Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cell Mol Life Sci ; 80(12): 377, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38010450

ABSTRACT

Although brown adipose tissue (BAT) has historically been viewed as a major site for energy dissipation through thermogenesis, its endocrine function has been increasingly recognized. However, the circulating factors in BAT that play a key role in controlling systemic energy homeostasis remain largely unexplored. Here, we performed a peptidomic analysis to profile the extracellular peptides released from human brown adipocytes upon exposure to thermogenic stimuli. Specifically, we identified a secreted peptide that modulates adipocyte thermogenesis in a cell-autonomous manner, and we named it BATSP1. BATSP1 promoted BAT thermogenesis and induced browning of white adipose tissue in vivo, leading to increased energy expenditure under cold stress. BATSP1 treatment in mice prevented high-fat diet-induced obesity and improved glucose tolerance and insulin resistance. Mechanistically, BATSP1 facilitated the nucleocytoplasmic shuttling of forkhead transcription factor 1 (FOXO1) and released its transcriptional inhibition of uncoupling protein 1 (UCP1). Overall, we provide a comprehensive analysis of the human brown adipocyte extracellular peptidome following acute forskolin (FSK) stimulation and identify BATSP1 as a novel regulator of thermogenesis that may offer a potential approach for obesity treatment.


Subject(s)
Adipose Tissue, Brown , Obesity , Mice , Humans , Animals , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Adipocytes, Brown/metabolism , Adipose Tissue, White/metabolism , Peptides/pharmacology , Peptides/metabolism , Thermogenesis/physiology , Mice, Inbred C57BL
2.
Materials (Basel) ; 16(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36984254

ABSTRACT

In this work, a series of multicomponent alloys (CoCrFeNi, CoCrNi, and CoNiV) were laser welded with 304 stainless steel (304ss), and detailed comparisons on microstructural characteristics and mechanical properties were conducted for dissimilar laser welded joints. It is revealed that all of the dissimilar laser welded samples possessed defect-free joints and the corresponding fusion zone consisting of fcc single-phase showed homogeneous element distribution accompanied by a narrow element gradient in the vicinity of the fusion zone boundary. After laser welding with identical welding parameters, equiaxed grain was observed on the side of multicomponent alloy, while coarse columnar grain was obtained on the side of 304ss. Especially, the columnar grains of the fusion zone on the side of 304ss disclosed preferential <001> growth direction in the CoCrFeNi/304ss and CoCrNi/304ss welded joints. Furthermore, all of the dissimilar laser welded joints were fractured in the fusion zone, attributing to the drastic loss of strength in the fusion zone with coarsened grain. It is worth noting that a special lamellar structure that merged by dimples was found in the fracture surface of the CoNiV/304ss joint, closely related to the existence of the V-enriched region. Finally, a high strength-ductile synergy can be achieved by laser welding CoNiV alloy to 304ss, which showed a yield strength of 338 MPa, ultimate tensile strength of 686 MPa, and total elongation of 28.9%. These excellent mechanical properties prevailed in the potential of a CoNiV/304ss laser welded joint to be applied as a structural material.

3.
Lancet Reg Health West Pac ; 29: 100586, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36120090

ABSTRACT

Background: BNT162b2, an mRNA vaccine against COVID-19, is being utilised worldwide, but immunogenicity and safety data in Chinese individuals are limited. Methods: This phase 2, randomised, double-blind, placebo-controlled trial included healthy or medically stable individuals aged 18-85 years enrolled at two clinical sites in China. Participants were stratified by age (≤55 or >55 years) and randomly assigned (3:1) by an independent randomisation professional to receive two doses of intramuscular BNT162b2 30 µg or placebo, administered 21 days apart. Study participants, study personnel, investigators, statisticians, and the sponsor's study management team were blinded to treatment assignment. Primary immunogenicity endpoints were the geometric mean titers (GMTs) of neutralising antibodies to live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seroconversion rates (SCR) 1 month after the second dose. Safety assessments included reactogenicity within 14 days of vaccination, adverse events (AEs), and clinical laboratory parameters. Randomised participants who received at least one dose were included in the efficacy and safety analyses on a complete case basis (incomplete/missing data not imputed). Results up to 6 months after the second dose are reported. Findings: Overall, 959 participants (all of Han ethnicity) who were recruited between December 5th, 2020 and January 9th, 2021 received at least one injection (BNT162b2, n=720; placebo, n=239). At 1 month after the second dose, the 50% neutralising antibody GMT was 294.4 (95% CI; 281.1-308.4) in the BNT162b2 group and 5.0 (95% CI; 5.0-5.0) in the placebo group. SCRs were 99.7% (95% CI; 99.0%-100.0%) and 0% (95% CI; 0.0%-1.5%), respectively (p<0.0001 vs placebo). Although the GMT of neutralising antibodies in the BNT162b2 group was greatly reduced at 6 months after the second dose, the SCR still remained at 58.8%. BNT162b2-elicited sera neutralised SARS-CoV-2 variants of concern. T-cell responses were detected in 58/73 (79.5%) BNT162b2 recipients. Reactogenicity was mild or moderate in severity and resolved within a few days after onset. Unsolicited AEs were uncommon at 1 month following vaccine administration, and there were no vaccine-related serious AEs at 1 month or 6 months after the second dose. Interpretation: BNT162b2 vaccination induced a robust immune response with acceptable tolerability in Han Chinese adults. However, follow-up duration was relatively short and COVID-19 rates were not assessed. Safety data collection is continuing until 12 months after the second dose. Funding: BioNTech - sponsored the trial. Shanghai Fosun Pharmaceutical Development Inc. (Fosun Pharma) - conducted the trial, funded medical writing. ClinicalTrialsgov registration number: NCT04649021. Trial status: Completed.

4.
Adv Ther ; 39(8): 3789-3798, 2022 08.
Article in English | MEDLINE | ID: mdl-35771353

ABSTRACT

INTRODUCTION: BNT162b1 is a lipid nanoparticle-formulated, nucleoside-modified mRNA SARS-CoV-2 vaccine. Here, we report safety and immune persistence data following a primary two-dose vaccination schedule administered 21 days apart. METHODS: Immune persistence was determined at month 3 in 72 younger participants (aged 18-55 years) and at month 6 in 70 younger and 69 older participants (aged 65-85 years). RESULTS: In younger participants, neutralizing antibody (nAb) geometric mean titers (GMTs) for the 10 and 30 µg dose levels declined from 233 and 254 (21 days after dose 2) to 55 and 87 at month 3, respectively, and to 16 and 27 at month 6, respectively. In older participants, nAb GMTs declined from 80 and 160 (21 days after dose 2) to 10 and 21 at month 6. Overall, higher antibody titers were observed in younger participants, and the 30 µg dose induced higher levels of nAb, which declined more slowly by month 6. No serious adverse events were reported in the vaccine group. CONCLUSION: This study showed BNT162b1 maintains a favorable safety profile in younger and older participants in the 6 months after vaccination. This study further extends our understanding of immune persistence and the safety of the BNT162b1 vaccine as a candidate vaccine in the BioNTech pipeline. TRIAL REGISTRATION NUMBER: NCT04523571, registered August 21, 2020.


Subject(s)
BNT162 Vaccine , COVID-19 , Vaccines , Adult , Aged , Antibodies, Neutralizing , BNT162 Vaccine/adverse effects , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , China , Double-Blind Method , Humans , Liposomes , Nanoparticles , RNA, Messenger , SARS-CoV-2 , Vaccination
5.
Neurotoxicology ; 91: 155-165, 2022 07.
Article in English | MEDLINE | ID: mdl-35594946

ABSTRACT

INTRODUCTION: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive stereotyped behaviors. Prenatal exposure to the anticonvulsant drug valproic acid (VPA) is reported to induce ASD in human and ASD-like phenotypes in rodents. Unfortunately, the etiology and pathogenesis of ASD remains unclear. METHODS: Pregnant rats received an intraperitoneal injection of 600 mg/kg VPA on E12.5 to construct the ASD rat model in offspring. The different expression of long non-coding RNA (lncRNA) and mRNA profiles in the hippocampus were determined by RNA sequencing to investigate potential mechanisms of VPA-induced ASD. Gene Ontology (GO) and pathway enrichment analysis were performed to predict the function of dysregulated lncRNAs. Co-expression network and real-time polymerase chain reaction (RT-PCR) analysis were conducted to validate the potential regulatory lncRNA-mRNA network. RESULTS: VPA increased the total distance, time spent in the central zone and self-grooming (open field test) in rats. Meanwhile, VPA induced social impairment (three-chamber sociability test) and repetitive behaviors (marble burying test). A total of 238 lncRNAs and 354 mRNAs were differentially expressed in the VPA group. In addition, the dysregulated lncRNAs were involved in neural function and developmental processes of ASD. 5 lncRNAs and 7 mRNAs were differently expressed and included in the lncRNA-mRNA co-expression network. RT-PCR confirmed the upregulation of 4 lncRNAs and 6 mRNAs, and identified a potential regulatory network of NONRATT021475.2 (lncRNA) and Desert hedgehog (Dhh). Moreover, VPA decreased the serum vitamin A (VA) levels in offspring rats on postnatal day (PND) 21 and 49. Importantly, VA supplementation significantly restored VPA-induced autism-related behaviors and upregulation of NONRATT021475.2 and Dhh in the hippocampus of ASD rats. CONCLUSION: This study not only contributed to understand the importance of lncRNAs and mRNAs in the progression of ASD, but also identified VA as a potential therapy for the condition. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author with reasonable request.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , RNA, Long Noncoding , Animals , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Autistic Disorder/chemically induced , Autistic Disorder/genetics , Dietary Supplements , Disease Models, Animal , Female , Humans , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , RNA, Long Noncoding/genetics , RNA, Messenger , Rats , Social Behavior , Valproic Acid/adverse effects , Valproic Acid/toxicity , Vitamin A/therapeutic use
6.
Mol Med Rep ; 24(5)2021 Nov.
Article in English | MEDLINE | ID: mdl-34558637

ABSTRACT

Parkinson's disease (PD), a common multifactorial neurodegenerative disease, is characterized by irreversible loss of dopaminergic neurons in the substantia nigra. In­depth study of the pathogenesis of PD is of great importance. High­mobility group AT­hook 2 (HMGA2) has been proposed to be implicated with neuronal differentiation and impairment of cognitive function. However, whether HMGA2 plays a role in PD is rarely explored. In the present study, N­methyl­4­phenyl­1,2,3,6­tetrahydropyridine (MPTP)­treated PD mice models and N­methyl­4­ phenylpyridinium (MPP+)­treated SH­SY5Y cell models were established. Reverse transcription­quantitative PCR showed that HMGA2 displayed low levels in brain tissues of MPTP­treated mice and MPP+­treated SH­SY5Y cells. Moreover, HMGA2 overexpression suppressed SH­SY5Y cell apoptosis. Additionally, let­7b­5p bound with HMGA2 3' untranslated region (UTR), and its expression was negatively correlated with HMGA2 level. Moreover, let­7b­5p presented high levels in brain tissues of PD mice and MPP+­treated SH­SY5Y cells, and knockdown of let­7b­5p inhibited SH­SY5Y cell apoptosis. Rescue assays illustrated that HMGA2 neutralized the promotive effects of let­7b­5p mimics on SH­SY5Y cell apoptosis. In conclusion, the present study demonstrated that let­7b­5p contributes to cell apoptosis in PD by targeting HMGA2, which offers a potential theoretical basis for the study of effective therapy in PD.


Subject(s)
Apoptosis/genetics , Gene Expression Regulation , HMGA2 Protein/genetics , MicroRNAs/genetics , Parkinson Disease/etiology , Parkinson Disease/metabolism , RNA Interference , 3' Untranslated Regions , Animals , Cell Line, Tumor , Cell Survival/genetics , Computational Biology/methods , Databases, Genetic , Disease Models, Animal , Gene Expression Profiling , HMGA2 Protein/metabolism , Humans , Male , Mice , Parkinson Disease/pathology
7.
J Genet Genomics ; 48(12): 1070-1080, 2021 12.
Article in English | MEDLINE | ID: mdl-34530168

ABSTRACT

Premenstrual dysphoric disorder (PMDD) affects nearly 5% of women of reproductive age. Symptomatic heterogeneity, together with largely unknown genetics, has greatly hindered its effective treatment. In the present study, analysis of genomic sequencing-based copy number variations (CNVs) called from 100 kb white blood cell DNA sequence windows by means of semisupervized clustering led to the segregation of patient genomes into the D and V groups, which correlated with the depression and invasion clinical types, respectively, with 89.0% consistency. Application of diagnostic CNV features selected using the correlation-based machine learning method enabled the classification of the CNVs obtained into the D group, V group, total patient group, and control group with an average accuracy of 83.0%. The power of the diagnostic CNV features was 0.98 on average, suggesting that these CNV features could be used for the molecular diagnosis of the major clinical types of PMDD. This demonstrated concordance between the CNV profiles and clinical types of PMDD supported the validity of symptom-based diagnosis of PMDD for differentiating between its two major clinical types, as well as the predominantly genetic nature of PMDD with a host of overlaps between multiple susceptibility genes/pathways and the diagnostic CNV features as indicators of involvement in PMDD etiology.


Subject(s)
DNA Copy Number Variations , Premenstrual Dysphoric Disorder , China , DNA Copy Number Variations/genetics , Female , Genomics , Humans , Premenstrual Dysphoric Disorder/diagnosis , Premenstrual Dysphoric Disorder/drug therapy , Premenstrual Dysphoric Disorder/metabolism
8.
Nat Med ; 27(6): 1062-1070, 2021 06.
Article in English | MEDLINE | ID: mdl-33888900

ABSTRACT

An effective vaccine is needed to end the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we assess the preliminary safety, tolerability and immunogenicity data from an ongoing single-center (in Jiangsu province, China), parallel-group, double-blind phase 1 trial of the vaccine candidate BNT162b1 in 144 healthy SARS-CoV-2-naive Chinese participants. These participants are randomized 1:1:1 to receive prime and boost vaccinations of 10 µg or 30 µg BNT162b1 or placebo, given 21 d apart, with equal allocation of younger (aged 18-55 years) and older adults (aged 65-85 years) to each treatment group (ChiCTR2000034825). BNT162b1 encodes the SARS-CoV-2 spike glycoprotein receptor-binding domain (RBD) and is one of several messenger RNA-based vaccine candidates under clinical investigation. Local reactions and systemic events were generally dose dependent, transient and mild to moderate. Fever was the only grade 3 adverse event. BNT162b1 induced robust interferon-γ T cell responses to a peptide pool including the RBD in both younger and older Chinese adults, and geometric mean neutralizing titers reached 2.1-fold (for younger participants) and 1.3-fold (for the older participants) that of a panel of COVID-19 convalescent human sera obtained at least 14 d after positive SARS-CoV-2 polymerase chain reaction test. In summary, BNT162b1 has an acceptable safety profile and produces high levels of humoral and T cell responses in an Asian population.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/genetics , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/adverse effects , China/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , RNA, Messenger/genetics , RNA, Messenger/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Young Adult , mRNA Vaccines
9.
Materials (Basel) ; 13(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33113977

ABSTRACT

A ß titanium alloy is an excellent candidate for cryogenic applications. In this study, the deformation behavior of Ti-36Nb-2Ta-3Zr-0.35O with cold swaging was investigated at cryogenic temperatures to verify its practical application value. The microstructure after tensile tests was observed by transmission electron microscope in order to reveal the cryogenic deformation mechanism. The results show that the mechanical properties of this alloy have a strong temperature dependence: an increase in strength with a non-monotonic trend (first increase and then decrease) in elongation is found when the temperature decreases from 297 K to 77 K. At 200 K, a strength-ductility synergy is obtained and is mainly due to the occurrence of {211} <11> mechanical twinning accompanied with the ω plate located at the twin boundaries, which is the first time it is detected in titanium alloy at a cryogenic temperature. However, at 77 K, martensitic transformation (ß phase to α phase) is induced by the tensile deformation, leading to the increase of strength with a massive sacrifice of elongation. These findings provide insights for understanding the deformation mechanisms and optimizing the mechanical properties of titanium alloys at a cryogenic temperature.

