Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Proc Natl Acad Sci U S A ; 121(41): e2407820121, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39356671

ABSTRACT

Protein acetylation is a common and reversible posttranslational modification tightly governed by protein acetyltransferases and deacetylases crucial for various biological processes in both eukaryotes and prokaryotes. Although recent studies have characterized many acetyltransferases in diverse bacterial species, only a few protein deacetylases have been identified in prokaryotes, perhaps in part due to their limited sequence homology. In this study, we identified YkuR, encoded by smu_318, as a unique protein deacetylase in Streptococcus mutans. Through protein acetylome analysis, we demonstrated that the deletion of ykuR significantly upregulated protein acetylation levels, affecting key enzymes in translation processes and metabolic pathways, including starch and sucrose metabolism, glycolysis/gluconeogenesis, and biofilm formation. In particular, YkuR modulated extracellular polysaccharide synthesis and biofilm formation through the direct deacetylation of glucosyltransferases (Gtfs) in the presence of NAD+. Intriguingly, YkuR can be acetylated in a nonenzymatic manner, which then negatively regulated its deacetylase activity, suggesting the presence of a self-regulatory mechanism. Moreover, in vivo studies further demonstrated that the deletion of ykuR attenuated the cariogenicity of S. mutans in the rat caries model, substantiating its involvement in the pathogenesis of dental caries. Therefore, our study revealed a unique regulatory mechanism mediated by YkuR through protein deacetylation that regulates the physiology and pathogenicity of S. mutans.


Subject(s)
Bacterial Proteins , Biofilms , Dental Caries , Streptococcus mutans , Streptococcus mutans/enzymology , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Animals , Dental Caries/microbiology , Biofilms/growth & development , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Acetylation , Rats , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Protein Processing, Post-Translational , Gene Expression Regulation, Bacterial
2.
Front Pediatr ; 12: 1417818, 2024.
Article in English | MEDLINE | ID: mdl-39363969

ABSTRACT

Background: Patients with distant metastases from neuroblastoma (NB) usually have a poorer prognosis, and early diagnosis is essential to prevent distant metastases. The aim was to develop a machine-learning model for predicting the risk of distant metastasis in patients with neuroblastoma to aid clinical diagnosis and treatment decisions. Methods: We built a predictive model using data from the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2018 on 1,542 patients with neuroblastoma. Seven machine-learning methods were employed to forecast the likelihood of neuroblastoma distant metastases. Univariate and multivariate logistic regression analyses were used to identify independent risk factors for building machine learning models. Secondly, the subject operating characteristic area under the curve (AUC), Precision-Recall (PR) curves, decision curve analysis (DCA), and calibration curves were used to assess model performance. To further explain the optimal model, the Shapley summation interpretation method (SHAP) was applied. Ultimately, the best model was used to create an online calculator that estimates the likelihood of neuroblastoma distant metastases. Results: The study included 1,542 patients with neuroblastoma, multifactorial logistic regression analysis showed that age, histology, tumor size, tumor grade, primary site, surgery, chemotherapy, and radiotherapy were independent risk factors for distant metastasis of neuroblastoma (P < 0.05). Logistic regression (LR) was found to be the optimal algorithm among the seven constructed, with the highest AUC values of 0.835 and 0.850 in the training and validation sets, respectively. Finally, we used the logistic regression model to build a network calculator for distant metastasis of neuroblastoma. Conclusion: The study developed and validated a machine learning model based on clinical and pathological information for predicting the risk of distant metastasis in patients with neuroblastoma, which may help physicians make clinical decisions.

3.
J Exp Clin Cancer Res ; 43(1): 283, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385230

ABSTRACT

BACKGROUND: Despite significant progress in the prognosis of pediatric T-cell acute lymphoblastic leukemia (T-ALL) in recent decades, a notable portion of children still confronts challenges such as treatment resistance and recurrence, leading to limited options and a poor prognosis. LIM domain-binding protein 1 (LDB1) has been confirmed to exert a crucial role in various physiological and pathological processes. In our research, we aim to elucidate the underlying function and mechanisms of LDB1 within the background of T-ALL. METHODS: Employing short hairpin RNA (shRNA) techniques, we delineated the functional impact of LDB1 in T-ALL cell lines. Through the application of RNA-Seq, CUT&Tag, and immunoprecipitation assays, we scrutinized master transcription factors cooperating with LDB1 and identified downstream targets under LDB1 regulation. RESULTS: LDB1 emerges as a critical transcription factor co-activator in cell lines derived from T-ALL. It primarily collaborates with master transcription factors (ERG, ETV6, IRF1) to cooperatively regulate the transcription of downstream target genes. Both in vitro and in vivo experiments affirm the essential fuction of LDB1 in the proliferation and survival of cell lines derived from T-ALL, with MYB identified as a significant downstream target of LDB1. CONCLUSIONS: To sum up, our research establishes the pivotal fuction of LDB1 in the tumorigenesis and progression of T-ALL cell lines. Mechanistic insights reveal that LDB1 cooperates with ERG, ETV6, and IRF1 to modulate the expression of downstream effector genes. Furthermore, LDB1 controls MYB through remote enhancer modulation, providing valuable mechanistic insights into its involvement in the progression of T-ALL.


Subject(s)
LIM Domain Proteins , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins c-myb , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Mice , Proto-Oncogene Proteins c-myb/metabolism , Proto-Oncogene Proteins c-myb/genetics , Animals , Cell Line, Tumor , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Cell Proliferation
4.
Cell Signal ; 124: 111382, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243920

ABSTRACT

Oxidative stress causes damage to cancer cells and plays an important role in cancer therapy. Antagonizing oxidative stress is crucial for cancer cells to survive during the oxidation-based therapy. In this study, we defined the role of nuclear receptor co-activator 7 (NCOA7) in anti-oxidation in lung cancer cells and found that NCOA7 protects lung cancer A549 cells from the oxidative damage caused by hydrogen peroxide. Knockdown of NCOA7 in A549 cells significantly enhanced the hydrogen peroxide-caused inhibition of cell proliferation and migration, and markedly increased the damage effect of hydrogen peroxide on F-actin and focal adhesion structure, suggesting that NCOA7 protects F-actin and focal adhesion structure, thus the cell proliferation and migration, from oxidation-caused damage. Mechanistically, the anti-oxidation effect of NCOA7 is mediated by its nuclear receptor binding domain, the ERbd domain, suggesting that the anti-oxidation function of NCOA7 is dependent on its nuclear receptor co-activator activity. Our studies identified NCOA7 as an anti-oxidative protein through its nuclear receptor co-activator function and revealed the mechanism underlying the anti-oxidative effect of NCOA7 on cancer cell proliferation and migration.

5.
Cell Transplant ; 33: 9636897241277980, 2024.
Article in English | MEDLINE | ID: mdl-39344094

ABSTRACT

Type 1 diabetes mellitus (T1DM) affects 8.4 million people worldwide, with patients primarily relying on exogenous insulin injections to maintain blood glucose levels. Islet transplantation via the portal vein has allowed for the direct internal release of insulin by glucose-sensitive islets. However, this method might not be desirable for future cell therapy transplanting pluripotent stem cell-derived ß cells, facing challenges including difficulties in cell retrieval and graft loss due to the instant blood-mediated inflammatory reaction (IBMIR). Here, we established a subcutaneous transplantation protocol using an atelocollagen sponge as a scaffold. While the subcutaneous site has many advantages, the lack of a vascular bed limits its application. To address this issue, we performed angiogenesis stimulation at the transplantation site using bFGF absorbed in a gelatin sponge (Spongel), significantly improving the microvascular area. Our in vivo experiments also revealed angiogenesis stimulation is crucial for reversing hyperglycemia in streptozotocin (STZ)-induced diabetic mice. In addition to the angiogenic treatment, an atelocollagen sponge is used to carry the islets and helps avoid graft leakage. With 800 mouse islets delivered by the atelocollagen sponge, the STZ-induced diabetic mice showed a reversal of hyperglycemia and normalized glucose intolerance. Their normoglycemia was maintained until the graft was removed. Analysis of the harvested islet grafts exhibited a high vascularization and preserved morphologies, suggesting that using an atelocollagen sponge as a scaffold helps maintain the viability of the islet grafts.


