Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Brain Pathol ; : e13289, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046224

ABSTRACT

Postoperative cognitive dysfunction (POCD) is a major concern, particularly among older adults. This study used social isolation (ISO) and multiomics analyses in aged mice to investigate potential mechanisms underlying POCD development. Aged mice were divided into two groups: ISO and paired housing (PH). Oleamide and the cannabinoid receptor type 2 (CB2R) antagonist AM630 were administered intraperitoneally, while Foxq1 adeno-associated viral (AAV) vector was injected directly into the hippocampus. Intramedullary tibial surgeries were subsequently performed to establish the POCD models. Behavioral tests comprising the Y-maze, open field test, and novel object recognition were conducted 2 days after surgery. Hippocampal and serum inflammatory cytokines were assessed. Following surgery, ISO mice demonstrated intensified cognitive impairments and escalated inflammatory markers. Integrative transcriptomic and metabolomic analysis revealed elevated oleamide concentrations in the hippocampus and serum of PH mice, with associative investigations indicating a close relationship between the Foxq1 gene and oleamide levels. While oleamide administration and Foxq1 gene overexpression substantially ameliorated postoperative cognitive performance and systemic inflammation in mice, CB2R antagonist AM630 impeded these enhancements. The Foxq1 gene and oleamide may be crucial in alleviating POCD. While potentially acting through CB2R-mediated pathways, these factors may modulate neuroinflammation and attenuate proinflammatory cytokine levels within the hippocampus, substantially improving cognitive performance postsurgery. This study lays the groundwork for future research into therapeutic approaches targeting the Foxq1-oleamide-CB2R axis, with the ultimate goal of preventing or mitigating POCD.

2.
Article in English | MEDLINE | ID: mdl-38863438

ABSTRACT

Sympathetic activation is a hallmark of heart failure and the underlying mechanism remains elusive. Butyrate is generated by gut microbiota and influences numerous physiological and pathological processes in the host. The present study aims to investigate whether the intestinal metabolite butyrate reduces sympathetic activation in rats with heart failure (HF) and the underlying mechanisms involved. Sprague-Dawley rats (220‒250 g) are anaesthetized with isoflurane, and the left anterior descending artery is ligated to model HF. Then, the rats are treated with or without butyrate sodium (NaB, a donor of butyrate, 10 g/L in water) for 8 weeks. Blood pressure and renal sympathetic nerve activity (RSNA) are recorded to assess sympathetic outflow. Cardiac function is improved (mean ejection fraction, 22.6%±4.8% vs 38.3%±5.3%; P<0.05), and sympathetic activation is decreased (RSNA, 36.3%±7.9% vs 23.9%±7.6%; P<0.05) in HF rats treated with NaB compared with untreated HF rats. The plasma and cerebrospinal fluid levels of norepinephrine are decreased in HF rats treated with NaB. The infusion of N-methyl-D-aspartic acid (NMDA) into the paraventricular nucleus (PVN) of the hypothalamus of HF model rats increases sympathetic nervous activity by upregulating the NMDA receptor. Microglia polarized to the M2 phenotype and inflammation are markedly attenuated in the PVN of HF model rats after NaB administration. In addition, HF model rats treated with NaB exhibit enhanced intestinal barrier function and increased levels of GPR109A, zona occludens-1 and occludin, but decreased levels of lipopolysaccharide-binding protein and zonulin. In conclusion, butyrate attenuates sympathetic activation and improves cardiac function in rats with HF. The improvements in intestinal barrier function, reductions in microglia-mediated inflammation and decreases in NMDA receptor 1 expression in the PVN are all due to the protective effects of NaB.

3.
Article in English | MEDLINE | ID: mdl-38884920

ABSTRACT

PURPOSE: Aging contributes significantly to cardiovascular diseases and cardiac dysfunction, leading to the upregulation of matrix metalloproteinase-9 (MMP-9) in the heart and a significant decrease in hydrogen sulfide (H2S) content, coupled with impaired cardiac diastolic function. This study explores whether supplementing exogenous hydrogen sulfide during aging ameliorates the decline in H2S concentration in the heart, suppresses MMP-9 expression, and improves the age-associated impairment in cardiac morphology and function. METHODS: We collected plasma from healthy individuals of different ages to determine the relationship between aging and H2S and MMP-9 levels through Elisa detection and liquid chromatography-tandem mass spectrometry (LC/MC) detection of plasma H2S content. Three-month-old mice were selected as the young group, while 18-month-old mice were selected as the old group, and sodium hydrosulfide (NaHS) was injected intraperitoneally from 15 months old until 18 months old as the old + NaHS group. Plasma MMP-9 content was detected using Elisa, plasma H2S content, cardiac H2S content, and cystathionine gamma-lyase (CSE) activity were detected using LC/MC, and cardiac function was detected using echocardiography. Heart structure was assessed using hematoxylin and eosin staining, Masone staining was used to detect the degree of cardiac fibrosis, while western blot was used to detect the expression of MMP-9, CSE, and aging marker proteins. Knockdown of MMP-9 and CSE in H9c2 cells using small interfering RNA was carried out to determine the upstream-downstream relationship between MMP-9 and CSE. RESULTS: H2S content in the plasma of healthy individuals decreases with escalating age, whereas MMP-9 level rises with age progression. Aging leads to a decrease in H2S levels in the heart and plasma of mice, severe impairment of cardiac diastolic function, interstitial relaxation, and fibrosis of the heart. Supplementing with exogenous H2S can improve these phenomena. CONCLUSION: H2S maintains the structure and function of the heart by inhibiting the expression of MMP-9 during the aging process.

4.
Biomed Pharmacother ; 174: 116549, 2024 May.
Article in English | MEDLINE | ID: mdl-38593701

ABSTRACT

This study aimed to determine whether trimethylamine N-oxide (TMAO) was involved in sympathetic activation in aging and the underlying mechanisms. Our hypothesis is TMAO reduces P2Y12 receptor (P2Y12R) and induces microglia-mediated inflammation in the paraventricular nucleus (PVN), then leading to sympathetic activation in aging. This study involved 18 young adults and 16 old adults. Aging rats were established by injecting D-galactose (D-gal, 200 mg/kg/d) subcutaneously for 12 weeks. TMAO (120 mg/kg/d) or 1% 3, 3-dimethyl-l-butanol (DMB) was administrated via drinking water for 12 weeks to investigate their effects on neuroinflammation and sympathetic activation in aging rats. Plasma TMAO, NE and IL-1ß levels were higher in old adults than in young adults. In addition, standard deviation of all normal to normal intervals (SDNN) and standard deviation of the average of normal to normal intervals (SDANN) were lower in old adults and negatively correlated with TMAO, indicating sympathetic activation in old adults, which is associated with an increase in TMAO levels. Treatment of rats with D-gal showed increased senescence-associated protein levels and microglia-mediated inflammation, as well as decreased P2Y12R protein levels in PVN. Plasma TMAO, NE and IL-1ß levels were increased, accompanied by enhanced renal sympathetic nerve activity (RSNA). While TMAO treatment exacerbated the above phenomenon, DMB mitigated it. These findings suggest that TMAO contributes to sympathetic hyperactivity in aging by downregulating P2Y12R in microglia and increasing inflammation in the PVN. These results may provide promising new target for the prevention and treatment of aging and aging-related diseases.


Subject(s)
Down-Regulation , Galactose , Methylamines , Microglia , Receptors, Purinergic P2Y12 , Animals , Rats , Aging/metabolism , Down-Regulation/drug effects , Galactose/pharmacology , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-1beta/metabolism , Methylamines/pharmacology , Microglia/drug effects , Microglia/metabolism , Norepinephrine/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Rats, Sprague-Dawley , Receptors, Purinergic P2Y12/metabolism , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism
5.
Hypertens Res ; 47(5): 1323-1337, 2024 May.
Article in English | MEDLINE | ID: mdl-38491106

