Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1699-1704, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621954

ABSTRACT

The quality of traditional Chinese medicine preparations is directly related to the safety of patients. Among the various factors, the process and corresponding critical equipment are critical factors influencing the quality of the preparations. To improve the quality of traditional Chinese medicine preparations, this article summarizes and analyzes the problems in the process links and corresponding critical equipment in the manufacturing process of traditional Chinese medicine preparations. Furthermore, a critical quality attribute evaluation system is established based on safety and effectiveness combined with the drug properties, preparation process, and preparation characteristics, providing a basis for the process and equipment improvements aimed at quality enhancement.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Quality Control , Commerce
3.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1196-1205, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621966

ABSTRACT

Processing of Chinese medicinal materials is an important part in the Chinese medicine heritage, and the temperature control in the processing has a direct impact on the quality and efficacy of traditional Chinese medicines. However, the processing of Chinese medicinal materials has the problems of subjective temperature judgement, determination of the end point based on experience, unclear processing mechanism, unstable quality of products, and inconsistent processing standards. The temperature control in the processing is reflected in the appearance and internal quality of Chinese medicinal materials. The theory of quality evaluation through morphological identification is developed based on the comprehensive evaluation of the shape, color, taste, and components, which is associated with the temperature control in the processing. To solve the problems above, this paper puts forward the following solutions. The first is literature mining. By review of the ancient medical works and pharmaceutical experience, the temperature control in processing and the evolution of processing methods can be revealed. Second, according to the ancient method, the processing principle can be explored, on the basis of which the processing technology can be innovated. Third, the standard operating procedure(SOP) should be established to quantify the fire temperature, providing a theoretical basis for the formulation of Chinese medicinal material processing standards. Moreover, it provides a basis for improving the quality of processed products and increasing the safety and effectiveness of traditional Chinese medicines.


Subject(s)
Drugs, Chinese Herbal , Humans , Temperature , Medicine, Chinese Traditional , Reference Standards , Technology
4.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38492791

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Subject(s)
Rosa , Rats , Animals , Serotonin/metabolism , Iran , Molecular Docking Simulation , Rats, Sprague-Dawley , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/metabolism , Signal Transduction , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Synapses/metabolism , Stress, Psychological/drug therapy , Hippocampus , Disease Models, Animal
5.
Int J Surg ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502850

ABSTRACT

AIM: Computer-aided drug design (CADD) is a drug design technique for computing ligand‒receptor interactions and is involved in various stages of drug development. To better grasp the frontiers and hotspots of CADD, we conducted a review analysis through bibliometrics. METHODS: A systematic review of studies published between 2000 and July 20, 2023 was conducted following the PRISMA guidelines. Literature on CADD was selected from the Web of Science Core Collection. General information, publications, output trends, countries/regions, institutions, journals, keywords, and influential authors were visually analysed using software such as Excel, VOSviewer, RStudio, and CiteSpace. RESULTS: A total of 2,031 publications were included. These publications primarily originated from 99 countries or regions, led by the U.S. and China. Among the contributors, MacKerell AD had the highest number of articles and greatest influence. The Journal of Medicinal Chemistry was the most cited journal, whereas the Journal of Chemical Information and Modeling had the highest number of publications. CONCLUSIONS: Influential authors in the field were identified. Current research shows active collaboration between countries, institutions, and companies. CADD technologies such as homology modelling, pharmacophore modelling, quantitative conformational relationships, molecular docking, molecular dynamics simulation, binding free energy prediction, and high-throughput virtual screening can effectively improve the efficiency of new drug discovery. Artificial intelligence-assisted drug design and screening based on CADD represent key topics direction for future development. Furthermore, this paper will be helpful for better understanding the frontiers and hotspots of CADD.

6.
J Ethnopharmacol ; 325: 117776, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38307354

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Honeysuckle, first documented in the Miscellaneous Records of Famous Physicians, is known for its ability to expel toxin and cool blood to stop diarrhea. Modern pharmacological research has shown that honeysuckle has anti-inflammatory, antibacterial, antioxidant, and immune-regulating effects and is widely used in clinical practice. However, the effect of honeysuckle on ulcerative colitis (UC) is still not fully understood, which presents challenges for quality control, research and development. AIM OF THE STUDY: This study aimed to determine the anti-inflammatory properties and mechanism of action of aqueous extracts of honeysuckle in the treatment of ulcerative colitis. MATERIALS AND METHODS: The dextran sodium sulfate (DSS) induced-ulcerative colitis mouse model was established, and the mice were divided into five groups: the control group, the model group, and the low, medium, and high dose honeysuckle treatment groups. RESULTS: All dose groups of honeysuckle were found to significantly reduce IL-6 and TNF-α levels and regulate DSS-induced mRNA levels of CLDN4, COX-2, IL-6, INOS, MUC-2, occludin and NLRP3. The high-dose group displayed the most effective inhibition, and a differentially expressed mRNA detection indicated abnormal mRNA expression. The 16sRNA sequencing revealed that the honeysuckle was able to significantly upregulate the abundance of beneficial bacteria and downregulate the abundance of harmful bacteria. The study of short-chain fatty acids revealed that the levels of acetic, propionic, isobutyric, valeric and isovaleric acids were significantly increased after administering honeysuckle at medium and high doses. CONCLUSION: Honeysuckle reduces the production of pro-inflammatory cytokines, increases the content of short-chain fatty acids and restores the intestinal ecological balance, resulting in better therapeutic effects.


Subject(s)
Colitis, Ulcerative , Colitis , Lonicera , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon , Interleukin-6/genetics , Interleukin-6/metabolism , Anti-Inflammatory Agents/adverse effects , RNA, Messenger/metabolism , Fatty Acids, Volatile/metabolism , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Disease Models, Animal , Colitis/drug therapy
7.
Zhongguo Zhong Yao Za Zhi ; 49(2): 285-293, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403304

ABSTRACT

The 21st century is a highly information-driven era, and traditional Chinese medicine(TCM) pharmacy is also moving towards digitization and informatization. New technologies such as artificial intelligence and big data with information technology as the core are being integrated into various aspects of drug research, manufacturing, evaluation, and application, promoting interaction between these stages and improving the quality and efficiency of TCM preparations. This, in turn, provides better healthcare services to the general population. The deep integration of emerging technologies such as artificial intelligence, big data, and cloud computing with the TCM pharmaceutical industry will innovate TCM pharmaceutical technology, accelerate the research and industrialization process of TCM pharmacy, provide cutting-edge technological support to the global scientific community, boost the efficiency of the TCM industry, and promote economic and social development. Drawing from recent developments in TCM pharmacy in China, this paper discussed the current research status and future trends in digital TCM pharmacy, aiming to provide a reference for future research in this field.


Subject(s)
Drugs, Chinese Herbal , Pharmacy , Humans , Medicine, Chinese Traditional , Artificial Intelligence , Technology, Pharmaceutical , Drug Industry
8.
J Sci Food Agric ; 104(7): 4004-4014, 2024 May.
Article in English | MEDLINE | ID: mdl-38252708

ABSTRACT

BACKGROUND: Licorice extract is an important raw material for food additives and medicine. The quality of licorice extract is dictated by the drying process. The commonly used drying methods of licorice extract are not efficient in obtaining high-quality products so alternative techniques need to be developed and researched. In this study, ultrasound-assisted vacuum drying (UAVD) was first utilized to improve drying efficiency and produce a higher-quality product. The changes in water mobility of licorice extract during drying were characterized using low-field nuclear magnetic resonance. In addition, the effects of ultrasonic power on the drying dynamics, the contents of liquiritin and glycyrrhizic acid, the antioxidant capacity and the microstructure formation of licorice extract during the whole drying process were investigated. RESULTS: The drying times for licorice extract to reach equilibrium moisture content were reduced by 9.09-69.70% with UAVD at 40-200 W compared with that without ultrasonic treatment (0 W). Moreover, the proportions of bound water and semi-bound water in fresh concentrate were 3.75% and 96.25%. It was also found that high ultrasonic power promoted the flow of water and the formation of porous structure in licorice extract, which led to the improvement of drying efficiency. The contents of liquiritin (2.444%) and glycyrrhizic acid (6.514%) were retained to a large degree in the dried product at an ultrasonic power of 80 W. The DPPH inhibition rate of UAVD samples with different ultrasonic powers ranged from 84.07 ± 0.46% to 90.65 ± 0.22%. CONCLUSION: UAVD has the advantages of high efficiency and low energy consumption, which may be an alternative technology for vacuum drying widely used in industry. © 2024 Society of Chemical Industry.


Subject(s)
Glycyrrhiza , Glycyrrhizic Acid , Plant Extracts , Ultrasonics , Vacuum , Desiccation/methods , Kinetics , Water
9.
Article in English | MEDLINE | ID: mdl-38193238

ABSTRACT

This paper extends a text classification method utilizing natural language processing (NLP) into the field of traditional Chinese medicine (TCM) compound decoction to effectively and scientifically extend the TCM compound decoction duration. Specifically, a TCM compound decoction duration classification named TCM-TextCNN is proposed to fuse multi-dimensional herb features and improve TextCNN. Indeed, first, we utilize word vector technology to construct feature vectors of herb names and medicinal parts, aiming to describe the herb characteristics comprehensively. Second, considering the impact of different herb features on the decoction duration, we use an improved Term Frequency-Inverse Word Frequency (TF-IWF) algorithm to weigh the feature vectors of herb names and medicinal parts. These weighted feature vectors are then concatenated to obtain a multi-dimensional herb feature vector, allowing for a more comprehensive representation. Finally, the feature vector is input into the improved TextCNN, which uses k-max pooling to reduce information loss rather than max pooling. Three fully connected layers are added to generate higher-level feature representations, followed by softmax to obtain the final results. Experimental results on a dataset of TCM compound decoction duration demonstrate that TCM-TextCNN improves accuracy, recall, and F1 score by 5.31%, 5.63%, and 5.22%, respectively, compared to methods solely rely on herb name features, thereby confirming our method's effectiveness in classifying TCM compound decoction duration.

10.
J Pharm Sci ; 113(3): 699-710, 2024 03.
Article in English | MEDLINE | ID: mdl-37659720

ABSTRACT

The oral bioavailability of poorly soluble drugs has always been the focus of pharmaceutical researchers. We innovatively combined nanocrystal technology and solid dispersion technology to prepare novel nanocrystalline solid dispersions (NCSDs), which enable both the solidification and redispersion of nanocrystals, offering a promising new pathway for oral delivery of insoluble Chinese medicine ingredients. The rubusoside (Rub) was first used as the multifunctional stabilizer of novel apigenin nanocrystal-based solid dispersions (AP-NSD), improving the in vitro solubilization rate of the insoluble drug apigenin(AP). AP-NSD has been produced using a combination of homogenisation and spray-drying technology. The effects of stabilizer type and concentration on AP nanosuspensions (AP-NS) particles, span, and zeta potential were studied. And the effects of different types of protective agents on the yield and redispersibility of AP-NSD were also studied. Furthermore, AP-NSD was characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). Solubility was used to assess the in vitro dissolution of AP-NSD relative to APIs and amorphous solid dispersions (AP-ASD), and AP-ASD was prepared by the solvent method. The results showed that 20% Rub stabilized AP-NSD exhibited high drug-loading and good redispersibility and stability, and higher in vitro dissolution rate, which may be related to the presence of Rub on surface of drug. Therefore provides a natural and safe option for the development of formulations for insoluble drugs.


Subject(s)
Apigenin , Diterpenes, Kaurane , Glucosides , Nanoparticles , Pharmaceutical Preparations , Drug Compounding/methods , Excipients , X-Ray Diffraction , Nanoparticles/chemistry , Solubility , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared
11.
Int Immunopharmacol ; 127: 111352, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38091833

ABSTRACT

BACKGROUND: Neoadjuvant chemotherapy (NAC) is a frequently intervention for patients with locally advanced gastric cancer (GC). Nevertheless, its impact on the tumor immune microenvironment remains unclear. METHODS: We used immunohistochemistry to identify T-cell subpopulations, tumor-associated neutrophils (TANs), and tumor-associated macrophages (TAMs) in the GC microenvironment (GCME) among paired samples (pre-chemotherapy and post-chemotherapy) from 48 NAC-treated patients. Multiplex immunofluorescence (mIF) was performed to assess immune biomarkers, including CK, CD4, CD8, FOXP3, PD1, PD-L1, CD163, CD86, myeloperoxidase and Arginase-1 in paired samples from 6 GC patients whose response to NAC were rigorously defined. RESULTS: NAC was intricately linked to enhanced CD8+:CD4+ ratio, reduced CD163+ M2-like macrophages, augmented CD86+ M1: CD163+ M2-like macrophage ratio, and diminished FOXP3+ regulatory T cells (T-regs) and TANs density. Based on mIF, PD1+CD8+T-cells, FOXP3+T-regs, PD-L1+ TANs, and CD163+ M2-like macrophages exhibited marked reduction and greater co-localization with tumor cells following NAC. The pre-NAC FOXP3+ T-regs and CD163+ M2-like macrophages content was substantially elevated in the response cohort, whereas, the post-NAC CD8+:CD4+ and CD86+ M1: CD163+ M2-like macrophage ratios were intricately linked to the tumor pathologic response. We observed greater CD163+ M2-like macrophages and tumor cells co-localization following NAC, which was correlated with tumor pathologic response. Lastly, multivariate analysis revealed that post-NAC CD8+:CD4+ and CD86+ M1: CD163+ M2-like macrophage ratios were stand-alone indicators of positive patient prognosis. CONCLUSIONS: NAC converts the GCME to an anti-tumorigenic state that is conducive to enhanced patient outcome. These finding can significantly benefit the future planning of highly efficacious and personalized GC immunotherapy.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , B7-H1 Antigen , Neoadjuvant Therapy , Biomarkers , Prognosis , Carcinogenesis , Forkhead Transcription Factors , Tumor Microenvironment
12.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6011-6020, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114207

ABSTRACT

Spray drying technology is one of the most commonly used unit operations in the production of traditional Chinese medicine(TCM) preparations, offering advantages such as short drying time and uniform product quality. However, due to the properties of TCM extracts, such as high viscosity, strong hygroscopicity, and poor flowability, there is limited scope to solve the problems of wall adhesion and clumping in spray drying from the macroscopic perspective of pharmaceutical production. Therefore, it has become a trend to study and optimize the spray drying process from the microscopic point of view by investigating single droplet evaporation behavior. Based on the reaction engineering approach(REA), the single droplet drying system, as a novel method for studying droplets, collects parameter data on individual TCM droplets during the drying process and uses the REA to process the data and establish predictive models. This approach is crucial for understanding the mechanism of TCM spray drying. This paper summarized and analyzed the cha-racteristics of various single droplet systems, the application of REA in single droplet drying systems, and its significance in optimizing the process, predicting drying states, and shortening the development cycle in the field of TCM spray drying, and looked ahead to the prospects of this method, including the introduction of new parameters and imaging techniques, aiming to provide a reference for further research in the field of TCM spray drying.


Subject(s)
Medicine, Chinese Traditional , Spray Drying , Desiccation/methods , Temperature , Technology
13.
Acta Pharm Sin B ; 13(11): 4607-4620, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37969734

ABSTRACT

Lung inflammation is an essential inducer of various diseases and is closely related to pulmonary-endothelium dysfunction. Herein, we propose a pulmonary endothelium-targeted codelivery system of anti-inflammatory indomethacin (IND) and antioxidant superoxide dismutase (SOD) by assembling the biopharmaceutical SOD onto the "vector" of rod-like pure IND crystals, followed by coating with anti-ICAM-1 antibody (Ab) for targeting endothelial cells. The codelivery system has a 237 nm diameter in length and extremely high drug loading of 39% IND and 2.3% SOD. Pharmacokinetics and biodistribution studies demonstrate the extended blood circulation and the strong pulmonary accumulation of the system after intravenous injection in the lipopolysaccharide (LPS)-induced inflammatory murine model. Particularly, the system allows a robust capacity to target pulmonary endothelium mostly due to the rod-shape and Ab coating effect. In vitro, the preparation shows the synergistic anti-inflammatory and antioxidant effects in LPS-activated endothelial cells. In vivo, the preparation exhibits superior pharmacodynamic efficacy revealed by significantly downregulating the inflammatory/oxidative stress markers, such as TNF-α, IL-6, COX-2, and reactive oxygen species (ROS), in the lungs. In conclusion, the codelivery system based on rod-like pure crystals could well target the pulmonary endothelium and effectively alleviate lung inflammation. The study offers a promising approach to combat pulmonary endothelium-associated diseases.

14.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4536-4544, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802880

ABSTRACT

In recent years, continuous manufacturing technology has attracted considerable attention in the pharmaceutical industry. This technology is highly sought after for its significant advantages in cost reduction, increased efficiency, and improved productivity, making it a growing trend in the future of the pharmaceutical industry. Compared to traditional batch production methods, continuous manufacturing technology features real-time control and environmentally friendly intelligence, enabling pharmaceutical companies to produce drugs more efficiently. However, the adoption of continuous manufacturing technology has been slow in the field of traditional Chinese medicine(TCM) pharmaceuticals. On the one hand, there is insufficient research on continuous manufacturing equipment and technology that align with the characteristics of TCM preparations. On the other hand, the scarcity of talent with diverse expertise hampers its development. Therefore, in order to promote the modernization and upgrading of the TCM pharmaceutical industry, this article combined the current development status of the TCM industry to outline the development status and regulatory requirements of continuous manufacturing technology. At the same time, it analyzed the problems with existing TCM manufacturing models and explored the prospects and challenges of applying continuous manufacturing technology in the field of TCM pharmaceuticals. The analysis focused on continuous manufacturing control strategies, technical tools, and pharmaceutical equipment, aiming to provide targeted recommendations to drive the development of the TCM pharmaceutical industry.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Quality Control , Drug Industry , Technology, Pharmaceutical/methods , Pharmaceutical Preparations
15.
Front Cell Infect Microbiol ; 13: 1221433, 2023.
Article in English | MEDLINE | ID: mdl-37662018

ABSTRACT

Objective: The present study aims to investigate the effect of Helicobacter pylori (Hp) infection on gastric mucosal microbiota in patients with chronic gastritis. Methods: Here recruited a population of 193 patients with both chronic gastritis and positive rapid urease, including 124 patients with chronic atrophic gastritis (CAG) and 69 patients with chronic non-atrophic gastritis (nCAG). Immunoblotting was used to detect four serum Hp antibodies (UreA, UreB, VacA and CagA) to determine the types of virulent Hp-I and avirulent Hp-II infections. Gastric microbiota was profiled by 16S rRNA gene V3-V4 region, and R software was used to present the relationship between the microbial characteristics and the type of Hp infection. Results: In the stomach of patients with Hp-positive gastritis, the dominant gastric bacterial genera included Ralstonia (23.94%), Helicobacter (20.28%), Pseudonocardia (9.99%), Mesorhizobium (9.21%), Bradyrhizobium (5.05%), and Labrys (4.75%). The proportion of Hp-I infection was significantly higher in CAG patients (91.1%) than in nCAG patients (71.0%) (P < 0.001). The gastric microbiota richness index (observed OTUs, Chao) was significantly lower in CAG patients than in nCAG patients (P <0.05). Compared with avirulent Hp-II infection, virulent Hp-I infection significantly decreased the Shannon index in CAG patients (P <0.05). In nCAG patients, Hp-I infected patients had lower abundances of several dominant gastric bacteria (Aliidiomarina, Reyranella, Halomonas, Pseudomonas, Acidovorax) than Hp-II infected patients. Meanwhile, in CAG patients, Hp-I infected patients occupied lower abundances of several dominant oral bacteria (Neisseria, Staphylococcus and Haemophilus) than Hp-II infected patients. In addition, bile reflux significantly promoted the colonization of dominant oral microbiota (Veillonella, Prevotella 7 and Rothia) in the stomach of CAG patients. There was no significant symbiotic relationship between Helicobacter bacteria and non-Helicobacter bacteria in the stomach of nCAG patients, while Helicobacter bacteria distinctly linked with the non-Helicobacter bacteria (Pseudolabrys, Ralstonia, Bradyrhizobium, Mesorhizobium and Variovorax) in CAG patients. Conclusions: Virulent Hp infection alters the gastric microbiota, reduces microbial diversity, and enhances the symbiotic relationship between the Helicobacter bacteria and non-Helicobacter bacteria in patients with chronic gastritis. The data provides new evidence for treating Hp infection by improving the gastric microbiota.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , RNA, Ribosomal, 16S/genetics
16.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3440-3447, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37474981

ABSTRACT

With the rapid development of computer technology, numerical simulation has gradually become an important method to study drying process and improve drying equipment. Using computer to simulate the drying process of traditional Chinese medicine(TCM) is characterized by intuitiveness, scientificity, and low cost, which serves as an auxiliary means for technical innovation in TCM drying. This paper summarizes the theories of different drying methods and the research status of numerical simulation in drying, introduces the modeling methods and software of numerical simulation, and expounds the significance of numerical simulation modeling in shortening the research and development cycle, improving drying equipment, and optimizing drying parameters. However, the current numerical simulation method for drying process has problems, such as low accuracy, lack of quantitative indicators for the control of simulation results on the process, and insufficient in-depth research on the mechanism of drug quality changes. Furthermore, this paper put forward the application prospect of numerical simulation in TCM drying, providing reference for the further study of numerical simulation in this field.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Desiccation
17.
Front Pharmacol ; 14: 1196137, 2023.
Article in English | MEDLINE | ID: mdl-37284321

ABSTRACT

Asarum essential oil (AEO) has been shown to have good pharmacological activities for the anti-inflammatory and analgesic effects, but increasing the dose may cause toxicity. Therefore, we studied the toxic and pharmacodynamic components of AEO by molecular distillation (MD). Anti-inflammatory activity was assessed using RAW264.7 cells. Neurotoxicity was assessed in PC12 cells and the overall toxicity of AEO was evaluated in the mouse acute toxicity assay. The results showed that AEO is primarily composed of safrole, methyl eugenol, and 3,5-dimethoxytoluene. After MD, three fractions were obtained and contained different proportions of volatile compounds relative to the original oil. The heavy fraction had high concentrations of safrole and methyl eugenol, while the light fraction contained high concentrations of α-pinene and ß- pinene. The original oil and all three fractions exhibited anti-inflammatory effects, but the light fraction demonstrated more excellent anti-inflammatory activity than the other fractions. Asarum virgin oil and MD products are all neurotoxic. The exposure of PC12 cells to high concentrations of AEO resulted in abnormal nuclei, an increased number of apoptotic cells, increased ROS formation, and decreased SOD levels. Moreover, the results of acute toxicity tests in mice revealed that the light fractions were less toxic than virgin oils and other fractions. In summary, the data suggest that the MD technology enables the enrichment and separation of essential oil components and contributes to the selection of safe concentrations of AEO.

18.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1800-1807, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282954

ABSTRACT

In recent years, the use of active substances as excipients or as substitutes for other excipients in the design of modern drug delivery systems has received widespread attention, which has promoted the development of the theory of unification of medicines and excipients in the design of traditional Chinese medicine(TCM) preparations. Adopting the theory of unification of medicines and excipients to design drug delivery systems can reduce the use of excipients and thus the cost of preparations, reduce drug toxicity, increase drug solubility and biocompatibility, enhance synergistic effect, and realize targeted delivery and simultaneous delivery of multiple components. However, the research on the application of this theory in the modern drug delivery system of TCM preparations is still insufficient, with few relevant articles. In addition, the TCM active substances that can be used as the excipients remain to be catalogued. In this paper, we review the types and applications of the drug delivery systems with TCM active substances as excipients and describe their common construction methods and mechanisms, aiming to provide references for the in-depth research on the modern drug delivery systems for TCM preparations.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Excipients , Nanomedicine , Pharmaceutical Preparations
19.
Molecules ; 28(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175307

ABSTRACT

Moslae herba is considered to be a functional food ingredient or nutraceutical due to its rich bioactive components. The present research was carried out to investigate the effects of different temperatures (40 °C, 50 °C and 60 °C) on the drying characteristics, textural properties, bioactive compounds, flavor changes and final quality attributes of Moslae herba during the hot air-drying process. The results showed that the Midilli model could effectively simulate the drying process of Moslae herba. The effective moisture diffusivity ranged from 3.14 × 10-5 m2/s to 7.39 × 10-5 m2/s, and the activation energy was estimated to be 37.29 kJ/mol. Additionally, scanning electron microscopy (SEM) images of Moslae herba samples showed the shrinkage of the underlying epidermal layers and glandular trichomes. In total, 23 volatile compounds were detected in Moslae herba. Among them, the content of thymol increased from 28.29% in fresh samples to 56.75%, 55.86% and 55.62% in samples dried at temperatures of 40 °C, 50 °C and 60 °C, respectively, while the other two components, p-cymene and γ-terpinene, decreased with an increase in the temperature. Furthermore, both radar fingerprinting and principal component analysis (PCA) of the electronic nose (E-nose) showed that the flavor substances significantly altered during the drying process. Eventually, drying Moslae herba at 60 °C positively affected the retention of total phenolics, total flavonoids and the antioxidant capacity as compared with drying at 40 °C and 50 °C. The overall results elucidated that drying Moslae herba at the temperature of 60 °C efficiently enhanced the final quality by significantly reducing the drying time and maintaining the bioactive compounds.


Subject(s)
Antioxidants , Desiccation , Kinetics , Desiccation/methods , Antioxidants/pharmacology , Temperature , Phenols/analysis
20.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1194-1202, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005803

ABSTRACT

Ionic liquids(ILs) are salts composed entirely of anions and cations in a liquid state at or near room temperature, which have a variety of good physicochemical properties such as low volatility and high stability. This paper mainly reviewed the research overview of ILs in the application of traditional Chinese medicine(TCM) volatile oil preparation technology. Firstly, it briefly introduced the application of TCM volatile oil preparation technology and composition classification and physicochemical properties of ILs, and then summarized the application of ILs in the extraction, separation, analysis, and preparation of TCM volatile oil. Finally, the problems and challenges of ILs in the application of TCM volatile oil were explained, and the application of ILs in TCM volatile oil in the future was prospected.


Subject(s)
Biological Products , Ionic Liquids , Oils, Volatile , Cations , Ionic Liquids/chemistry , Medicine, Chinese Traditional , Oils, Volatile/analysis , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...