Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 85-91, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836676

ABSTRACT

Skin photoaging is a skin degenerative disease that causes patients to develop malignant tumors. The existing clinical treatment of photoaging has limitations. This greatly reduces the recovery rate of photoaging patients. Studies have confirmed that Ligusticum wallichii Franch (LWF) monomer tetramethylpyrazine (TMP) alleviates various skin diseases. The combination of traditional Chinese medicine and Western medicine helps with this process. Our research aimed to explore the specific treatment mode and molecular mechanism of TMP in treating skin photoaging. CCK-8 assays were used to evaluate the activity and toxicity of HaCaT cells. ß-galactosidase aging, Carbonyl compound and nitrosylated tyrosine assays were used to analyze the aging of HaCaT cells. ROS assays and ELISA were used to analyze the enrichment of ROS. The molecular docking experiment analyzed the binding of TMP and HIF-1α. qRT-PCR and Western blot were used to detect the activation of skin aging-related pathways. HE staining was used to analyze the thickness of the stratum corneum skin on the back skin of mice. 200µg/L LWF alleviates cellular photoaging and mouse skin photoaging by reducing ROS enrichment. Its monomer TMP plays an important role in this process. The combination of TMP and HIF-1α accelerates the degradation of ROS by activating the Nrf2/ARE signaling pathway. This process reduces the apoptosis of cells damaged by light. In addition, we also found that the combination of TMP and retinoic acid (RA) is more beneficial for the treatment of skin damage caused by light in mice. The combination therapy of TMP and RA alleviates skin oxidative stress response through overexpression of HIF-1α. This plan is beneficial for the treatment of skin photoaging.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Pyrazines , Reactive Oxygen Species , Signal Transduction , Skin Aging , Vitamin A , Pyrazines/pharmacology , Skin Aging/drug effects , Skin Aging/radiation effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Humans , Reactive Oxygen Species/metabolism , Mice , Signal Transduction/drug effects , Vitamin A/pharmacology , Skin/drug effects , Skin/metabolism , Skin/pathology , Skin/radiation effects , HaCaT Cells , Molecular Docking Simulation
2.
Mol Plant Microbe Interact ; : MPMI04240034CR, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38814574

ABSTRACT

Phosphorylation, the most extensive and pleiotropic form of protein posttranslation modification, is central to cellular signal transduction. Throughout the extensive co-evolution of plant hosts and viruses, modifications to phosphorylation have served multiple purposes. Such modifications highlight the evolutionary trajectories of viruses and their hosts, with pivotal roles in regulation and refinement of host-virus interactions. In plant hosts, protein phosphorylation orchestrates immune responses, enhancing the activities of defense-related proteins such as kinases and transcription factors, thereby strengthening pathogen resistance in plants. Moreover, phosphorylation influences the interactions between host and viral proteins, altering viral spread and replication within host plants. In the context of plant viruses, protein phosphorylation controls key aspects of the infection cycle, including viral protein functionality and the interplay between viruses and host plant cells, leading to effects on viral accumulation and dissemination within plant tissues. Explorations of the nuances of protein phosphorylation in plant hosts and their interactions with viruses are particularly important. This review provides a systematic summary of the biological roles of the proteins of plant viruses carrying diverse genomes in regulating infection and host responses through changes in the phosphorylation status. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

3.
Food Addit Contam Part B Surveill ; 17(2): 142-152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600616

ABSTRACT

Some synthetic dyes are fraudulently added into spices to appeal visually to consumers. Food regulations in several countries, including the United States, Australia, Japan and the European Union, strictly prohibit the use of unauthorised synthetic dyes in food. Nevertheless, illegal practices persist, where spices contaminated with potentially carcinogenic dyes have been documented, posing potential health risks to consumers. In the present study, 14 synthetic dyes were investigated through liquid chromatography/tandem mass spectrometry in 252 commercially available spices in the Singapore market. In 18 out of these (7.1%) at least 1 illegal dye was detected at concentrations ranging from 0.010 to 114 mg/kg. Besides potential health risks, presence of these adulterants also reflects the economic motivations behind their fraudulent use. Findings in the present study further emphasise the need for increased public awareness, stricter enforcement, and continuous monitoring of illegal synthetic dyes in spices to ensure Singapore's food safety.


Subject(s)
Food Contamination , Spices , Tandem Mass Spectrometry , Spices/analysis , Singapore , Food Contamination/analysis , Humans , Coloring Agents/analysis , Coloring Agents/chemistry , Food Coloring Agents/analysis
4.
Foods ; 13(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38397488

ABSTRACT

A total diet study is often used to evaluate a population's baseline dietary exposure to chemical hazards from across the diet. In 2021-2023, Singapore carried out a TDS, and this article presents an overview of the study design and methodological selections in Singapore's TDS, as well as its relevance to ensuring food safety. A food consumption survey was conducted on Singapore citizens and permanent residents, where food consumption patterns of the Singapore population were identified. The selection of chemical hazards and foods for inclusion in Singapore's TDS, as well as principal considerations on sampling, food preparation, and analytical testing are discussed. Commonly consumed foods by the Singapore population in food categories such as grain and grain-based products, meat and meat products, fish and seafood, vegetables, fruits, milk and dairy products were included in this study, and mean concentrations of chemicals tested in each food category were reported, with food categories possessing higher levels identified. Future work will include dietary exposure assessments for the population and analysis of the contributions by food and cooking method.

5.
Article in English | MEDLINE | ID: mdl-38295297

ABSTRACT

In this study, an advanced ultra-high performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was developed for quantifying ethoxyquin (EQ). The approach employed a distinctive antioxidant added extraction step designed to prevent ethoxyquin decomposition and maintain analytical precision. This method effectively determines residue levels of EQ in eggs, processed egg products, poultry muscle, salmon, and liquid milk. The method was shown to have a limit of quantitation (LOQ) for eggs, milk, salmon, and chicken muscle of 1.5 µg/kg, 1.9 µg/kg, 2.1 µg/kg, and 1.2 µg/kg, respectively. The recoveries of EQ ranged from 79.2% to 107.6%, with a relative standard deviation (RSD) below 8.4%. A surveillance study for the presence of EQ in different types of eggs and poultry muscle available in Singapore was conducted and a total of 140 samples were tested. EQ residues in all samples were found to be below the U.S. Food and Drug Administration (FDA) MRLs of 500 µg/kg. Some samples of salted and preserved eggs from China were detected with higher concentration of EQ.


Subject(s)
Ethoxyquin , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Ethoxyquin/analysis , Chromatography, Liquid/methods , Poultry , Singapore , Salmon
6.
JDS Commun ; 5(1): 7-12, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223384

ABSTRACT

Nisin, a bacteriocin produced through fermentation using bacterium Lactococcus lactis, has several commercial variants such as nisin A and nisin Z. Nisin serves as a natural preservative with antimicrobial properties in various food products, including dairy and beverages, for extending product shelf life. The efficacy and safety of nisin A as a bacteriocin has been well characterized. However, there is limited evidence regarding the efficacy, stability, and safety of nisin Z as a food preservative, as it has not undergone comprehensive regulatory reviews. In this work, we studied the stability of nisin A and Z in a selection of yogurt drinks and found nisin to be unstable, particularly in fruit-flavored yogurt drinks. Both nisin A and Z could experience significant degradation leading to the nisin parent ion peaks dropping below detectable level before the product's expiry date. Compared with nisin A, the formation of oxidized metabolite nisin Z+O appeared to be the predominant reaction for nisin Z. These findings highlight the need for further scientific research to understand the behavior of nisin Z under different application conditions, which is crucial for assessing the efficacy and safety of nisin Z under these conditions. One potential application of this knowledge is to optimize the formulation of yogurt-based drinks to stabilize nisin Z and sustain its biopreservative function throughout the product's shelf life. Additionally, the current study shows that for the testing of the presence of nisin A or nisin Z, it is imperative to cover both the parent and the main degradant(s) of nisin. This is especially true for nisin Z, for which the regulatory approval status may vary in different markets. As such, the confirmative identification of nisin Z and its key metabolites in commercial products would be essential.

7.
Foods ; 12(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38231853

ABSTRACT

This study investigated the prevalence and occurrence of 3-monochloropropanediol esters (3-MCPDEs) and glycidyl esters (GEs) in domestically and commercially prepared food in Singapore and assessed the total dietary exposure for the Singaporean population. Minimal impact on the formation of 3-MCPDEs and GEs was observed from the domestic cooking methods commonly practiced in Singapore such as deep frying and stir frying. The estimated total dietary exposure to 3-MCPDEs for the Singaporean population (aged 15 to 92) was 0.982 µg/kg bw/day for general consumers and 2.212 µg/kg bw/day for high consumers (95th percentile), which accounted for 49.1% and 110.6% of the tolerable dietary intake (TDI) at 2 µg/kg bw/day by the European Food Safety Authority (EFSA). The calculated margins of exposure (MOE) for GEs based on the dietary exposure for general consumers at 0.882 µg/kg bw/day and 2.209 µg/kg bw/day for high consumers were below 10,000, indicating a potential health concern. Our study showed that the occurrence of 3-MCPDEs and GEs varied among vegetable oils, and domestic cooking methods did not significantly impact the levels of 3-MCPDEs and GEs in prepared food. The critical factor influencing the prevalence and occurrence of 3-MCPDEs and GEs was the choice of oil used for cooking, which absorbed into the cooked food. It is essential to encourage the food industry to continue its innovation on mitigation measures to control and reduce 3-MCPDEs and GEs in vegetable oil production. Consumers are advised to make informed choices on food consumption and cooking oil for food preparation to reduce their exposure to 3-MCPDEs and GEs.

SELECTION OF CITATIONS
SEARCH DETAIL