Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 347: 126664, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34990859

ABSTRACT

Efficient removal of nitrate under low temperature is challenging because of the reduction of the microbial activity. This study successfully explored the promotion on the performance of denitrification utilizing the immobilized biochar in biofilters under low temperature (6 ± 2 °C). The results showed that the immobilized biochar increased the denitrification rate by 76.8% and decreased the nitrous oxide emissions by 82.5%. Mechanistic studies revealed that the immobilized biochar increased the activities of the denitrifying enzymes and three enzymes involved in glycolysis. Furthermore, the immobilized biochar elevated the activity of the electron transport system by 31.8%. Finally, structural equation model explained that the increase of nitrate reductase activity was a crucial factor to enhance the total nitrogen removal efficiency in biofilters with immobilized biochar. Overall, the use of immobilized biochar can be a novel strategy to enhance nitrogen removal and reduce greenhouse gas emissions in biofilters under low temperature.


Subject(s)
Charcoal , Denitrification , Nitrogen , Nitrous Oxide , Temperature
2.
J Environ Manage ; 297: 113211, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34284327

ABSTRACT

Unknown illicit discharges from manufactories often contain toxic chemical matters that are detrimental to the receiving waterbody by deteriorating the performance of wastewater treatment plants. Numerical models that identify these sources and reconstruct the discharging profiles are highly desired for environment management purpose. In this study, a stochastic source identification model that couples Bayesian inference with SWMM is developed to reconstruct the profile of an instantaneous dumpling incidence in sewer networks. The unknown source parameters include location, dumping rate and time of the dumping incidence. Key factors that impact the convergence and performance of the model including walking step size, numbers of unknown source parameters and numbers of monitoring sites are investigated. Results show that the Bayesian-SWMM coupled model is effective and accurate in identifying the unknown sources parameters in an instantaneous dumping event. It is also found that walking step size is crucial for the results to converge to true solutions. Furthermore, it shows that the identified results are highly dependent on the numbers of unknown source parameters. More unknowns result to unsatisfying results. However, the study shows that this limitation could be significantly reduced by using more monitoring site data. One contribution of the study is that errors from measurements and numerical simulation are considered in the identification while results are presented in probabilities with all possible values revealed. This feature is highly practical and efficient when it comes to assist further field screening efforts to pinpoint the true sources.


Subject(s)
Bayes Theorem , Computer Simulation , Incidence , Probability
3.
Water Res ; 196: 117054, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33770677

ABSTRACT

Dissolved black carbon (DBC), widely found in soil and water environments is likely to affect the transport of nanoplastics in aquatic environments. The aggregation and deposition behaviors of fresh and aged polystyrene nanoplastics (PSs) with and without DBC in NaCl solution were investigated by time-resolved dynamic light scattering (DLS) and quartz crystal microbalance with dissipation monitoring equipment (QCM-D) techniques. The results suggest that DBC can screen the surface charges of PSs by interacting with PSs through hydrogen bonding, hydrophobic interactions and π-π interactions, although they were negatively charged. DBC promoted the aggregation of PSs under relatively low ionic strengths, and it minimally affected the stability of PSs under high ionic strength. Deposition experiments showed that both DBC in salt solution and DBC adsorption on silica surface facilitated the deposition of fresh PSs while HA inhibited both deposition processes. After aging, PSs were more stable, and the effects of DBC and HA were weakened. This study investigated the influence mechanism of DBC on the aggregation and deposition behaviors, which provides new insights into the stability and transport of PSs in complex aquatic environments.


Subject(s)
Humic Substances , Polystyrenes , Carbon , Humic Substances/analysis , Microplastics , Soot
4.
Chemosphere ; 253: 126720, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32464762

ABSTRACT

To understand the biofilm formation of biofilm-based processes in wastewater treatment plants (WWTPs), the interaction mechanisms between extracted extracellular polymeric substances (EPS) and three model carrier surfaces (i.e., negatively charged hydrophilic silica, positively charged hydrophilic alumina, and neutral charged hydrophobic polystyrene) were investigated employing a laboratory quartz crystal microbalance with dissipation monitoring equipment (QCM-D) and an atomic force microscope (AFM). The data suggested that surface charge and hydrophobicity of both EPS and carriers played significant roles in the interaction behaviors. Moreover, increases in ionic strength could lead to the increasing zeta potential and hydrophobicity of EPS. It is worth noting that long-range DLVO forces dominated the EPS deposition on carriers in lower ionic strength while short-range Lewis acid-base (AB) interaction controlled the adhesion behaviors in higher ionic strength. Besides, the presence of calcium ions contributed to the adhesion behaviors because of strong charge neutralization and hydrophobic effect. Bound EPS (BEPS) showed higher affinity to model carriers than dissolved EPS (DEPS), which conformed to XDLVO prediction rather than classical DLVO model. Overall, these results provide insights into the influence mechanisms of carrier characteristics, ionic strength, calcium ion and EPS components on the interaction between EPS and representative carriers, contributing to predict and regulate biofilm formation in biofilm-based processes.


Subject(s)
Extracellular Polymeric Substance Matrix , Waste Disposal, Fluid , Biofilms , Hydrophobic and Hydrophilic Interactions , Ions , Models, Chemical , Osmolar Concentration , Quartz Crystal Microbalance Techniques , Sewage , Silicon Dioxide/chemistry , Wastewater
5.
Sci Total Environ ; 731: 139196, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32417483

ABSTRACT

To investigate the effect of properties of carriers, environmental conditions and extracellular polymeric substances (EPS) on the initial adhesion of biofilm formation in biofilm-based reactors, a quartz crystal microbalance with dissipation (QCM-D) was applied to monitor the deposition rates and viscoelastic properties of sieved sludge particles on model biocarriers. The results suggested that surface charge, hydrophobicity and surface coating of five representative carriers influenced deposition rates and viscoelastic properties of biofilm, whose variation with NaCl concentrations was controlled by not only the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction but also non-DLVO forces. On hydrophobic surface, the addition of cationic substances enhanced the deposition rates and the compaction of deposited layer due to strong "hydrophobizing effect". For examples, 10 mM Ca2+, 10 mM Mg2+ and 10 mg/L poly-l-lysine enhanced the deposition rates to nearly 3, 2 and 4 times, as well as reduced the softness of deposited layer to almost 35%, 60% and 35%. Conversely, 10 mg/L negatively charged alginate might cause water retainment and steric shielding, thereby reducing the deposition rates to 40% and increasing the softness of deposited film to 120%. The presence of EPS sub-fractions can modify surface properties of sludge particles, to distinct degrees, contributing to biofilm formation. Notably, compared to tightly bound EPS (TB-EPS), loosely bound EPS (LB-EPS) was more conducive to microbial attachment, but the presence of LB-EPS promoted the formation of a soft layer on a hydrophobic surface. Overall, these results provide insights into intrinsic mechanisms of the variation of deposition rates and viscoelastic properties responding to critical factors, which are meaningful to predict and regulate the initial adhesion process in biofilm-based reactors.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Biofilms , Hydrophobic and Hydrophilic Interactions , Surface Properties
6.
Ecotoxicol Environ Saf ; 194: 110456, 2020 May.
Article in English | MEDLINE | ID: mdl-32171963

ABSTRACT

The early stage of aggregation of cerium oxide nanoparticles (CeO2 NPs) in anion solutions was inspected in the absence and presence of extracellular polymeric substance (EPS) with a help of time-resolved dynamic light scattering (DLS). The aggregation kinetics and attachment efficiencies were calculated according to measured hydrodynamic diameter across a range of 1-500 mM NaNO3 and 0.01-100. mM Na2SO4. The aggregation of CeO2 NPs in both NaNO3 and Na2SO4 solution conformed with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. In NaNO3 solution, the critical coagulation concentrations (CCC) of CeO2 NPs was calculated to be about 47 mM; in Na2SO4 solution, CeO2 NPs showed a re-stabilization process and thus there was no CCC value. SO42- had intenser effects on CeO2 NPs aggregation than NO3- might because of the distinction between their polarization, consisting in Hofmeister series. The presence of bound EPS (B-EPS), tightly bound EPS (TB-EPS) and loosely bound EPS (LB-EPS) in NaNO3 solutions all lead to significant decrease in CeO2 NPs aggregation. Steric repulsive force produced by absorbed EPS on CeO2 NPs might take main responsibility in stabilizing CeO2 NPs. Besides, Extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) model successfully predicted the energy barrier between CeO2 NPs with B-EPS, TB-EPS and LB-EPS as a function of NaNO3 concentration. Furthermore, the difference in impeding the CeO2 NPs aggregation with B-EPS, TB-EPS and LB-EPS may be caused by the divergence in molecular weight and component mass fraction especially protein content. These results might subserve the assessment on the fate and transport behaviors of CeO2 NPs released in wastewater treatment plants.


Subject(s)
Cerium/chemistry , Models, Chemical , Nanoparticles/chemistry , Extracellular Polymeric Substance Matrix , Kinetics
7.
J Environ Sci (China) ; 90: 234-243, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32081319

ABSTRACT

Changes in solution chemistry and transport conditions can lead to the release of deposited MnO2 nanoparticles from a solid interface, allowing them to re-enter the aqueous environment. Understanding the release behavior of MnO2 nanoparticles from naturally occurring surfaces is critical for better prediction of the transport potential and environmental fate of MnO2 nanoparticles. In this study, the release of MnO2 nanoparticles was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D), and different environmental surface types, solution pH values and representative macromolecular organics were considered. MnO2 nanoparticles were first deposited on crystal sensors at elevated NaNO3 concentrations before being rinsed with double-deionized water to induce their remobilization. The results reveal that the release rate of MnO2 depends on the surface type, in the decreasing order: SiO2 > Fe3O4 > Al2O3, resulting from electrostatic interactions between the surface and particles. Moreover, differences in solution pH can lead to variance in the release behavior of MnO2 nanoparticles. The release rate from surfaces was significantly higher at pH 9.8 that at 4.5, indicating that alkaline conditions were more favorable for the mobilization of MnO2 in the aquatic environment. In the presence of macromolecular organics, bovine serum albumin (BSA) can inhibit the release of MnO2 from the surfaces due to attractive forces. In presence of humic acid (HA) and sodium alginate (SA), the MnO2 nanoparticles were more likely to be mobile, which may be associated with a large repulsive barrier imparted by steric effects.


Subject(s)
Manganese Compounds/chemistry , Nanoparticles , Silicon Dioxide , Water Pollutants, Chemical/chemistry , Oxides , Surface Properties
8.
Bioresour Technol ; 289: 121600, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31220769

ABSTRACT

Phosphorus reduction from wastewater is vital to mitigate eutrophication of receiving waters. In this study, discarded lignocellulose biochar loaded with lanthanum (defined as La-biochar) was applied for phosphate adsorption. Based on the design of response surface methodology, La-biochar displayed a high phosphate adsorption capacity of 36.06 mg P/g, strong pH-compatibility from 3 to 12, favorable selectivity for phosphate among foreign ions (Cl-, SO42-, CO32-, HCO3- and NO3-), excellent reusability with 92.3% desorption efficiency and retained 85% adsorption capacity after five recycles. The adsorption law of La-biochar perfectly matched with the pseudo-second-order model and the Langmuir model. Moreover, real wastewater adsorption experiments indicated the removal of total phosphorus within 20 min. Ligand exchange, electrostatic attraction, and complexation mechanisms contributed to phosphate adsorption on La-biochar. Overall, the La-biochar material could be applied as a potential sustainable building block for the preconcentration of phosphorus for practical pollutant purification.


Subject(s)
Lanthanum , Phosphates , Adsorption , Charcoal , Kinetics , Lignin , Regeneration
9.
Bioresour Technol ; 275: 297-306, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30594840

ABSTRACT

Biochar is widely used in water treatment because of its porous structure, however, the effects of biochars on denitrification remain unclear. Here, we combined molecular biological and electrochemical techniques to investigate effects of biochars (formed at 300 °C, 500 °C and 800 °C) on denitrification. Results showed that biochar at 300 °C increased total nitrogen removal by 415% and decreased N2O accumulation by 78%. Mechanistic research demonstrated that it achieved the highest electron transfer efficiency and denitrifying enzyme activities. Further study evidenced that biochar at 300 °C increased the abundance of denitrifiers such as Pseudomonas. Correlation analysis indicated that nitrate reductase and nitrite reductase activities were the key factors influenced by biochar during denitrification. Overall, this study suggested that biochar at 300 °C could act as the bio-engineer of electron shuttle and the stimulator of denitrification, achieving high rate nitrogen removal and significant reduction of N2O accumulation from high-strength wastewater.


Subject(s)
Charcoal/chemistry , Nitrates/isolation & purification , Denitrification , Electrochemical Techniques , Heterotrophic Processes , Nitrogen/chemistry , Oxidation-Reduction
10.
Sci Total Environ ; 621: 1601-1614, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29054671

ABSTRACT

Rapid urbanization in China has dramatically deteriorated the water quality of streams and threatening aquatic ecosystem health. This study aims to 1) assess the impacts of urbanization on water quality and macroinvertebrate composition and 2) address the question of how urbanization affects macroinvertebrate distribution patterns. Environmental variables over multispatial scales and macroinvertebrate community data were collected on April (dry season) and September (wet season) of 2014 and 2015 at 19 sampling sites, of which nine had a high urbanization level (HUL), six had moderate urbanization level (MUL) and four had low urbanization level (LUL), in the Liangjiang New Area. The results of this study showed that macroinvertebrate assemblages significantly varied across the three urbanization levels. The sensitive species (e.g., EPT taxa) were mainly centralized at LUL sites, whereas tolerant species, such as Tubificidae (17.3%), Chironomidae (12.1%), and Physidae (4.61%), reached highest relative abundance at LUL sites. The values of family biotic index (FBI) and biological monitoring working party (BMWP) indicated the deterioration of water quality along urbanization gradient. Seasonal and inter - annual changes in macroinvertebrate communities were not observed. The results of variation partitioning analyses (CCAs) showed that habitat scale variables explained the major variation in macroinvertebrate community composition. Specifically, the increased nutrient concentrations favored tolerant species, whereas high water flow and substrate coarseness benefitted community taxa richness, diversity and EPT richness. Considering the interactions between scale-related processes, the results of this study suggested that urbanization resulted in less diverse and more tolerant stream macroinvertebrate assemblages mainly via increased nutrient concentrations and reduced substrate coarseness.


Subject(s)
Environmental Monitoring , Invertebrates , Urbanization , Water Quality , Animals , China , Ecosystem , Rivers
11.
Environ Monit Assess ; 189(4): 174, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28324277

ABSTRACT

Rapid urbanization in China has been causing dramatic deterioration in the water quality of rivers and threatening aquatic ecosystem health. In this paper, multivariate techniques, such as factor analysis (FA) and cluster analysis (CA), were applied to analyze the water quality datasets for 19 rivers in Liangjiang New Area (LJNA), China, collected in April (dry season) and September (wet season) of 2014 and 2015. In most sampling rivers, total phosphorus, total nitrogen, and fecal coliform exceeded the Class V guideline (GB3838-2002), which could thereby threaten the water quality in Yangtze and Jialing Rivers. FA clearly identified the five groups of water quality variables, which explain majority of the experimental data. Nutritious pollution, seasonal changes, and construction activities were three key factors influencing rivers' water quality in LJNA. CA grouped 19 sampling sites into two clusters, which located at sub-catchments with high- and low-level urbanization, respectively. One-way ANOVA showed the nutrients (total phosphorus, soluble reactive phosphorus, total nitrogen, ammonium nitrogen, and nitrite), fecal coliform, and conductivity in cluster 1 were significantly greater than in cluster 2. Thus, catchment urbanization degraded rivers' water quality in Liangjiang New Area. Identifying effective buffer zones at riparian scale to weaken the negative impacts of catchment urbanization was recommended.


Subject(s)
Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , China , Cluster Analysis , Ecosystem , Factor Analysis, Statistical , Nitrogen/analysis , Phosphorus/analysis , Rivers , Seasons , Urbanization , Water Quality
12.
Chemosphere ; 168: 264-271, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27788365

ABSTRACT

Thallium (Tl) is an element of high toxicity and significant accumulation in human body. There is an urgent need for the development of appropriate strategies for trace Tl removal in drinking water treatment plants. In this study, the efficiency and mechanism of trace Tl (0.5 µg/L) removal by conventional coagulation enhanced by nanosized manganese dioxide (nMnO2) were explored in simulated water and two representative surface waters (a river water and a reservoir water obtained from Northeast China). Experimental results showed that nMnO2 significantly improve Tl(I) removal from selected waters. The removal efficiency was dramatically higher in the simulated water, demonstrating by less than 0.1 µg/L Tl residual. The enhancement of trace Tl removal in the surface waters decreased to a certain extent. Both adjusting water pH to alkaline condition and preoxidation of Tl(I) to Tl(III) benefit trace Tl removal from surface waters. Data also indicated that competitive cation of Ca2+ decreased the efficiency of trace Tl removal, resulting from the reduction of Tl adsorption on nMnO2. Humic acid could largely low Tl removal efficiency during nMnO2 enhanced coagulation processes. Trace elemental Tl firstly adsorbed on nMnO2 and then removed accompanying with nMnO2 settling. The information obtained in the present study may provide a potential strategy for drinking water treatment plants threatened by trace Tl.


Subject(s)
Manganese Compounds , Oxides , Thallium/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Water/chemistry , Adsorption , Calcium , China , Fresh Water , Humans , Humic Substances , Hydrogen-Ion Concentration , Manganese Compounds/chemistry , Nanoparticles , Oxides/chemistry , Thallium/analysis
13.
Water Sci Technol ; 74(7): 1553-1560, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27763335

ABSTRACT

A vertical flow constructed wetland was combined with a biological aerated filter to develop an ecological filter, and to obtain the optimal operating parameters: The hydraulic loading was 1.55 m3/(m2·d), carbon-nitrogen ratio was 10, and gas-water ratio was 6. The experimental results demonstrated considerable removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in wastewater by the ecological filter, with average removal rates of 83.79%, 93.10%, 52.90%, and 79.07%, respectively. Concentration of NH4+-N after treatment met the level-A discharge standard of GB18918-2002. Compared with non-plant filter, the ecological filter improved average removal efficiency of COD, NH4+-N, TN, and TP by 13.03%, 25.30%, 14.80%, and 2.32%, respectively: thus, plants significantly contribute to the removal of organic pollutants and nitrogen. Through microporous aeration and O2 secretion of plants, the ecological filter formed an aerobic-anaerobic-aerobic alternating environment; thus aerobic and anaerobic microbes were active and effectively removed organic pollutants. Meanwhile, nitrogen and phosphorus were directly assimilated by plants and as nutrients of microorganisms. Meanwhile, pollutants were removed through nitrification, denitrification, filtration, adsorption, and interception by the filler. High removal rates of pollutants on the ecological filter proved that it is an effective wastewater-treatment technology for decentralized wastewater of mountainous towns.


Subject(s)
Filtration/methods , Waste Disposal, Fluid/instrumentation , Wastewater/chemistry , Water Purification/methods , Wetlands , Biological Oxygen Demand Analysis , Carbon , Denitrification , Nitrification , Nitrogen/chemistry , Phosphorus , Waste Disposal, Fluid/methods
14.
Water Environ Res ; 87(4): 347-57, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26462079

ABSTRACT

In this study, FLUENT software was used to simulate the flow regime of an integrated sludge thickening and digestion reactor. To optimize the flow regime, the combinational effect of key parameters of the reactor structure was investigated with an L16 (4(5)) orthogonal test. The reactor was then redesigned based on the optimization results, and a series of experiments was conducted to study the treatment effect with sludge dosage rates of 12, 18, 24, and 30%. The operation results showed that the reactor obtained the best treatment efficiency when the sludge dosage rate was 24%. At this dosage, the water content of the sludge decreased from 99.1% to 91.8%, with organic matter content (volatile solids [VS]/total solids) decreasing to 21.2% and average gas production (CH4 62.66%, CO2 11.56%, N2 23.91%, O2 1.59%) reaching 231.3 L/kg VS. Therefore, the results implied that the optimized reactor has good effects on sludge thickening and digestion.


Subject(s)
Sewage/chemistry , Waste Management/instrumentation , Computer Simulation , Equipment Design , Fatty Acids, Volatile/analysis , Hydrodynamics , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...