ABSTRACT

Paroxysmal sympathetic hyperactivity (PSH) is a common clinical feature secondary to ischemic stroke (IS), but its mechanism is poorly understood. We aimed to investigate the role of H2S in the pathogenesis of PSH. IS patients were divided into malignant (MCI) and non-malignant cerebral infarction (NMCI) group. IS in rats was induced by the right middle cerebral artery occlusion (MCAO). H2S donor (NaHS) or inhibitor (aminooxy-acetic acid, AOAA) were microinjected into the hypothalamic paraventricular nucleus (PVN). Compared with the NMCI group, patients in the MCI group showed PSH, including tachycardia, hypertension, and more plasma norepinephrine (NE) that was positively correlated with levels of creatine kinase, glutamate transaminase, and creatinine respectively. The 1-year survival rate of patients with high plasma NE levels was lower. The hypothalamus of rats with MCAO showed increased activity, especially in the PVN region. The levels of H2S in PVN of the rats with MCAO were reduced, while the blood pressure and renal sympathetic discharge were increased, which could be ameliorated by NaHS and exacerbated by AOAA. NaHS completely reduced the disulfide bond of NMDAR1 in PC12 cells. The inhibition of NMDAR by MK-801 microinjected in PVN of rats with MCAO also could lower blood pressure and renal sympathetic discharge. In conclusion, PSH may be associated with disease progression and survival in patients with IS. Decreased levels of H2S in PVN were involved in regulating sympathetic efferent activity after cerebral infarction. Our results might provide a new strategy and target for the prevention and treatment of PSH.


Subject(s)
Hydrogen Sulfide , Paraventricular Hypothalamic Nucleus , Animals , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/blood , Male , Rats , Humans , Aged , Cerebral Infarction , Middle Aged , Rats, Sprague-Dawley , Female , Norepinephrine/blood , Autonomic Nervous System Diseases , Aminooxyacetic Acid/pharmacology , Sympathetic Nervous System/physiopathology , Sympathetic Nervous System/drug effects , Infarction, Middle Cerebral Artery/complications , Blood Pressure/drug effects
6.
Mol Cell Biochem ; 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462549

ABSTRACT

Dilated cardiomyopathy (DCM) is a significant cause of heart failure that requires heart transplantation. Fibroblasts play a central role in the fibro-inflammatory microenvironment of DCM. However, their cellular heterogeneity and interaction with immune cells have not been well identified. An integrative analysis was conducted on single-cell RNA sequencing (ScRNA-Seq) data from human left ventricle tissues, which comprised 4 hearts from healthy donors and 6 hearts with DCM. The specific antigen-presenting fibroblast (apFB) was explored as a subtype of fibroblasts characterized by expressing MHCII genes, the existence of which was confirmed by immunofluorescence staining of 3 cardiac tissues from DCM patients with severe heart failure. apFB highly expressed the genes that response to IFN-γ, and it also have a high activity of the JAK-STAT pathway and the transcription factor RFX5. In addition, the analysis of intercellular communication between apFBs and CD4+T cells revealed that the anti-inflammatory ligand-receptor pairs TGFB-TGFR, CLEC2B-KLRB1, and CD46-JAG1 were upregulated in DCM. The apFB signature exhibited a positive correlation with immunosuppression and demonstrated diagnostic and prognostic value when evaluated using a bulk RNA dataset comprising 166 donors and 166 DCM samples. In conclusion, the present study identified a novel subpopulation of fibroblasts that specifically expresses MHCII-encoding genes. This specific apFBs can suppress the inflammation occurring in DCM. Our findings further elucidate the composition of the fibro-inflammatory microenvironment in DCM, and provide a novel therapeutic target.

7.
Int Immunopharmacol ; 126: 111284, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38016344

ABSTRACT

INTRODUCTION: Susceptibility to secondary infection often increases after primary infection. Secondary infections can lead to more severe inflammatory injuries; however, the underlying mechanisms are not yet fully elucidated. OBJECTIVE: To investigate whether esketamine treatment immediately after primary lipopolysaccharide (LPS) exposure could alleviate cognitive impairment caused by secondary infection. METHODS: Mice were injected intraperitoneally (IP) with LPS (5 mg/kg) 10 days apart. Esketamine (10, 15, or 30 mg/kg) was administered IP immediately after the primary LPS injection. Splenectomy or subdiaphragmatic vagotomy (SDV) was performed 7 days before secondary LPS exposure or broad-spectrum antibiotic administration. RESULTS: Splenomegaly was observed after the primary LPS injection on Days 3 and 10. Splenomegaly was attenuated by treatment with 30 mg/kg esketamine. Esketamine treatment prevented increased plasma proinflammatory cytokines levels and cognitive dysfunction induced by secondary LPS exposure. Mice that underwent splenectomy or SDV had lower proinflammatory cytokines levels, higher hippocampal brain-derived neurotrophic factor (BDNF) levels, and improved cognitive function 1 day after secondary infection, which was not further improved by esketamine. Fecal microbiota transplantation (FMT) from endotoxic mice treated with esketamine attenuated hippocampal BDNF downregulation and cognitive dysfunction only in pseudo germ-free (PGF) mice without splenectomy. FMT with fecal suspensions from esketamine-treated endotoxic mice abrogated splenomegaly only in PGF mice without SDV. Blocking BDNF signaling blocked esketamine's ameliorating effects on secondary LPS exposure-induced cognitive dysfunction. CONCLUSION: The intestinal flora/subdiaphragmatic vagus nerve/spleen axis-mediated hippocampal BDNF downregulation significantly affected secondary LPS-induced systemic inflammation and cognitive dysfunction. Esketamine preserves cognitive function via this mechanism.


Subject(s)
Cognitive Dysfunction , Coinfection , Gastrointestinal Microbiome , Mice , Animals , Lipopolysaccharides/pharmacology , Spleen , Brain-Derived Neurotrophic Factor , Splenomegaly , Vagus Nerve , Cytokines , Cognitive Dysfunction/drug therapy
8.
Article in English | MEDLINE | ID: mdl-37931009

ABSTRACT

To explore the effects of solvent-ionomer interactions in catalyst inks on the structure and performance of Cu catalyst layers (CLs) for CO2 electrolysis, we used a "like for like" rationale to select acetone and methanol as dispersion solvents with a distinct affinity for the ionomer backbone or sulfonated ionic heads, respectively, of the perfluorinated sulfonic acid (PFSA) ionomer Aquivion. First, we characterized the morphology and wettability of Aquivion films drop-cast from acetone- and methanol-based inks on flat Cu foils and glassy carbons. On a flat surface, the ionomer films cast from the Aquivion and acetone mixture were more continuous and hydrophobic than films cast from methanol-based inks. Our study's second stage compared the performance of Cu nanoparticle CLs prepared with acetone and methanol on gas diffusion electrodes (GDEs) in a flow cell electrolyzer. The effects of the ionomer-solvent interaction led to a more uniform and flooding-tolerant GDE when acetone was the dispersion solvent (acetone-CL) than when we used methanol (methanol-CL). As a result, acetone-CL yielded a higher selectivity for CO2 electrolysis to C2+ products at high current density, up to 25% greater than methanol-CL at 500 mA cm-2. Ethylene was the primary product for both CLs, with a Faradaic efficiency for ethylene of 47.4 ± 4.0% on the acetone-CL and that of 37.6 ± 5.5% on the methanol-CL at a current density of 300 mA cm-2. We attribute the enhanced C2+ selectivity of the acetone-CL to this electrode's better resistance to electrolyte flooding, with zero seepage observed at tested current densities. Our findings reveal the critical role of solvent-ionomer interaction in determining the film structure and hydrophobicity, providing new insights into the CL design for enhanced multicarbon production in high current densities in CO2 electrolysis processes.

9.
Nat Commun ; 14(1): 6579, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37852966

ABSTRACT

Electrochemical reduction of CO2 presents an attractive way to store renewable energy in chemical bonds in a potentially carbon-neutral way. However, the available electrolyzers suffer from intrinsic problems, like flooding and salt accumulation, that must be overcome to industrialize the technology. To mitigate flooding and salt precipitation issues, researchers have used super-hydrophobic electrodes based on either expanded polytetrafluoroethylene (ePTFE) gas-diffusion layers (GDL's), or carbon-based GDL's with added PTFE. While the PTFE backbone is highly resistant to flooding, the non-conductive nature of PTFE means that without additional current collection the catalyst layer itself is responsible for electron-dispersion, which penalizes system efficiency and stability. In this work, we present operando results that illustrate that the current distribution and electrical potential distribution is far from a uniform distribution in thin catalyst layers (~50 nm) deposited onto ePTFE GDL's. We then compare the effects of thicker catalyst layers (~500 nm) and a newly developed non-invasive current collector (NICC). The NICC can maintain more uniform current distributions with 10-fold thinner catalyst layers while improving stability towards ethylene (≥ 30%) by approximately two-fold.