Subject(s)
Collagen , Diabetes Mellitus, Experimental , Hyperglycemia , Islets of Langerhans Transplantation , Tissue Scaffolds , Animals , Islets of Langerhans Transplantation/methods , Diabetes Mellitus, Experimental/therapy , Mice , Tissue Scaffolds/chemistry , Hyperglycemia/therapy , Collagen/metabolism , Male , Mice, Inbred C57BL , Islets of Langerhans
6.
Heliyon ; 10(17): e36923, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39281568

ABSTRACT

Iris domestica is a widely used ornamental garden and important medicinal plant. Our previous studies have shown that it exhibits significant uptake and translocation capacity under Cd stress compared to other Iris species. Gene expression is studied using RT-qPCR; however, there are no reference genes have been found for I. domestica under Cd stress. In this investigation, thirteen possible reference genes from previous studies and our transcriptome were screened using RT-qPCR in the leaves and roots of Cd-stressed plants. The findings revealed that UBC9 and ACT were the best reference genes for roots with and without Cd stress, whereas YLS8 and ACT7 were the best reference genes for leaves. Among the different tissues without Cd stress, UBC9 and UBC28 exhibited the best results, whereas PP2C06 and UBC9 exhibited the best results under Cd stress. The most stable reference genes in the leaves and roots were UBC9 and UBC28, respectively, under and without Cd stress, and GADPH was the most unstable. Finally, three metal ion response genes, NRAMP2, YSL9 and CYP81Q32 were detected using RT-qPCR and compared with the transcriptome data to further confirm the reliability of the chosen genes. This study identified suitable reference genes for I. domestica under Cd-stress conditions.

7.
Crit Rev Microbiol ; : 1-12, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132685

ABSTRACT

Dental caries, as a biofilm-related disease, is closely linked to dysbiosis in microbial ecology within dental biofilms. Beyond its impact on oral health, bacteria within the oral cavity pose systemic health risks by potentially entering the bloodstream, thereby increasing susceptibility to bacterial endocarditis, among other related diseases. Streptococcus mutans, a principal cariogenic bacterium, possesses virulence factors crucial to the pathogenesis of dental caries. Its ability to adhere to tooth surfaces, produce glucans for biofilm formation, and metabolize sugars into lactic acid contributes to enamel demineralization and the initiation of carious lesions. Its aciduricity and ability to produce bacteriocins enable a competitive advantage, allowing it to thrive in acidic environments and dominate in changing oral microenvironments. In contrast, commensal streptococci, such as Streptococcus sanguinis, Streptococcus gordonii, and Streptococcus salivarius, act as primary colonizers and compete with S. mutans for adherence sites and nutrients during biofilm formation. This competition involves the production of alkali, peroxides, and antibacterial substances, thereby inhibiting S. mutans growth and maintaining microbial balance. This dynamic interaction influences the balance of oral microbiota, with disruptions leading to shifts in microbial composition that are marked by rapid increases in S. mutans abundance, contributing to the onset of dental caries. Thus, understanding the dynamic interactions between commensal and pathogenic bacteria in oral microecology is important for developing effective strategies to promote oral health and prevent dental caries. This review highlights the roles and competitive interactions of commensal bacteria and S. mutans in oral microecology, emphasizing the importance of maintaining oral microbial balance for health, and discusses the pathological implications of perturbations in this balance.

8.
Front Public Health ; 12: 1417556, 2024.
Article in English | MEDLINE | ID: mdl-39035188

ABSTRACT

Introduction: Hepatitis E (HE), caused by the Hepatitis E virus (HEV), is a significant cause of acute viral hepatitis globally and a major public health concern, particularly in specific high-prevalence areas in China, which have diverse transmission routes and regional differences. Identifying the primary risk factors for HE transmission is essential to develop targeted interventions for vulnerable populations. Methods: This study employed a 1:1 matched case-control methodology, using a standardized questionnaire complemented by medical records for data validation. Results: Among the 442 HE cases and 428 healthy controls, the case group had a higher prevalence of fatigue (46.21%) and loss of appetite (43.84%) compared to the control group. Furthermore, liver function indicators were significantly higher in the case group, with an average alanine aminotransferase (ALT) level of 621.94 U/L and aspartate aminotransferase (AST) level of 411.53 U/L. Severe HE patients were predominantly male, with significantly increased ALT and AST levels reaching 1443.81 U/L and 862.31 U/L respectively, along with a higher incidence of fatigue (90%) and loss of appetite (75%). Multifactorial analysis indicated that frequent dining out (OR = 2.553, 95%CI:1.686-3.868), poor hygiene conditions (OR = 3.889, 95%CI:1.399-10.807), and comorbid chronic illnesses (OR = 2.275, 95%CI:1.616-3.202) were risk factors for HE infection; conversely, good hygiene practices were protective factors against HE infection (OR = 0.698, 95%CI:0.521-0.934). Conclusion: In conclusion, HE infection in Zhejiang Province is closely associated with dietary habits and environmental hygiene, and individuals with chronic diseases or co-infections are at increased risk. This highlights the need for targeted health education to reduce the incidence of HE among these populations.


Subject(s)
Hepatitis E , Humans , Male , China/epidemiology , Case-Control Studies , Risk Factors , Hepatitis E/epidemiology , Middle Aged , Female , Adult , Prevalence , Surveys and Questionnaires , Hepatitis E virus , Alanine Transaminase/blood , Aspartate Aminotransferases/blood
9.
Methods Mol Biol ; 2837: 45-58, 2024.
Article in English | MEDLINE | ID: mdl-39044074

ABSTRACT

Hepatitis B virus (HBV) infects hepatocytes that are in the G0/G1 phase with intact nuclear membrane and organized chromosome architecture. In the nucleus of the infected cells, HBV covalently closed circular (ccc) DNA, an episomal minichromosome, serves as the template for all viral transcripts and the reservoir of persistent infection. Nuclear positioning of cccDNA can be assessed by the spatial distance between viral DNA and host chromosomal DNA through Circular Chromosome Conformation Capture (4C) combined with high-throughput sequencing (4C-seq). The 4C-seq analysis relies on proximity ligation and is commonly used for mapping genomic DNA regions that communicate within a host chromosome. The method has been tailored for studying nuclear localization of HBV episomal cccDNA in relation to the host chromosomes. In this study, we present a step-by-step protocol for 4C-seq analysis of HBV infection, including sample collection and fixation, 4C DNA library preparation, sequence library preparation, and data analysis. Although limited by proximity ligation of DNA fragments, 4C-seq analysis provides useful information of HBV localization in 3D genome, and aids the understanding of viral transcription in light of host chromatin conformation.


Subject(s)
DNA, Circular , DNA, Viral , Hepatitis B virus , High-Throughput Nucleotide Sequencing , Hepatitis B virus/genetics , Humans , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Hepatitis B/virology , Host-Pathogen Interactions/genetics , Chromosomes/genetics , Gene Library , Chromosomes, Human/genetics , Chromosomes, Human/virology
10.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000072

ABSTRACT

Interest in macropinocytosis has risen in recent years owing to its function in tumorigenesis, immune reaction, and viral infection. Cancer cells utilize macropinocytosis to acquire nutrients to support their uncontrolled proliferation and energy consumption. Macropinocytosis, a highly dynamic endocytic and vesicular process, is regulated by a series of cellular signaling pathways. The activation of small GTPases in conjunction with phosphoinositide signaling pivotally regulates the process of macropinocytosis. In this review, we summarize important findings about the regulation of macropinocytosis and provide information to increase our understanding of the regulatory mechanism underlying it.


Subject(s)
Pinocytosis , Signal Transduction , Humans , Animals , Phosphatidylinositols/metabolism , Neoplasms/metabolism , Neoplasms/pathology
11.
Phytochemistry ; 225: 114202, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38944099

ABSTRACT

The genus Penicillium has provided us with the household antibiotic penicillin and the well-known lipid-lowering agent mevastatin. The strain Penicillium sp. SZ-1 was found to grow vigorously in an intact Pinus koraiensis seed, it is inferred that the strain may develop unique mechanisms associated with the biosynthesis of rare metabolites. Further fermentation of the strain on solid rice medium yielded thirteen undescribed compounds, including three andrastin-type meroterpenoids (1-3), two α-pyrone polyketides (4 and 5), and eight sesquicarane derivatives (6-13), along with seven known compounds (14-20). Their structures were determined by detailed analysis of the spectroscopic and spectrometric data (NMR and HRESIMS), in addition to comparisons of the experimental and calculated ECD data for absolute configurational assignments. The hemiacetal moiety in compounds 1 and 2 and the 3α-hydroxy group in compound 3 were rarely found in the andrastin-type meroterpenoid family. The sesquicaranes belong to a small group of sesquiterpenoid that are rarely reported. Bioassay study showed that compound 1 exhibited inhibitory effects against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922 with MIC values of 64 and 32 µg/mL, respectively. In addition, compounds 1 and 3 displayed weak DPPH radical scavenging activities. The andrastins and sesquicaranes in this study enriched the structural diversity of these classes of terpenoids. Of note, this study is the first report on the metabolites of a fungus isolated from P. koraiensis seed.


Subject(s)
Microbial Sensitivity Tests , Penicillium , Pinus , Polyketides , Seeds , Terpenes , Pinus/microbiology , Pinus/chemistry , Penicillium/chemistry , Seeds/chemistry , Terpenes/chemistry , Terpenes/pharmacology , Terpenes/isolation & purification , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Molecular Structure , Pyrones/chemistry , Pyrones/pharmacology , Pyrones/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Staphylococcus aureus/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Picrates/antagonists & inhibitors
12.
Cancer Cell Int ; 24(1): 81, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38383388

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a malignancy of the hematopoietic system, and childhood AML accounts for about 20% of pediatric leukemia. ANP32B, an important nuclear protein associated with proliferation, has been found to regulate hematopoiesis and CML leukemogenesis by inhibiting p53 activity. However, recent study suggests that ANP32B exerts a suppressive effect on B-cell acute lymphoblastic leukemia (ALL) in mice by activating PU.1. Nevertheless, the precise underlying mechanism of ANP32B in AML remains elusive. RESULTS: Super enhancer related gene ANP32B was significantly upregulated in AML patients. The expression of ANP32B exhibited a negative correlation with overall survival. Knocking down ANP32B suppressed the proliferation of AML cell lines MV4-11 and Kasumi-1, along with downregulation of C-MYC expression. Additionally, it led to a significant decrease in H3K27ac levels in AML cell lines. In vivo experiments further demonstrated that ANP32B knockdown effectively inhibited tumor growth. CONCLUSIONS: ANP32B plays a significant role in promoting tumor proliferation in AML. The downregulation of ANP32B induces cell cycle arrest and promotes apoptosis in AML cell lines. Mechanistic analysis suggests that ANP32B may epigenetically regulate the expression of MYC through histone H3K27 acetylation. ANP32B could serve as a prognostic biomarker and potential therapeutic target for AML patients.

13.
Cell Death Dis ; 15(1): 34, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212325

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy among primary liver cancers, with an increasing overall incidence and poor prognosis. The intertumoral and intratumoral heterogeneity of ICC makes it difficult to find efficient drug therapies. Therefore, it is essential to identify tumor suppressor genes and oncogenes that induce ICC formation and progression. Here, we performed CRISPR/Cas9-mediated genome-wide screening in a liver-specific Smad4/Pten knockout mouse model (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), which normally generates ICC after 6 months, and detected that mutations in Trp53, Fbxw7, Inppl1, Tgfbr2, or Cul3 markedly accelerated ICC formation. To illustrate the potential mechanisms, we conducted transcriptome sequencing and found that multiple receptor tyrosine kinases were activated, which mainly upregulated the PI3K pathway to induce cell proliferation. Remarkably, the Cul3 mutation stimulated cancer progression mainly by altering the immune microenvironment, whereas other mutations promoted the cell cycle. Moreover, Fbxw7, Inppl1, Tgfbr2, and Trp53 also affect inflammatory responses, apelin signaling, mitotic spindles, ribosome biogenesis, and nucleocytoplasmic transport pathways, respectively. We further examined FDA-approved drugs for the treatment of liver cancer and performed high-throughput drug screening of the gene-mutant organoids. Different drug responses and promising drug therapies, including chemotherapy and targeted drugs, have been discovered for ICC.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Mice , Animals , Receptor, Transforming Growth Factor-beta Type II/metabolism , F-Box-WD Repeat-Containing Protein 7/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Mutation/genetics , Signal Transduction , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Tumor Microenvironment
14.
Int J Oral Sci ; 16(1): 5, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38238300

ABSTRACT

Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A (Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement (OTM) model. Firstly, bone formation was activated after the 3rd day of OTM, coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor (NGF), highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells (hPDLCs) within 24 hours. Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.


Subject(s)
Osteogenesis , Semaphorin-3A , Humans , Bone Remodeling , Cell Differentiation , Semaphorin-3A/metabolism , Semaphorin-3A/pharmacology , Trigeminal Ganglion/metabolism
15.
Macromol Biosci ; 24(4): e2300292, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37985229

ABSTRACT

Seaweed polysaccharides can be used for protective skin photoaging which is caused by long-term exposure to ultraviolet B (UVB). In this study, a multifunctional composite hydrogel (FACP5) is prepared using sulfated galactofucan polysaccharides, alginate oligosaccharides as active ingredients, and polyacrylonitrile modified κ-Carrageenan as substrate. The properties of FACP5 show that it has good water retention, spreadability, and adhesion. The antiphotoaging activity is evaluated in vitro and in vivo. In vitro experiments demonstrate that the components of FACP5 exhibit good biocompatibility, antioxidant, and anti-tyrosinase activities, and could reduce the cell death rate induced by UVB. In vivo experiments demonstrate that, compared with the mice skin in model group, the skin water content treated with FACP5 increases by 29.80%; the thicknesses of epidermis and dermis decrease by 53.56% and 43.98%, respectively; the activities of catalase and superoxide dismutase increase by 1.59 and 0.72 times, respectively; the contents of interleukin-6 and tumor necrosis factor-α decrease by 19.21% and 17.85%, respectively; hydroxyproline content increases by 32.42%; the expression level of matrix metalloproteinase-3 downregulates by 42.80%. These results indicate that FACP5 has skin barrier repairing, antioxidant, anti-inflammatory, and inhibiting collagen degradation activies, FACP5 can be used as a skin protection remedy for photoaging.


Subject(s)
Seaweed , Skin Aging , Animals , Mice , Antioxidants/pharmacology , Hydrogels/pharmacology , Hydrogels/metabolism , Skin , Polysaccharides/pharmacology , Water , Ultraviolet Rays/adverse effects
16.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003651

ABSTRACT

The anthocyanin biosynthetic pathway is the main pathway regulating floral coloration in Iris germanica, a well-known ornamental plant. We investigated the transcriptome profiles and targeted metabolites to elucidate the relationship between genes and metabolites in anthocyanin biosynthesis in the bitone flower cultivar 'Clarence', which has a deep blue outer perianth and nearly white inner perianth. In this study, delphinidin-, pelargonidin-, and cyanidin-based anthocyanins were detected in the flowers. The content of delphinidin-based anthocyanins increased with the development of the flower. At full bloom (stage 3), delphinidin-based anthocyanins accounted for most of the total anthocyanin metabolites, whereas the content of pelargonidin- and cyanidin-based anthocyanins was relatively low. Based on functional annotations, a number of novel genes in the anthocyanin pathway were identified, which included early biosynthetic genes IgCHS, IgCHI, and IgF3H and late biosynthetic genes Ig F3'5'H, IgANS, and IgDFR. The expression of key structural genes encoding enzymes, such as IgF3H, Ig F3'5'H, IgANS, and IgDFR, was significantly upregulated in the outer perianth compared to the inner perianth. In addition, most structural genes exhibited their highest expression at the half-color stage rather than at the full-bloom stage, which indicates that these genes function ahead of anthocyanins synthesis. Moreover, transcription factors (TFs) of plant R2R3-myeloblastosis (R2R3-MYB) related to the regulation of anthocyanin biosynthesis were identified. Among 56 R2R3-MYB genes, 2 members belonged to subgroup 4, with them regulating the expression of late biosynthetic genes in the anthocyanin biosynthetic pathway, and 4 members belonged to subgroup 7, with them regulating the expression of early biosynthetic genes in the anthocyanin biosynthetic pathway. Quantitative real-time PCR (qRT-PCR) analysis was used to validate the data of RNA sequencing (RNA-Seq). The relative expression profiles of most candidate genes were consistent with the FPKM of RNA-seq. This study identified the key structural genes encoding enzymes and TFs that affect anthocyanin biosynthesis, which provides a basis and reference for the regulation of plant anthocyanin biosynthesis in I. germanica.


Subject(s)
Iris Plant , Transcriptome , Anthocyanins , Iris Plant/genetics , Iris Plant/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant
17.
Biomacromolecules ; 24(11): 4831-4842, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37677087

ABSTRACT

A diabetic foot ulcer is a common high-risk complication in diabetic patients, but there is still no universal dressing for clinical treatment. In this study, a novel dual-functional sulfated galactofucan polysaccharide/poly(vinyl alcohol) hydrogel (DPH20) is developed during freeze-thaw cycles. Experimental results indicated that DPH20 had a high specific surface area, a dense porous structure, and a good swelling property, which could effectively adsorb the exudates and keep the wound moist. Furthermore, DPH20 exhibited remarkably recruited macrophage capability and accelerated the inflammation stage by improving the expression of the mRNA of CCL2, CCR2, and CCL22 in macrophages. DPH20 could promote cell migration and growth factor release to accelerate tube formation under hyperglycemic conditions in cell models of L929s and HUEVCs, respectively. Significantly, DPH20 accelerates the reconstruction of the full-thickness skin wound by accelerating the recruitment of macrophages, promoting angiogenesis, and releasing the growth factor in the diabetic mouse model. Collectively, DPH20 is a promising multifunctional dressing to reshape the damaged tissue environment and accelerate wound healing. This study provides an efficient strategy to repair and regenerate diabetic skin ulcers.


Subject(s)
Diabetes Mellitus , Hydrogels , Mice , Animals , Humans , Hydrogels/pharmacology , Hydrogels/chemistry , Wound Healing , Polyvinyl Alcohol/pharmacology , Polyvinyl Alcohol/chemistry , Macrophages , Intercellular Signaling Peptides and Proteins
18.
Biochem Biophys Res Commun ; 679: 58-65, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37673003

ABSTRACT

The metabolites in the plasma serve as potential biomarkers of disease. We previously established an early-onset diabetes mouse model, Ins2+/Q104del Kuma mice, under a severe immune-deficient (Rag-2/Jak3 double-deficient in BALB/c) background. Here, we revealed the differences in plasma amino acid profiles between Kuma and the wild-type mice. We observed an early reduction in glucogenic and ketogenic amino acids, a late increase in branched-chain amino acids (BCAAs) and succinyl CoA-related amino acids, and a trend of increasing ketogenic amino acids in Kuma mice than in the wild-type mice. Kuma mice exhibited hyperglucagonemia at high blood glucose, leading to perturbations in plasma amino acid profiles. The reversal of blood glucose by islet transplantation normalized the increases of the BCAAs and several aspects of the altered metabolic profiles in Kuma mice. Our results indicate that the Kuma mice are a unique animal model to study the link between plasma amino acid profile and the progression of diabetes for monitoring the therapeutic effects.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Mice , Animals , Blood Glucose/metabolism , Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Amino Acids , Amino Acids, Branched-Chain/metabolism
19.
Front Pediatr ; 11: 1199444, 2023.
Article in English | MEDLINE | ID: mdl-37547104

ABSTRACT

Objective: To assess the computed tomography (CT) and magnetic resonance (MR) imaging characteristics of soft tissue rhabdoid tumors (RT) and compare them with those of rhabdomyosarcoma (RMS). Methods: We conducted a retrospective analysis of 49 pediatric patients from 2011 to 2022, comprising 16 patients with soft tissue RT and 33 patients with RMS who underwent CT or MRI scans. Key imaging features, as well as clinical and pathological data, were compared between the two groups. The multivariate logistic regression analysis was used to determine independent differential factors for distinguishing soft tissue RT from RMS, and the model was established. The final prediction model was visualized by nomograms and verified internally by using a bootstrapped resample 1,000 times. The diagnostic accuracy of the combined model was assessed in terms of discrimination, calibration, and clinical utility. Results: Age, sex, number of lesions, and primary locations were similar in both groups. The imaging characteristics, including margin, calcification, surrounding blood vessels, and rim enhancement, were associated with the two groups of soft tissue tumors, as determined by univariate analysis (all p < 0.05). On multivariate logistic regression analysis, the presence of unclear margin (p-value, adjusted odds ratio [95% confidence interval]: 0.03, 7.96 [1.23, 51.67]) and calcification (0.012, 30.37 [2.09, 440.70]) were independent differential factors for predicting soft tissue RT over RMS. The presence of rim enhancement (0.007, 0.05 [0.01, 0.43]) was an independent differential factor for predicting RMS over soft tissue RT. The comprehensive model established by logistic regression analysis showed an AUC of 0.872 with 81.8% specificity and 81.3% sensitivity. The decision curve analysis (DCA) curve displayed that the model achieved a better net clinical benefit. Conclusion: Our study revealed that the image features of calcification, indistinct margins, and a lack of rim enhancement on CT and MRI might be reliable to distinguish soft tissue RT from RMS.

20.
Front Cell Neurosci ; 17: 1173086, 2023.
Article in English | MEDLINE | ID: mdl-37469605

ABSTRACT

Background: Schwann cells acquire a repair phenotype upon peripheral nerve injury (PNI), generating an optimal microenvironment that drives nerve repair. Multiple microRNAs (miRNAs) show differential expression in the damaged peripheral nerve, with critical regulatory functions in Schwann cell features. This study examined the time-dependent expression of miR-195-5p following PNI and demonstrated a marked dysregulation of miR-195-5p in the damaged sciatic nerve. Methods: CCK-8 and EdU assays were used to evaluate the effect of miR-195-5 on Schwann cell viability and proliferation. Schwann cell migration was tested using Transwell and wound healing assays. The miR-195-5p agomir injection experiment was used to evaluate the function of miR-195-5p in vivo. The potential regulators and effects of miR-195-5p were identified through bioinformatics evaluation. The relationship between miR-195-5p and its target was tested using double fluorescence reporter gene analysis. Results: In Schwann cells, high levels of miR-195-5p decreased viability and proliferation, while suppressed levels had the opposite effects. However, elevated miR-195-5p promoted Schwann cell migration determined by the Transwell and wound healing assays. In vivo injection of miR-195-5p agomir into rat sciatic nerves promote axon elongation after peripheral nerve injury by affecting Schwann cell distribution and myelin preservation. Bioinformatic assessment further revealed potential regulators and effectors for miR-195-5p, which were utilized to build a miR-195-5p-centered competing endogenous RNA network. Furthermore, miR-195-5p directly targeted cAMP response element binding protein-like 2 (Crebl2) mRNA via its 3'-untranslated region (3'-UTR) and downregulated Crebl2. Mechanistically, miR-195-5p modulated Schwann cell functions by repressing Crebl2. Conclusion: The above findings suggested a vital role for miR-195-5p/Crebl2 in the regulation of Schwann cell phenotype after sciatic nerve damage, which may contribute to peripheral nerve regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL