Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Research (Wash D C) ; 6: 0157, 2023.
Article in English | MEDLINE | ID: mdl-37292515

ABSTRACT

Flexible full-textile pressure sensor is able to integrate with clothing directly, which has drawn extensive attention from scholars recently. But the realization of flexible full-textile pressure sensor with high sensitivity, wide detection range, and long working life remains challenge. Complex recognition tasks necessitate intricate sensor arrays that require extensive data processing and are susceptible to damage. The human skin is capable of interpreting tactile signals, such as sliding, by encoding pressure changes and performing complex perceptual tasks. Inspired by the skin, we have developed a simple dip-and-dry approach to fabricate a full-textile pressure sensor with signal transmission layers, protective layers, and sensing layers. The sensor achieves high sensitivity (2.16 kPa-1), ultrawide detection range (0 to 155.485 kPa), impressive mechanical stability of 1 million loading/unloading cycles without fatigue, and low material cost. The signal transmission layers that collect local signals enable real-world complicated task recognition through one single sensor. We developed an artificial Internet of Things system utilizing a single sensor, which successfully achieved high accuracy in 4 tasks, including handwriting digit recognition and human activity recognition. The results demonstrate that skin-inspired full-textile sensor paves a promising route toward the development of electronic textiles with important potential in real-world applications, including human-machine interaction and human activity detection.

2.
J Immunol Methods ; 497: 113100, 2021 10.
Article in English | MEDLINE | ID: mdl-34270976

ABSTRACT

In recent years, adoptive cell therapy of immune effector cells, such as chimeric antigen receptor-T (CAR-T) cells, natural killer (NK) cells, and epitope-specific cytotoxic T lymphocyte (CTL) cells have been employed in clinical trials. In addition, CD19 CAR-T cells have been approved by the FDA for treatment of non-Hodgkin lymphoma and diffuse large B-cell lymphoma. In this context, it is vital to detect cellular cytotoxicity and monitor the quality of ex vivo expanded immune cells before product release and patient infusion. Target cells could proliferate in parallel with effector cells during the cytotoxicity assay, making it difficult to estimate the death ratio using conventional approaches. Meanwhile, non-specific dyes or non-homogeneous biomarkers for target cells may interfere with the final readout post addition of effector cells. Here, we modified a component of the coincubation medium to suppress the spontaneous release of bis(acetoxymethyl)2,2':6',2″-terpyridine-6,6″-dicarboxylate and sustained the window at a stable range (~70%). Further, the optimized Eu-TDA method presented reliable outcomes compared with lactate dehydrogenase detection and was compatible with cytotoxicity tests for NK cells and specific CTLs. Finally, the reported assay can accurately detect death of target cells depending on the amount of hydrophilic complex and can be reliably applied in quality control and cell activity evaluation tests on co-suspended effector and target cells. SUMMARY: A medium component for cellular coincubations (and associated protocols) have been optimized and validated for cytotoxicity assays, which can reliably evaluate the potency of engineered CD19 CAR-T cells, NK cells, and specific CTLs. In particular, the reported method can be applied widely in routine assays for bi-suspended effector and target cells with a stable window.


Subject(s)
Cytotoxicity, Immunologic , Immunohistochemistry , Immunotherapy, Adoptive , Killer Cells, Natural/transplantation , Leukemia, Erythroblastic, Acute/therapy , T-Lymphocytes, Cytotoxic/transplantation , Antigens, CD19/genetics , Antigens, CD19/immunology , Cell Survival , Coculture Techniques , Epitopes , Flow Cytometry , Humans , K562 Cells , Killer Cells, Natural/immunology , Leukemia, Erythroblastic, Acute/immunology , Leukemia, Erythroblastic, Acute/pathology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL