34.8 mg/kg, which was 0.56-10.28 times and 0.28-5.18 times higher than the soil background and risk screening values, respectively, but showed a decreasing trend. pH and Fe dissolution were the main reasons for the lower As concentration in the soil. Total As in soil was a better predictor of As in wheat, and soil electrical conductivity (EC) and soil organic matter (SOM) promoted As uptake by wheat. The competitive uptake of As by dissolved Si was an important reason for the mismatch between As concentrations in soil and wheat. This study highlighted the key issues of As transport transformation in soil-wheat systems after cessation of effluent irrigation, using agricultural soils, and provided a reference for soil risk management in agricultural soils in mining areas.


Subject(s)
Arsenic , Soil Pollutants , Soil/chemistry , Triticum/chemistry , Soil Pollutants/analysis , Agricultural Irrigation , Sewage
16.
J Hazard Mater ; 441: 129863, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36088880

ABSTRACT

Heavy metals (HMs) from smelters pose severe challenges to the environmental soil quality of surrounding farmlands, and threaten human health through the food chain. This study explored the environmental effects of smelting activities on farmland soil, and additionally assessed the enrichment, transfer and health risk of HMs in soil-wheat systems. Multiple characterization results were combined to demonstrate that HMs from smelter waste were transferred to the surrounding soil. It was determined that the enrichment of HMs in soil-wheat systems is mainly controlled by the total HM concentration and pH in soil. Furthermore, the priority pollutant in soil-wheat systems was found to be Cd, and Cd affected the transfer of Cu, Mn and Pb from soil to wheat roots. Interestingly, the -OH stretching, C-H stretching, N-H amide and C-O bending were involved in detoxifying HMs in wheat. The mean values of non-carcinogenic and carcinogenic risks by consuming wheat grain were 9.1, 1.4E-02 (adults) and 11.3, 3.3E-03 (children), respectively, indicating a noteworthy health risk. This study highlighted the critical issues arising from Pb/Zn smelting activities on agricultural soils. Notwithstanding, to ensure food security, the affected regions could opt to follow up on the type of crops grown.


Subject(s)
Metals, Heavy , Soil Pollutants , Adult , Amides , Cadmium/analysis , Child , China , Environmental Monitoring/methods , Humans , Lead , Metals, Heavy/analysis , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis , Triticum/chemistry , Zinc
17.
Environ Sci Pollut Res Int ; 30(4): 10063-10078, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36066802

ABSTRACT

Sewage irrigation has solved the shortage of agricultural water and increased the content of heavy metal(loid)s (HMs) in soil-crop systems, which harms human health via the food chain. In this study, 43 pairs of soil and corn samples (leaf, stem1, stem2, stem3, root, husk, grain, and corncob) were collected in the Dongdagou (DDG) and Xidagou (XDG) streams of Baiyin City. Fraction and transfer of As and Hg were investigated, and toxicological effects and contamination were assessed in soil-corn systems. The results showed that the mean values of As and Hg in soil were 33.79 mg/kg and 0.96 mg/kg, respectively, which exceeded the soil background values in Gansu Province. As and Hg are mainly dominated by the residual fraction. Total and bioavailability contributed significantly to As and Hg accumulation in corn, with root, stem3, and leaf accumulating more strongly. The results based on the bioavailability concentration soil-corn transfer factor indicated that As and Hg tended to accumulate more in the root, stem3, and leaf and less in grain, and further assessment of the human health effects of consuming contaminated cron is needed. Scanning electron microscope (SEM) and Fourier transform infrared (FTIR) results showed that As and Hg were not significantly toxic to corn parts, indicating morphology. As and Hg were bound to hydroxyl groups in the outer epidermal cell wall of the roots, thereby reducing upward translocation. The trinity assessment (TA) model results indicated that the most severe contamination was found in root and stem1. The TA provides a practical tool for soil-cron systems and helps develop management strategies to prevent ecological hazards.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Soil Pollutants , Humans , Mercury/analysis , Arsenic/analysis , Soil , Zea mays/metabolism , Biological Availability , Environmental Monitoring/methods , Metals, Heavy/analysis , Edible Grain/chemistry , Soil Pollutants/analysis , Risk Assessment , China
18.
Animals (Basel) ; 14(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38200734

ABSTRACT

The wild populations of red-crowned cranes (Grus japonensis) in west China are gradually decreasing, necessitating the optimization of reintroduction measures. This study used 16S rRNA high-throughput sequencing technology to compare the gut microbiota communities of cranes living in two modes (captive and semi-free-range) before their reintroduction in Zhalong National Nature Reserve, Heilongjiang Province, China. The results showed that Proteobacteria (74.39%) and Firmicutes (25.29%) were the dominant gut bacterial phyla inhabiting these cranes. Significant differences were found in the gut microbiota community composition between semi-free-range and captive cranes (p < 0.01). Psychrobacter, Sporosarcina, and Lactococcus were significantly enriched in captive cranes (p < 0.05), while Pseudomonadaceae_Pseudomonas, Pantoea, Lysobacter, and Enterobacteriaceae_Pseudomonas were more abundant in semi-free-range cranes (p < 0.05). The functions and community structure of gut microbiota were affected by feeding patterns (p < 0.05). The metabolic pathways of ethylbenzene degradation, PPAR signaling pathway, betalain biosynthesis, systemic lupus erythematosus, and shigellosis were up-regulated in semi-free-range cranes (p < 0.05).

19.
Gels ; 10(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38275840

ABSTRACT

Gel fracturing fluid is the optimum fracturing fluid for proppant suspension, which is commonly applied in deep reservoir hydraulic fracturing. The content of polymers and crosslinkers in gel fracturing fluid is usually high to meet the needs of high-temperature resistance, leading to high costs and reservoir permeability damage caused by incomplete gel-breaking. In this paper, a supramolecular reinforced gel (SRG) fracturing fluid was constructed by strengthening the supramolecular force between polymers. Compared with single network gel (SNG) fracturing fluid, SRG fracturing fluid could possess high elasticity modulus (G' = 12.20 Pa) at lower polymer (0.4 wt%) and crosslinker (0.1 wt%) concentrations. The final viscosity of SRG fracturing fluid was 72.35 mPa·s, meeting the temperature resistance requirement of gel fracturing fluid at 200 °C. The gel-breaking time could be extended to 90-120 min using an encapsulated gel breaker. Gel particles are formed after the gel fracturing fluid is broken. The median particle size of gel particles in the SRG-breaking solution was 126 nm, which was much smaller than that in the industrial gel (IDG) breaking fluid (587 nm). The damage of the SRG-breaking solution to the core permeability was much less than the IDG-breaking solution. The permeability damage of cores caused by the SRG-breaking solutions was only about half that of IDG-breaking solutions at 1 mD.

20.
Front Microbiol ; 13: 1007884, 2022.
Article in English | MEDLINE | ID: mdl-36532425

ABSTRACT

Introduction: Animal intestines are extremely rich in microbial ecosystems. Numerous studies in different fields, such as epidemiology and histology, have revealed that gut microorganisms considerably mediate the survival and reproduction of animals. However, gut microbiology studies of homogeneously distributed wild cranes are still rare. This study aimed to understand the structural composition of the gut microbial community of wild cranes and elucidate the potential roles of the microorganisms. Methods: We used high-throughput sequencing to analyze the gut microbial community structure of wild cranes in the Zhalong Nature Reserve. Results: A total of 1,965,683 valid tags and 5248 OTUs were obtained from 32 fecal samples. Twenty-six bacteria phyla and 523 genera were annotated from the intestinal tract of the red-crowned crane. Twenty-five bacteria phyla and 625 genera were annotated from the intestine of the white-naped crane. Firmicutes, Proteobacteria, and Bacteroidetes are the dominant bacterial phyla in the intestinal tract of red-crowned cranes, while Catellicoccus, Lactobacillus, Neisseria, and Streptococcus were the dominant genera. The dominant bacterial phyla in the intestinal tract of white-naped cranes were Firmicutes, Proteobacteria, Bacteroidetes, Epsilonbacteraeota, Actinobacteria, and Fusobacteria. However, the dominant genera were Catellicoccus, Lactobacillus, Neisseria, Campylobacter, Streptococcus, Anaerobiospirillum, Romboutsia, Turicibacter, Haemophilus, and Lautropia. Firmicutes had significantly higher relative abundance in the intestine of the red-crowned than white-naped cranes (P < 0.05). However, the relative abundance of Actinobacteria and Bacteroidetes was significantly higher (P < 0.05) in the intestines of white-naped than red-crowned cranes. The diversity of the intestinal flora between the two crane species was significantly different (P < 0.05). Besides, the alpha diversity of the intestinal flora was higher for white-naped than red-crowned cranes. Eight of the 41 functional pathways differed in the gut of both crane species (P < 0.05). Discussion: Both species live in the same area and have similar feeding and behavioral characteristics. Therefore, host differences are possibly the main factors influencing the structural and functional differences in the composition of the gut microbial community. This study provides important reference data for constructing a crane gut microbial assessment system. The findings have implications for studying deeper relationships between crane gut microbes and genetics, nutrition, immunity, and disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...