10.
Biol Res ; 53(1): 27, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32616043

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is highly expressed in the brain tissue, but its molecular mechanism in cerebral ischemia-reperfusion remains unclear. Here, we explored the role and underlying mechanisms of circRNA antisense non-coding RNA in the INK4 locus (circ_ANRIL) in oxygen-glucose deprivation and reoxygenation (OGD/R)-induced cell injury. RESULTS: The expression of circ_ANRIL in OGD/R-induced human brain microvascular endothelial cells (HBMECs) was significantly up-regulated, while that of miR-622 was significantly down-regulated. Overexpression of circ_ANRIL significantly inhibited the proliferation of OGD/R-induced HBMECs and aggravated OGD/R-induced cell apoptosis. Moreover, circ_ANRIL overexpression further increased the secretion of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 in OGD/R-treated HBMECs. The results of bioinformatics analysis and luciferase reporter assay indicated that circ_ANRIL served as an miR-622 sponge to negatively regulate the expression of miR-622 in OGD/R-treated HBMECs. Additionally, circ_ANRIL silencing exerted anti-apoptotic and anti-inflammatory effects by positively regulating the expression of miR-622. Furthermore, inhibition of OGD/R-induced activation of the nuclear factor (NF)-κB pathway by circ_ANRIL silencing was significantly reversed by treatment with miR-622 inhibitor. CONCLUSIONS: Knockdown of circ_ANRIL improved OGD/R-induced cell damage, apoptosis, and inflammatory responses by inhibiting the NF-κB pathway through sponging miR-622.


Subject(s)
Hypoxia, Brain , MicroRNAs , RNA, Circular , Reperfusion Injury , Apoptosis , Brain , Cyclin-Dependent Kinase Inhibitor p16 , Endothelial Cells , Glucose/metabolism , Humans , Hypoxia, Brain/metabolism , Inflammation , MicroRNAs/genetics , MicroRNAs/physiology , Oxygen , RNA, Long Noncoding , Reperfusion Injury/metabolism
11.
BMC Cancer ; 20(1): 84, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32005109

ABSTRACT

BACKGROUND: Cancer subtyping has mainly relied on pathological and molecular means. Massively parallel sequencing-enabled subtyping requires genomic markers to be developed based on global features rather than individual mutations for effective implementation. METHODS: In the present study, the whole genome sequences (WGS) of 110 liver cancers of Japanese patients published with different pathologies were analyzed with respect to their single nucleotide variations (SNVs) comprising both gain-of-heterozygosity (GOH) and loss-of-heterozygosity (LOH) mutations, the signatures of combined GOH and LOH mutations, along with recurrent copy number variations (CNVs). RESULTS: The results, obtained based on the WGS sequences as well as the Exome subset within the WGSs that covered ~ 2.0% of the WGS and the AluScan-subset within the WGSs that were amplifiable by Alu element-consensus primers and covered ~ 2.1% of the WGS, indicated that the WGS samples could be employed with the mutational parameters of SNV load, LOH%, the Signature α%, and survival-associated recurrent CNVs (srCNVs) as genomic markers for subtyping to stratify liver cancer patients prognostically into the long and short survival subgroups. The usage of the AluScan-subset data, which could be implemented with sub-micrograms of DNA samples and vastly reduced sequencing analysis task, outperformed the usage of WGS data when LOH% was employed as stratifying criterion. CONCLUSIONS: Thus genomic subtyping performed with novel genomic markers identified in this study was effective in predicting patient-survival duration, with cohorts of hepatocellular carcinomas alone and those including intrahepatic cholangiocarcinomas. Such relatively heterogeneity-insensitive genomic subtyping merits further studies with a broader spectrum of cancers.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , High-Throughput Nucleotide Sequencing/methods , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Alu Elements , DNA Copy Number Variations , Humans , Japan , Loss of Heterozygosity , Mutation , Polymorphism, Single Nucleotide , Prognosis , Survival Analysis , Whole Genome Sequencing
12.
Biol. Res ; 53: 27, 2020. graf
Article in English | LILACS | ID: biblio-1124212

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is highly expressed in the brain tissue, but its molecular mechanism in cerebral ischemia-reperfusion remains unclear. Here, we explored the role and underlying mechanisms of circRNA antisense non-coding RNA in the INK4 locus (circ_ANRIL) in oxygen-glucose deprivation and reoxygenation (OGD/R)-induced cell injury. RESULTS: The expression of circ_ANRIL in OGD/R-induced human brain microvascular endothelial cells (HBMECs) was significantly up-regulated, while that of miR-622 was significantly down-regulated. Overexpression of circ_ANRIL significantly inhibited the proliferation of OGD/R-induced HBMECs and aggravated OGD/R-induced cell apoptosis. Moreover, circ_ANRIL overexpression further increased the secretion of interleukin (IL)-1ß, IL-6, tumor necrosis factor-a, and monocyte chemoattractant protein-1 in OGD/R-treated HBMECs. The results of bioinformatics analysis and luciferase reporter assay indicated that circ_ANRIL served as an miR-622 sponge to negatively regulate the expression of miR-622 in OGD/R-treated HBMECs. Additionally, circ_ANRIL silencing exerted anti-apoptotic and anti-inflammatory effects by positively regulating the expression of miR-622. Furthermore, inhibition of OGD/R-induced activation of the nuclear factor (NF)-kB pathway by circ_ANRIL silencing was significantly reversed by treatment with miR-622 inhibitor. CONCLUSIONS: Knockdown of circ_ANRIL improved OGD/R-induced cell damage, apoptosis, and inflammatory responses by inhibiting the NF-κB pathway through sponging miR-622.


Subject(s)
Humans , Reperfusion Injury/metabolism , Hypoxia, Brain/metabolism , MicroRNAs/physiology , MicroRNAs/genetics , RNA, Circular , Oxygen , Brain , Apoptosis , Cyclin-Dependent Kinase Inhibitor p16 , Endothelial Cells , RNA, Long Noncoding , Glucose/metabolism , Inflammation
13.
Cytotechnology ; : 809-818, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31243650

ABSTRACT

To determine the function of miR-206 in epilepsy. Epileptic rat model was established by intra-amygdala injection of kainic acid (KA). Expression levels of miR-206, C-C Motif Chemokine Ligand 2 (CCL2) and interleukin-1ß (Il-1ß) in hippocampus tissues was measured by reverse transcription-quantitative PCR (RT-qPCR) and western blot. Dual luciferase reporter assay was performed to determine the binding of miR-206 to 3' untranslated region (UTR) of CCL2. Finally, brain waves were recorded and Hematoxylin and eosin (HE) staining and Nissl's staining were performed on the epileptic rat injected with LPS, miR-206 agomir, adeno-associated virus (AAV) expressed CCL2 alone or in combination. Expression of miR-206 was specially decreased in hippocampus tissues compared to cortex in response to KA induced pathologic brain activity. Enforced expression of miR-206 by injection miR-206 agomir not only decreased seizure activity, but also protected KA-induced neuronal loss. And enforced expression of miR-206 suppressed increase of C-C Motif Chemokine Ligand 2 (CCL2) and interleukin-1ß (Il-1ß) which were induced by injection of KA or KA combined with lipopolysaccharide (LPS). Further more, results of dual luciferase reporter assay confirmed CCL2 was a target of miR-206. Finally, co-injection adeno-associated virus (AAV) expressed CCL2 with miR-206 agomir abolished the function of miR-206 agomir. Taken together, our results showed that expression of miR-206 could inhibit seizure-induced brain injury by targeting CCL2. Our results showed that expression of miR-206 could inhibit seizure-induced brain injury by targeting CCL2.

14.
Hum Genomics ; 12(1): 40, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30134973

ABSTRACT

BACKGROUND: Massive occurrences of interstitial loss of heterozygosity (LOH) likely resulting from gene conversions were found by us in different cancers as a type of single-nucleotide variations (SNVs), comparable in abundance to the commonly investigated gain of heterozygosity (GOH) type of SNVs, raising the question of the relationships between these two opposing types of cancer mutations. METHODS: In the present study, SNVs in 12 tetra sample and 17 trio sample sets from four cancer types along with copy number variations (CNVs) were analyzed by AluScan sequencing, comparing tumor with white blood cells as well as tissues vicinal to the tumor. Four published "nontumor"-tumor metastasis trios and 246 pan-cancer pairs analyzed by whole-genome sequencing (WGS) and 67 trios by whole-exome sequencing (WES) were also examined. RESULTS: Widespread GOHs enriched with CG-to-TG changes and associated with nearby CNVs and LOHs enriched with TG-to-CG changes were observed. Occurrences of GOH were 1.9-fold higher than LOH in "nontumor" tissues more than 2 cm away from the tumors, and a majority of these GOHs and LOHs were reversed in "paratumor" tissues within 2 cm of the tumors, forming forward-reverse mutation cycles where the revertant LOHs displayed strong lineage effects that pointed to a sequential instead of parallel development from "nontumor" to "paratumor" and onto tumor cells, which was also supported by the relative frequencies of 26 distinct classes of CNVs between these three types of cell populations. CONCLUSIONS: These findings suggest that developing cancer cells undergo sequential changes that enable the "nontumor" cells to acquire a wide range of forward mutations including ones that are essential for oncogenicity, followed by revertant mutations in the "paratumor" cells to avoid growth retardation by excessive mutation load. Such utilization of forward-reverse mutation cycles as an adaptive mechanism was also observed in cultured HeLa cells upon successive replatings. An understanding of forward-reverse mutation cycles in cancer development could provide a genomic basis for improved early diagnosis, staging, and treatment of cancers.


Subject(s)
DNA Copy Number Variations/genetics , Genome, Human/genetics , Loss of Heterozygosity/genetics , Neoplasms/genetics , Genomics , HeLa Cells , High-Throughput Nucleotide Sequencing , Humans , Mutation , Neoplasms/pathology , Polymorphism, Single Nucleotide , Exome Sequencing
15.
Neurol Res ; 39(5): 442-447, 2017 May.
Article in English | MEDLINE | ID: mdl-28287042

ABSTRACT

AIMS: To investigate the association of C-reactive protein (CRP) gene single nucleotide polymorphisms (SNPs), additional gene-gene, and gene-smoking interaction with ischemic stroke (IS) risk. METHODS: Logistic regression is performed to investigate association between SNPs within CRP gene and IS risk. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the gene-gene and gene-smoking interaction, cross-validation consistency, the testing balanced accuracy and the sign test were calculated. RESULTS: Logistic analysis showed that three SNPs were all associated with decreased IS risk in additive and dominant models. The IS risks were lower in carriers of homozygous mutant of rs2794521 polymorphism and heterozygous of rs3093059 and rs1205 than those with wild-type homozygotes genotype, OR (95%CI) were 0.62 (0.40-0.90), 0.68 (0.50-0.96) and 0.65 (0.46-0.97), respectively. GMDR analysis suggested a significant two-locus model (P = 0.0010) involving rs2794521 and rs3093059. We also found a significant two-locus model (P = 0.0010) involving rs2794521 and smoking. Participants with rs2794521-AG or GG and rs3093059-AG or GG genotype have the lowest IS risk, compared to participants with rs2794521-AA and rs3093059-AA genotype, OR (95%CI) was 0.4 2 (0.233-0.61). In addition, non-smokers with rs2794521-AG or GG genotype have the lowest IS risk, compared to smokers with rs2794521-AA genotype, OR (95%CI) was 0.47 (0.23-0.76). CONCLUSIONS: We found that rs2794521, rs3093059, and rs1205 were associated with decreased IS risk; we also found that gene-gene interaction between rs2794521 and rs3093059, and gene-environment interaction between rs2794521 and smoking were associated with decreased IS risk.


Subject(s)
C-Reactive Protein/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Smoking/genetics , Stroke/genetics , Aged , Aged, 80 and over , Asian People/ethnology , Asian People/genetics , Brain Ischemia/complications , Female , Gene Frequency , Gene-Environment Interaction , Genetic Association Studies , Genotype , Humans , Logistic Models , Male , Middle Aged , Retrospective Studies , Stroke/ethnology , Stroke/etiology
16.
Nat Commun ; 7: 10602, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26830651

ABSTRACT

High-entropy alloys are an intriguing new class of metallic materials that derive their properties from being multi-element systems that can crystallize as a single phase, despite containing high concentrations of five or more elements with different crystal structures. Here we examine an equiatomic medium-entropy alloy containing only three elements, CrCoNi, as a single-phase face-centred cubic solid solution, which displays strength-toughness properties that exceed those of all high-entropy alloys and most multi-phase alloys. At room temperature, the alloy shows tensile strengths of almost 1 GPa, failure strains of ∼70% and KJIc fracture-toughness values above 200 MPa m(1/2); at cryogenic temperatures strength, ductility and toughness of the CrCoNi alloy improve to strength levels above 1.3 GPa, failure strains up to 90% and KJIc values of 275 MPa m(1/2). Such properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning.

SELECTION OF CITATIONS
SEARCH DETAIL
...