10.
BMC Ophthalmol ; 23(1): 415, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833664

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is associated with lacrimal gland dysfunction and ocular inflammation. The objective of this research was to elucidate the temporal relationships between IBD, dry eye disease (DED), and corneal surface damage. METHODS: In a matched nationwide cohort study, we evaluated the risk of DED and corneal surface damage associated with IBD. Multivariable Cox proportional hazards regression analyses were implemented to estimate the risk of ocular complications. RESULTS: A total of 54,293 matched pairs were included for analyses. The median follow-up time was 8.3 years (interquartile range: 5.5 - 10.5). The period incidence of DED was 8.18 and 5.42 per 1000 person-years in the IBD and non-IBD groups, respectively. After adjusting for confounders, statistically significant associations were found between IBD and DED [adjusted hazard ratio (aHR): 1.43, 95% confidence interval (CI): 1.35 - 1.51, p < 0.0001], Sjögren's syndrome-related (aHR: 1.67, 95% CI:1.46 - 1.90, p < 0.0001) and non-Sjögren's syndrome-related subtypes (aHR: 1.38, 95% CI: 1.30 - 1.46, p < 0.0001). Furthermore, increased risks of corneal surface damage (aHR: 1.13, 95% CI: 1.03 - 1.24, p = 0.0094) among the patients with IBD were observed when compared with the controls. Other independent factors associated with corneal surface damage were age (aHR: 1.003), sex (male vs. female, aHR: 0.85), and monthly insurance premium (501-800 vs. 0-500 U.S. dollars, aHR: 1.45; ≥ 801 vs. 0-500 U.S. dollars, aHR: 1.32). CONCLUSIONS: Our results suggested that IBD was an independent risk factor for DED and ocular surface damage. Clinical strategies are needed to prevent visual impairment or losses in these susceptible patients.


Subject(s)
Dry Eye Syndromes , Eye Injuries , Inflammatory Bowel Diseases , Humans , Male , Female , Cohort Studies , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/epidemiology , Risk Factors , Dry Eye Syndromes/epidemiology , Dry Eye Syndromes/etiology , Eye Injuries/complications , Incidence
11.
Nitric Oxide ; 140-141: 77-90, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37875241

ABSTRACT

Aging causes vascular endothelial dysfunction. We aimed to investigate the causes of vascular endothelial dysfunction during aging using plasma and renal arteries from patients who underwent nephrectomy and animal models. The results showed that the endogenous H2S-producing enzyme cystathione-γ-lyase (CSE) protein expression was downregulated in renal artery tissue, plasma H2S levels were reduced. Moreover, elevated lipid peroxidation and iron accumulation levels led to ferroptosis and endothelial diastolic function in the renal arteries was impaired in the elderly group. H2S enhanced the endogenous CSE expression in the elderly group, promoted endogenous H2S production, decreased lipid peroxide expression, and inhibited ferroptosis, which in turn improved vascular endothelial function in the elderly group. In animal models, we also observed the same results. In addition, we applied NaHS, Ferrostatin-1 (ferroptosis inhibitor) and erastin (ferroptosis inducer) to incubate renal arteries of SD rats. The results showed that NaHS enhanced ferroptosis related proteins expression, inhibited ferroptosis and improved vascular endothelial function. We demonstrated that endothelial dysfunction associated with aging is closely related to reduced endogenous H2S levels and ferroptosis in vascular endothelial cells. Notably, H2S reduced lipid peroxidation levels in vascular endothelial cells, inhibited ferroptosis in vascular endothelial cells, and improved endothelial dysfunction.


Subject(s)
Ferroptosis , Hydrogen Sulfide , Humans , Rats , Animals , Aged , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Endothelial Cells/metabolism , Rats, Sprague-Dawley , Arteries , Aging , Cystathionine gamma-Lyase/metabolism
12.
Neuropharmacology ; 240: 109706, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37661037

ABSTRACT

Alzheimer's disease (AD) is a common chronic progressive neurodegenerative disorder, and curative treatment has not been developed. The objective of this study was to investigate the potential effects of hydralazine (Hyd, a hypertension treatment drug) on the development process of AD and its mechanisms. We treated 6-month-old male APP/PS1 mice with Hyd for 5 weeks, measured changes in behavior and pathological status, and analyzed differences in gene expression by RNA sequencing. The results demonstrated that Hyd improved cognitive deficits and decreased amyloid beta protein deposition in the cortex and hippocampus, while RNA sequencing analysis suggested that the regulation of neuroinflammation and energy metabolism might play pivotal roles for Hyd's beneficial effects. Therefore, we further investigated inflammatory response, redox state, and mitochondrial function, as well as the expression of toll-like receptor 4 (TLR4)/nuclear factor Kappa B (NF-κB)-dependent neuroinflammation gene and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant gene in AD mice. The results showed that Hyd reduced the damage of neuroinflammation and oxidative stress, improved mitochondrial dysfunction, downregulated pro-inflammation gene expression, and upregulated antioxidant gene expression. The results in lipopolysaccharide (LPS)-induced BV2 cell model demonstrated that Hyd suppressed pro-inflammatory response via TLR4/NF-κB signaling pathway. In addition, by silencing the Nrf2 gene expression, it was found that Hyd can reduce LPS-induced reactive oxygen species production by activating the Nrf2 signaling pathway. Therefore, administration of Hyd in the early stage of AD might be beneficial in delaying the pathological development of AD via inhibiting neuroinflammation and oxidative stress.

13.
J Phycol ; 59(5): 822-834, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37656660

ABSTRACT

Sargassum (Sargassaceae) is widely distributed globally and plays an important role in regulating climate change, but the landscape of genomes and transcripts is less known. High-quality nucleic acids are the basis for molecular biology experiments such as high-throughput sequencing. Although extensive studies have documented methods of RNA extraction, these methods are not very applicable to Sargassum, which contains high levels of polysaccharides and polyphenols. To find a suitable method to improve the quality of RNA extracted, we compared and modified several popular RNA extraction methods and screened one practical method with three specific Sargassum spp. The results showed that three CTAB methods (denoted as Methods 1, 2, and 3) and the RNAprep Pure Plant Kit (denoted as Method 4) could, with slight modifications, effectively isolate RNA from Sargassum species, except for Method 4 used with S. fusiforme. By performing further screening, we determined Method 4 was the best choice for S. hemiphyllum and S. henslowianum, as revealed by RNA yields, RNA Integrity Number (RIN), extraction time, and unigene mapped ratio. For S. fusiforme, Methods 1, 2, and 3 showed no obvious differences among the yields, quality, or time to perform. In addition, one other method was tested, but we found the quality of the RNA extracted by TRIzol reagent methods (denoted as Method 5) performed the worst when compared with the above four methods. Therefore, our study provides four suitable methods for RNA extraction in Sargassum and is essential for future genetic exploration of Sargassum.

14.
Front Pharmacol ; 14: 1249650, 2023.
Article in English | MEDLINE | ID: mdl-37637428

ABSTRACT

Glioma is regarded as a prevalent form of cancer that affects the Central Nervous System (CNS), with an aggressive growth pattern and a low clinical cure rate. Despite the advancement of the treatment strategy of surgical resection, chemoradiotherapy and immunotherapy in the last decade, the clinical outcome is still grim, which is ascribed to the low immunogenicity and tumor microenvironment (TME) of glioma. The multifunctional molecule, called ceruloplasmin (CP) is involved in iron metabolism. Its expression pattern, prognostic significance, and association with the immune cells in gliomas have not been thoroughly investigated. Studies using a variety of databases, including Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and Gliovis, showed that the mRNA and protein expression levels of CP in patients suffering from glioma increased significantly with an increasing glioma grade. Kaplan-Meier (KM) curves and statistical tests highlighted a significant reduction in survival time of patients with elevated CP expression levels. According to Cox regression analysis, CP can be utilized as a stand-alone predictive biomarker in patients suffering from glioma. A significant association between CP expression and numerous immune-related pathways was found after analyzing the data using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Tumor Immune Estimation Resource (TIMER) and CIBERSORT analyses indicated a substantial correlation between the CP expression and infiltration of immunocytes in the TME. Additionally, immune checkpoints and CP expression in gliomas showed a favorable correlation. According to these results, patients with glioma have better prognoses and levels of tumor immune cell infiltration when their CP expression is low. As a result, CP could be used as a probable therapeutic target for gliomas and potentially anticipate the effectiveness of immunotherapy.

15.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1358-1369, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587757

ABSTRACT

Mounting evidence demonstrates that hydrogen sulfide (H 2S) promotes anti-inflammatory molecules and inhibits pro-inflammatory cytokines in endothelial cells (ECs). This study aims to investigate the favorable action of H 2S on endothelial function in senescence by inhibiting the production of inflammatory molecules. Senescent ECs exhibit a reduction in H 2S, endothelial nitric oxide synthase (eNOS) and peroxisome proliferator-activated receptor δ (PPARδ), coupled with increased inflammatory molecules, sodium glucose transporter type 2 (SGLT2) and phosphorylation of STAT3, which could be reversed by the administration of a slow but sustained release agent of H 2S, GYY4137. Decreased production of eNOS and upregulated p-STAT3 and SGLT2 levels in senescent ECs are reversed by replenishment of the SGLT2 inhibitor EMPA and the PPARδ agonist GW501516. The PPARδ antagonist GSK0660 attenuates eNOS expression and increases the production of p-STAT3 and SGLT2. However, supplementation with GYY4137 has no beneficial effect on GSK0660-treated ECs. GYY4137, GW501516 and EMPA preserve endothelial-dependent relaxation (EDR) in D-gal-treated aortae, while GSK0660 destroys aortic relaxation even with GYY4137 supplementation. In summary, senescent ECs manifest aggravated the expressions of the inflammatory molecules SGLT2 and p-STAT3 and decreased the productions of PPARδ, eNOS and CSE. H 2S ameliorates endothelial dysfunction through the anti-inflammatory effect of the PPARδ/SGLT2/p-STAT3 signaling pathway in senescent ECs and may be a potential therapeutic target for anti-ageing treatment.


Subject(s)
Hydrogen Sulfide , PPAR delta , Humans , Endothelial Cells , Hydrogen Sulfide/pharmacology , Sodium-Glucose Transporter 2 , Inflammation/drug therapy , STAT3 Transcription Factor
16.
Sci Total Environ ; 898: 165551, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37454844

ABSTRACT

In China, wide variations exist not only among different provinces, but also inside provinces. Therefore, intensive policy adjustments are essential for promoting carbon neutral in China, which calls for a clear understanding of carbon emission disparities in each individual province. Based on panel data of 2001 county-level administrative areas from 2004 to 2017, we use Theil index and spatial regression models to measure contributions and distributions of intra-provincial carbon inequality, as well as effects of intra-provincial economic inequality on intra-provincial carbon inequality, in order to design provincial specific strategies considering carbon differentiations inside each province. Our main contributions are studying China's carbon inequality from intra- instead of inter-provincial perspectives and exploring spatial connections of carbon inequality, which has not been fully discussed in previous studies. The empirical results indicate that intra- rather than inter- provincial carbon inequality contributes the majority of China's overall carbon inequality. Intra-provincial inequality shows high levels of regional clustering and decrease from west to east, although their differences are smaller in 2017 than 2004, mainly because carbon inequality levels experience large declines in some central and western provinces. Low carbon inequality levels in eastern provinces are mainly attributed to very negative correlation between development levels and carbon intensity. Intra-provincial economic development inequality plays nonnegligible roles in intra-provincial carbon inequality in all provinces, although they are not the major driving factors in some provinces. There also exist positive spatial spillover effects of intra-provincial economic inequality on intra-provincial carbon inequality. We provide specific policy suggestions on key areas of carbon emission reductions and demand degree of economic transitions for each individual province and also evaluate effects of "common prosperity" measures, which have been frequently discussed recently, on intra-provincial carbon distributions.

17.
Materials (Basel) ; 16(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37445201

ABSTRACT

Fiber-reinforced silica aerogel blankets (FRABs) are an important high-temperature thermal insulation material for industry applications that have emerged in recent years. In order to better understand the performance evolution of FRABs at high temperatures, the effect of heat treatment at different temperatures on the performance of FRABs as well as their base material, hydrophobic silica aerogel powder and glass wool, was investigated. The property evolution of the hydrophobic silica aerogel powder showed two stages with an increase in thermal treatment temperatures. The skeleton structure of the aerogel remained unchanged, but the residual organic chemicals, such as hydrophobic groups, were decomposed when the heat treatment temperature was lower than 400 °C. Above 400 °C, the skeleton began to shrink with the increase in temperature, which led to an increase in thermal conductivity. The structure and room-temperature thermal conductivity of the glass wool blanket were less affected by a heat treatment temperature under 600 °C. Therefore, the performance degradation of FRABs at high temperatures is mainly due to the change in the aerogel powder. The insulation performance of the glass wool and FRAB at high temperatures was studied using a heating table which was designed to simulate working conditions. The energy savings of using FRABs instead of glass fiber were calculated and are discussed here.

18.
BMC Nurs ; 22(1): 240, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37454074

ABSTRACT

BACKGROUND: Psychological well-being (PWB) plays a vital role in successful adaptation to the Bachelor of Nursing journey and affects career development. However, there is little known about the functional and social processes associated with enhancing well-being specific to the subjective perspective of nursing students. AIM: To investigate how nursing students promote their psychological well-being to conceptualize thriving psychological well-being. METHOD: This qualitative study analyzed and reviewed a life grid and semi-structured in-depth interviews of 20 Chinese Nursing graduates by investigators and participants, following Charmaz's constructivist grounded theory. The constant comparative method was used to analyze data. This study took place between 2020 and 2022. RESULTS: All participants experienced fluctuations in psychological well-being. This study identified a new understanding of how nursing students enhance their psychological well-being. Thriving awareness was co-constructed as the core category and based on the relationship with a supportive environment, the thriving psychological well-being of nursing students is conceptualized. CONCLUSIONS: It is imperative to enhance the psychological counseling and support for nursing students during their clinical placements, during the period just entering university as well as after repeated outbreaks of COVID-19. Nursing educators and administrators could develop appropriate educational programs and interventions based on the theoretical model-Thriving psychological well-being.

19.
Front Physiol ; 14: 1166246, 2023.
Article in English | MEDLINE | ID: mdl-37064887

ABSTRACT

Introduction: Melatonin (5-methoxy-N-acetyl-tryptamine) is a circadian hormone synthesized and secreted by the pineal gland. In addition to regulating circadian rhythms of many physiological functions, melatonin is involved in regulating autonomic nervous function and blood pressure. Hypothalamus paraventricular nucleus (PVN), receiving melatonin projections from the superchiasmatic nucleus, is a critical brain region to regulate neuroendocrine and cardiovascular function. Here, we determined the synaptic mechanisms involved in the effect of melatonin on the sympathetic outflow and blood pressure. Methods and Results: Microinjection of melatonin into the PVN produced a depressor effect and decreased renal sympathetic nerve activity (RSNA). While microinjection of luzindole, a non-selective melatonin receptor antagonist, into the PVN did not change melatonin-induced sympathoinhibition, GABAA receptor antagonist bicuculline eliminated melatonin-induced sympathoinhibition. Furthermore, melatonin decreased firing rate of retrogradely labeled PVN neurons which project to the rostral ventrolateral medulla (RVLM), an effect was not altered by luzindole but eliminated by bicuculline. Melatonin significantly increased the amplitude of spontaneous and evoked GABAergic inhibitory synaptic currents, as well as GABA-induced currents. Conclusion: These data suggest that melatonin in the PVN suppresses sympathetic vasomotor tone through enhancing GABAA receptor activity. This study provides novel information for understanding the cellular mechanisms involved in the effect of melatonin on regulating blood pressure and sympathetic output.

20.
J Cereb Blood Flow Metab ; 43(8): 1267-1284, 2023 08.
Article in English | MEDLINE | ID: mdl-37017434

ABSTRACT

Social isolation (ISO) is associated with an increased risk and poor outcomes of ischemic stroke. However, the roles and mechanisms of ISO in stroke-associated pneumonia (SAP) remain unclear. Adult male mice were single- or pair-housed with an ovariectomized female mouse and then subjected to transient middle cerebral artery occlusion. Isolated mice were treated with the natriuretic peptide receptor A antagonist A71915 or anti-gamma-delta (γδ) TCR monoclonal antibody, whereas pair-housed mice were treated with recombinant human atrial natriuretic peptide (rhANP). Subdiaphragmatic vagotomy (SDV) was performed 14 days before single- or pair-housed conditions. We found that ISO significantly worsened brain and lung injuries relative to pair housing, which was partially mediated by elevated interleukin (IL)-17A levels and the migration of small intestine-derived inflammatory γδ T-cells into the brain and lung. However, rhANP treatment or SDV could ameliorate ISO-exacerbated post-stroke brain and lung damage by reducing IL-17A levels and inhibiting the migration of inflammatory γδ T-cells into the brain and lung. Our results suggest that rhANP mitigated ISO-induced exacerbation of SAP and ischemic cerebral injury by inhibiting small intestine-derived γδ T-cell migration into the lung and brain, which could be mediated by the subdiaphragmatic vagus nerve.


Subject(s)
Pneumonia , Stroke , Male , Female , Mice , Humans , Animals , T-Lymphocytes , Brain/metabolism , Stroke/metabolism , Pneumonia/etiology , Pneumonia/metabolism , Lung , Intestine, Small , Social Isolation , Cell Movement , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL