Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Therm Biol ; 123: 103926, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39094403

ABSTRACT

This study investigated the effects of cold water immersion (CWI) and partial body cryotherapy (PBC) applied within a 15-min post-exercise recovery period on thermoregulatory responses, subjective perceptions, and exercise performance under hot conditions (39 °C). Twelve male soccer players participated in team-sports-specific assessments, including Agility T-test (T-test), 20-m sprint test (20M-ST), and Yo-Yo Intermittent Endurance Test Level 1 (YY-T), during two exercise bouts (1st bout and 2nd bout) with a 15-min post-exercise recovery period. Within the recovery period, a 3-min of PBC at -110 °C or CWI at 15 °C or a seated rest (CON) was performed. Mean skin temperature (Tskin) decreased by 4.3 ± 1.08°C (p < 0.001) immediately after PBC, while CWI induced a reduction of 2.5 ± 0.21°C (p < 0.01). Furthermore, PBC and CWI consistently reduced Tskin for 15 and 33 min, respectively (p < 0.05). During the 2nd bout, core temperature (Tcore) was significantly lower in PBC compared to CON (p < 0.05). Heart rate (HR) was significantly lower in CWI compared to CON and PBC during the intervention period. Thermal sensation (TS) was significantly greater in PBC compared to CON and CWI (p < 0.05). Compared to the 1st bout, PBC alleviated the declines in T-test (p < 0.05) and 20M-ST (p < 0.05), while CWI alleviated the decreases in T-test (p < 0.05) and YY-T (p < 0.05), concurrently significantly enhancing 20M-ST (p < 0.05). 20M-ST and YY-T was greater from PBC (p < 0.05) and CWI (p < 0.05) compared with CON in 2nd bout. Additionally, the T-test in CWI was significantly greater than CON (p < 0.05). These results indicate that both PBC and CWI, performed between two exercise bouts, have the potential to improve thermoregulatory strain, reduce thermal perceptual load, and thereby attenuate the subsequent decline in exercise performance.

2.
J Am Chem Soc ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842082

ABSTRACT

Biological ion channels exhibit switchable cation transport with ultrahigh selectivity for efficient energy conversion, such as Ca2+-activated TRPM4 channels tuned by cation-π interactions, but achieving an analogous highly selective function is challenging in artificial nanochannels. Here, we design a TRPM4-inspired cation-selective nanochannel (CN) assembled by two poly(ether sulfone)s, respectively, with sulfonate acid and indole moieties, which act as cation-selective activators to manage Na+/Cl- selectivity via ionic and cation-π interactions. The cation selectivity of CNs can be activated by Na+, and thereby the Na+ transference number significantly improves from 0.720 to 0.982 (Na+/Cl- selectivity ratio from 2.6 to 54.6) under a 50-fold salinity gradient, surpassing the K+ transference number (0.886) and Li+ transference number (0.900). The TRPM4-inspired nanochannel membrane enabled a maximum output power density of 5.7 W m-2 for salinity-gradient power harvesting. Moreover, a record energy conversion efficiency of up to 46.5% is provided, superior to most nanochannel membranes (below 30%). This work proposes a novel strategy to biomimetic nanochannels for highly selective cation transport and high-efficiency salinity-gradient energy conversion.

3.
Brain Sci ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38928555

ABSTRACT

To date, most studies examined the effects of cold water immersion (CWI) on neuromuscular control following exercise solely on measuring proprioception, no study explores changes in the brain and muscles. The aim of this study was to investigate the effects of CWI following exercise on knee neuromuscular control capacity, and physiological and perceptual responses. In a crossover control design, fifteen participants performed an exhaustion exercise. Subsequently, they underwent a 10 min recovery intervention, either in the form of passively seated rest (CON) or CWI at 15 °C. The knee proprioception, oxygenated cerebral hemoglobin concentrations (Δ[HbO]), and muscle activation during the proprioception test, physiological and perceptual responses were measured. CWI did not have a significant effect on proprioception at the post-intervention but attenuated the reductions in Δ[HbO] in the primary sensory cortex and posterior parietal cortex (p < 0.05). The root mean square of vastus medialis was higher in the CWI compared to the CON. CWI effectively reduced core temperature and mean skin temperature and improved the rating of perceived exertion and thermal sensation. These results indicated that 10 min of CWI at 15 °C post-exercise had no negative effect on the neuromuscular control of the knee joint but could improve subjective perception and decrease body temperature.

4.
Adv Healthc Mater ; 10(21): e2101195, 2021 11.
Article in English | MEDLINE | ID: mdl-34350724

ABSTRACT

An ideal periosteum substitute should be able to mimic the periosteum microenvironment that continuously provides growth factors, recruits osteoblasts, and subsequent extracellular matrix (ECM) mineralization to accelerate bone regeneration. Here, a calcium-binding peptide-loaded poly(ε-caprolactone) (PCL) electrospun membrane modified by the shish-kebab structure that can mimic the periosteum microenvironment was developed as a bionic periosteum. The calcium-binding peptide formed by the negatively charged heptaglutamate domain (E7) in the E7-BMP-2 with calcium ion in the tricalcium phosphate sol (TCP sol) through electrostatic chelation not only extended the release cycle of E7-BMP-2 but also promoted the biomineralization of the bionic periosteum. Cell experiments showed that the bionic periosteum could significantly improve the osteogenic differentiation of the rat-bone marrow-derived mesenchymal stem cells (rBMSCs) through both chemical composition and physical structure. The in vivo evaluation of the bionic periosteum confirmed the inherent osteogenesis of this periosteum microenvironment, which could promote the regeneration of vascularized bone tissue. Therefore, the hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment is a promising periosteum substitute for the treatment of bone defects.


Subject(s)
Mesenchymal Stem Cells , Periosteum , Animals , Bone Regeneration , Cell Differentiation , Osteogenesis , Rats , Tissue Engineering , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL