Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Med Image Anal ; 96: 103193, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38823362

ABSTRACT

Temporally consistent and accurate registration and parcellation of longitudinal cortical surfaces is of great importance in studying longitudinal morphological and functional changes of human brains. However, most existing methods are developed for registration or parcellation of a single cortical surface. When applying to longitudinal studies, these methods independently register/parcellate each surface from longitudinal scans, thus often generating longitudinally inconsistent and inaccurate results, especially in small or ambiguous cortical regions. Essentially, longitudinal cortical surface registration and parcellation are highly correlated tasks with inherently shared constraints on both spatial and temporal feature representations, which are unfortunately ignored in existing methods. To this end, we unprecedentedly propose a novel semi-supervised learning framework to exploit these inherent relationships from limited labeled data and extensive unlabeled data for more robust and consistent registration and parcellation of longitudinal cortical surfaces. Our method utilizes the spherical topology characteristic of cortical surfaces. It employs a spherical network to function as an encoder, which extracts high-level cortical features. Subsequently, we build two specialized decoders dedicated to the tasks of registration and parcellation, respectively. To extract more meaningful spatial features, we design a novel parcellation map similarity loss to utilize the relationship between registration and parcellation tasks, i.e., the parcellation map warped by the deformation field in registration should match the atlas parcellation map, thereby providing extra supervision for the registration task and augmented data for parcellation task by warping the atlas parcellation map to unlabeled surfaces. To enable temporally more consistent feature representation, we additionally enforce longitudinal consistency among longitudinal surfaces after registering them together using their concatenated features. Experiments on two longitudinal datasets of infants and adults have shown that our method achieves significant improvements on both registration/parcellation accuracy and longitudinal consistency compared to existing methods, especially in small and challenging cortical regions.

2.
Cereb Cortex ; 34(13): 72-83, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696605

ABSTRACT

Autism spectrum disorder has been emerging as a growing public health threat. Early diagnosis of autism spectrum disorder is crucial for timely, effective intervention and treatment. However, conventional diagnosis methods based on communications and behavioral patterns are unreliable for children younger than 2 years of age. Given evidences of neurodevelopmental abnormalities in autism spectrum disorder infants, we resort to a novel deep learning-based method to extract key features from the inherently scarce, class-imbalanced, and heterogeneous structural MR images for early autism diagnosis. Specifically, we propose a Siamese verification framework to extend the scarce data, and an unsupervised compressor to alleviate data imbalance by extracting key features. We also proposed weight constraints to cope with sample heterogeneity by giving different samples different voting weights during validation, and used Path Signature to unravel meaningful developmental features from the two-time point data longitudinally. We further extracted machine learning focused brain regions for autism diagnosis. Extensive experiments have shown that our method performed well under practical scenarios, transcending existing machine learning methods and providing anatomical insights for autism early diagnosis.


Subject(s)
Autism Spectrum Disorder , Brain , Deep Learning , Early Diagnosis , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/diagnosis , Infant , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Child, Preschool , Male , Female , Autistic Disorder/diagnosis , Autistic Disorder/diagnostic imaging , Autistic Disorder/pathology , Unsupervised Machine Learning
4.
IEEE Trans Med Imaging ; 43(3): 1006-1017, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37874705

ABSTRACT

Fetal Magnetic Resonance Imaging (MRI) is challenged by fetal movements and maternal breathing. Although fast MRI sequences allow artifact free acquisition of individual 2D slices, motion frequently occurs in the acquisition of spatially adjacent slices. Motion correction for each slice is thus critical for the reconstruction of 3D fetal brain MRI. In this paper, we propose a novel multi-task learning framework that adopts a coarse-to-fine strategy to jointly learn the pose estimation parameters for motion correction and tissue segmentation map of each slice in fetal MRI. Particularly, we design a regression-based segmentation loss as a deep supervision to learn anatomically more meaningful features for pose estimation and segmentation. In the coarse stage, a U-Net-like network learns the features shared for both tasks. In the refinement stage, to fully utilize the anatomical information, signed distance maps constructed from the coarse segmentation are introduced to guide the feature learning for both tasks. Finally, iterative incorporation of the signed distance maps further improves the performance of both regression and segmentation progressively. Experimental results of cross-validation across two different fetal datasets acquired with different scanners and imaging protocols demonstrate the effectiveness of the proposed method in reducing the pose estimation error and obtaining superior tissue segmentation results simultaneously, compared with state-of-the-art methods.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Fetus/diagnostic imaging , Motion , Brain/diagnostic imaging
5.
Elife ; 122023 08 01.
Article in English | MEDLINE | ID: mdl-37526293

ABSTRACT

Resting-state functional MRI (rs-fMRI) is widely used to examine the dynamic brain functional development of infants, but these studies typically require precise cortical parcellation maps, which cannot be directly borrowed from adult-based functional parcellation maps due to the substantial differences in functional brain organization between infants and adults. Creating infant-specific cortical parcellation maps is thus highly desired but remains challenging due to difficulties in acquiring and processing infant brain MRIs. In this study, we leveraged 1064 high-resolution longitudinal rs-fMRIs from 197 typically developing infants and toddlers from birth to 24 months who participated in the Baby Connectome Project to develop the first set of infant-specific, fine-grained, surface-based cortical functional parcellation maps. To establish meaningful cortical functional correspondence across individuals, we performed cortical co-registration using both the cortical folding geometric features and the local gradient of functional connectivity (FC). Then we generated both age-related and age-independent cortical parcellation maps with over 800 fine-grained parcels during infancy based on aligned and averaged local gradient maps of FC across individuals. These parcellation maps reveal complex functional developmental patterns, such as changes in local gradient, network size, and local efficiency, especially during the first 9 postnatal months. Our generated fine-grained infant cortical functional parcellation maps are publicly available at https://www.nitrc.org/projects/infantsurfatlas/ for advancing the pediatric neuroimaging field.


Subject(s)
Connectome , Magnetic Resonance Imaging , Humans , Infant , Brain , Cerebral Cortex/diagnostic imaging , Connectome/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods
6.
Pattern Recognit ; 1432023 Nov.
Article in English | MEDLINE | ID: mdl-37425426

ABSTRACT

Missing scans are inevitable in longitudinal studies due to either subject dropouts or failed scans. In this paper, we propose a deep learning framework to predict missing scans from acquired scans, catering to longitudinal infant studies. Prediction of infant brain MRI is challenging owing to the rapid contrast and structural changes particularly during the first year of life. We introduce a trustworthy metamorphic generative adversarial network (MGAN) for translating infant brain MRI from one time-point to another. MGAN has three key features: (i) Image translation leveraging spatial and frequency information for detail-preserving mapping; (ii) Quality-guided learning strategy that focuses attention on challenging regions. (iii) Multi-scale hybrid loss function that improves translation of image contents. Experimental results indicate that MGAN outperforms existing GANs by accurately predicting both tissue contrasts and anatomical details.

7.
Dev Cogn Neurosci ; 63: 101284, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37517139

ABSTRACT

Human brain undergoes rapid growth during the first few years of life. While previous research has employed graph theory to study early brain development, it has mostly focused on the topological attributes of the whole brain. However, examining regional graph-theory features may provide unique insights into the development of cognitive abilities. Utilizing a large and longitudinal rsfMRI dataset from the UNC/UMN Baby Connectome Project, we investigated the developmental trajectories of regional efficiency and evaluated the relationships between these changes and cognitive abilities using Mullen Scales of Early Learning during the first twenty-eight months of life. Our results revealed a complex and spatiotemporally heterogeneous development pattern of regional global and local efficiency during this age period. Furthermore, we found that the trajectories of the regional global efficiency at the left temporal occipital fusiform and bilateral occipital fusiform gyri were positively associated with cognitive abilities, including visual reception, expressive language, receptive language, and early learning composite scores (P < 0.05, FDR corrected). However, these associations were weakened with age. These findings offered new insights into the regional developmental features of brain topologies and their associations with cognition and provided evidence of ongoing optimization of brain networks at both whole-brain and regional levels.


Subject(s)
Connectome , Magnetic Resonance Imaging , Humans , Brain , Cognition , Connectome/methods , Language , Brain Mapping
8.
J Neurosci ; 43(34): 6010-6020, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37369585

ABSTRACT

Adult twin neuroimaging studies have revealed that cortical thickness (CT) and surface area (SA) are differentially influenced by genetic information, leading to their spatially distinct genetic patterning and topography. However, the postnatal origins of the genetic topography of CT and SA remain unclear, given the dramatic cortical development from neonates to adults. To fill this critical gap, this study unprecedentedly explored how genetic information differentially regulates the spatial topography of CT and SA in the neonatal brain by leveraging brain magnetic resonance (MR) images from 202 twin neonates with minimal influence by the complicated postnatal environmental factors. We capitalized on infant-dedicated computational tools and a data-driven spectral clustering method to parcellate the cerebral cortex into a set of distinct regions purely according to the genetic correlation of cortical vertices in terms of CT and SA, respectively, and accordingly created the first genetically informed cortical parcellation maps of neonatal brains. Both genetic parcellation maps exhibit bilaterally symmetric and hierarchical patterns, but distinct spatial layouts. For CT, regions with closer genetic relationships demonstrate an anterior-posterior (A-P) division, while for SA, regions with greater genetic proximity are typically within the same lobe. Certain genetically informed regions exhibit strong similarities between neonates and adults, with the most striking similarities in the medial surface in terms of SA, despite their overall substantial differences in genetic parcellation maps. These results greatly advance our understanding of the development of genetic influences on the spatial patterning of cortical morphology.SIGNIFICANCE STATEMENT Genetic influences on cortical thickness (CT) and surface area (SA) are complex and could evolve throughout the lifespan. However, studies revealing distinct genetic topography of CT and SA have been limited to adults. Using brain structural magnetic resonance (MR) images of twins, we unprecedentedly discovered the distinct genetically-informed parcellation maps of CT and SA in neonatal brains, respectively. Each genetic parcellation map comprises a distinct spatial layout of cortical regions, where vertices within the same region share high genetic correlation. These genetic parcellation maps of CT and SA of neonates largely differ from those of adults, despite their highly remarkable similarities in the medial cortex of SA. These discoveries provide important insights into the genetic organization of the early cerebral cortex development.


Subject(s)
Brain , Cerebral Cortex , Humans , Adult , Infant , Infant, Newborn , Brain/diagnostic imaging , Brain/anatomy & histology , Twins/genetics , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Brain Mapping
9.
Nat Commun ; 14(1): 3727, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349301

ABSTRACT

Brain subcortical structures are paramount in many cognitive functions and their aberrations during infancy are predisposed to various neurodevelopmental and neuropsychiatric disorders, making it highly essential to characterize the early subcortical normative growth patterns. This study investigates the volumetric development and surface area expansion of six subcortical structures and their associations with Mullen scales of early learning by leveraging 513 high-resolution longitudinal MRI scans within the first two postnatal years. Results show that (1) each subcortical structure (except for the amygdala with an approximately linear increase) undergoes rapid nonlinear volumetric growth after birth, which slows down at a structure-specific age with bilaterally similar developmental patterns; (2) Subcortical local area expansion reveals structure-specific and spatiotemporally heterogeneous patterns; (3) Positive associations between thalamus and both receptive and expressive languages and between caudate and putamen and fine motor are revealed. This study advances our understanding of the dynamic early subcortical developmental patterns.


Subject(s)
Brain , Thalamus , Humans , Infant , Brain/diagnostic imaging , Thalamus/diagnostic imaging , Putamen/diagnostic imaging , Amygdala , Magnetic Resonance Imaging/methods , Brain Mapping
10.
Cell Rep ; 42(4): 112281, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36964904

ABSTRACT

Revealing early dynamic development of the normative cerebellar structures contributes to exploring cerebellum-related neurodevelopmental disorders. Here, leveraging infant-tailored cerebellar image processing techniques, we studied the dynamic volumetric developmental trajectories of cerebellum and 27 cerebellar sub-regions and their relationships with behavioral scores based on 511 high-resolution structural MRI scans during the first 800 postnatal days. The ratio of the entire cerebellum to the intracranial volume increases rapidly at first and then peaks at 13 months after birth. Both the absolute and relative volumes of most cerebellar sub-structures exhibit rapid increase at first, then the relative volumes decrease slightly after arriving at peaks (except for X lobules). Each lobule depicts larger absolute volume in males than in females. The within-subject variation of the cerebellar volumetric percentile score is generally stable. The volumetric development of several lobules (e.g., V, Crus I, and Crus II) has a significantly positive correlation with fine motor skills during the age range examined.


Subject(s)
Cerebellum , Magnetic Resonance Imaging , Male , Female , Humans , Infant , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted
11.
Nat Protoc ; 18(5): 1488-1509, 2023 05.
Article in English | MEDLINE | ID: mdl-36869216

ABSTRACT

The human cerebral cortex undergoes dramatic and critical development during early postnatal stages. Benefiting from advances in neuroimaging, many infant brain magnetic resonance imaging (MRI) datasets have been collected from multiple imaging sites with different scanners and imaging protocols for the investigation of normal and abnormal early brain development. However, it is extremely challenging to precisely process and quantify infant brain development with these multisite imaging data because infant brain MRI scans exhibit (a) extremely low and dynamic tissue contrast caused by ongoing myelination and maturation and (b) inter-site data heterogeneity resulting from the use of diverse imaging protocols/scanners. Consequently, existing computational tools and pipelines typically perform poorly on infant MRI data. To address these challenges, we propose a robust, multisite-applicable, infant-tailored computational pipeline that leverages powerful deep learning techniques. The main functionality of the proposed pipeline includes preprocessing, brain skull stripping, tissue segmentation, topology correction, cortical surface reconstruction and measurement. Our pipeline can handle both T1w and T2w structural infant brain MR images well in a wide age range (from birth to 6 years of age) and is effective for different imaging protocols/scanners, despite being trained only on the data from the Baby Connectome Project. Extensive comparisons with existing methods on multisite, multimodal and multi-age datasets demonstrate superior effectiveness, accuracy and robustness of our pipeline. We have maintained a website, iBEAT Cloud, for users to process their images with our pipeline ( http://www.ibeat.cloud ), which has successfully processed over 16,000 infant MRI scans from more than 100 institutions with various imaging protocols/scanners.


Subject(s)
Deep Learning , Humans , Infant , Child , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebral Cortex/diagnostic imaging
12.
Neuroimage ; 269: 119931, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36746299

ABSTRACT

Precise segmentation of subcortical structures from infant brain magnetic resonance (MR) images plays an essential role in studying early subcortical structural and functional developmental patterns and diagnosis of related brain disorders. However, due to the dynamic appearance changes, low tissue contrast, and tiny subcortical size in infant brain MR images, infant subcortical segmentation is a challenging task. In this paper, we propose a context-guided, attention-based, coarse-to-fine deep framework to precisely segment the infant subcortical structures. At the coarse stage, we aim to directly predict the signed distance maps (SDMs) from multi-modal intensity images, including T1w, T2w, and the ratio of T1w and T2w images, with an SDM-Unet, which can leverage the spatial context information, including the structural position information and the shape information of the target structure, to generate high-quality SDMs. At the fine stage, the predicted SDMs, which encode spatial-context information of each subcortical structure, are integrated with the multi-modal intensity images as the input to a multi-source and multi-path attention Unet (M2A-Unet) for achieving refined segmentation. Both the 3D spatial and channel attention blocks are added to guide the M2A-Unet to focus more on the important subregions and channels. We additionally incorporate the inner and outer subcortical boundaries as extra labels to help precisely estimate the ambiguous boundaries. We validate our method on an infant MR image dataset and on an unrelated neonatal MR image dataset. Compared to eleven state-of-the-art methods, the proposed framework consistently achieves higher segmentation accuracy in both qualitative and quantitative evaluations of infant MR images and also exhibits good generalizability in the neonatal dataset.


Subject(s)
Brain Diseases , Brain , Infant, Newborn , Humans , Infant , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
13.
Cereb Cortex ; 33(7): 3985-3995, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36030387

ABSTRACT

Functional organization of the human cerebral cortex is highly constrained by underlying brain structures, but how functional activity is associated with different brain structures during development is not clear, especially at the neonatal stage. Since long-range functional connectivity is far from mature in the dynamically developing neonatal brain, it is of great scientific significance to investigate the relationship between different structural and functional features at the local level. To this end, for the first time, correlation and regression analyses were performed to examine the relationship between cortical morphology, cortical myelination, age, and local brain functional activity, as well as functional connectivity strength using high-resolution structural and resting-state functional MRI data of 177 neonates (29-44 postmenopausal weeks, 98 male and 79 female) from both static and dynamic perspectives. We found that cortical myelination was most strongly associated with local brain functional activity across the cerebral cortex than other cortical structural features while controlling the age effect. These findings suggest the crucial role of cortical myelination in local brain functional development at birth, providing valuable insights into the fundamental biological basis of functional activity at this early developmental stage.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Infant, Newborn , Male , Humans , Female , Cerebral Cortex/diagnostic imaging , Brain/diagnostic imaging
14.
Nat Methods ; 20(1): 55-64, 2023 01.
Article in English | MEDLINE | ID: mdl-36585454

ABSTRACT

Brain atlases are spatial references for integrating, processing, and analyzing brain features gathered from different individuals, sources, and scales. Here we introduce a collection of joint surface-volume atlases that chart postnatal development of the human brain in a spatiotemporally dense manner from two weeks to two years of age. Our month-specific atlases chart normative patterns and capture key traits of early brain development and are therefore conducive to identifying aberrations from normal developmental trajectories. These atlases will enhance our understanding of early structural and functional development by facilitating the mapping of diverse features of the infant brain to a common reference frame for precise multifaceted quantification of cortical and subcortical changes.


Subject(s)
Brain , Image Processing, Computer-Assisted , Humans , Infant , Brain Mapping , Magnetic Resonance Imaging
15.
Med Image Comput Comput Assist Interv ; 13438: 255-264, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36563062

ABSTRACT

Longitudinal infant brain functional connectivity (FC) constructed from resting-state functional MRI (rs-fMRI) has increasingly become a pivotal tool in studying the dynamics of early brain development. However, due to various reasons including high acquisition cost, strong motion artifact, and subject dropout, there has been an extreme shortage of usable longitudinal infant rs-fMRI scans to construct longitudinal FCs, which hinders comprehensive understanding and modeling of brain functional development at early ages. To address this issue, in this paper, we propose a novel conditional intensive triplet network (CITN) for longitudinal prediction of the dynamic development of infant FC, which can traverse FCs within a long duration and predict the target FC at any specific age during infancy. Targeting at accurately modeling of the progression pattern of FC, while maintaining the individual functional uniqueness, our model effectively disentangles the intrinsically mixed age-related and identity-related information from the source FC and predicts the target FC by fusing well-disentangled identity-related information with the specific age-related information. Specifically, we introduce an intensive triplet auto-encoder for effective disentanglement of age-related and identity-related information and an identity conditional module to mix identity-related information with designated age-related information. We train the proposed model in a self-supervised way and design downstream tasks to help robustly disentangle age-related and identity-related features. Experiments on 464 longitudinal infant fMRI scans show the superior performance of the proposed method in longitudinal FC prediction in comparison with state-of-the-art approaches.

16.
Front Hum Neurosci ; 16: 943341, 2022.
Article in English | MEDLINE | ID: mdl-36147297

ABSTRACT

Background: Physical activity is known to improve mental health, and is regarded as safe and desirable for uncomplicated pregnancy. In this novel study, we aim to evaluate whether there are associations between maternal physical activity during pregnancy and neonatal brain cortical development. Methods: Forty-four mother/newborn dyads were included in this longitudinal study. Healthy pregnant women were recruited and their physical activity throughout pregnancy were documented using accelerometers worn for 3-7 days for each of the 6 time points at 4-10, ∼12, ∼18, ∼24, ∼30, and ∼36 weeks of pregnancy. Average daily total steps and daily total activity count as well as daily minutes spent in sedentary/light/moderate/vigorous activity modes were extracted from the accelerometers for each time point. At ∼2 weeks of postnatal age, their newborns underwent an MRI examination of the brain without sedation, and 3D T1-weighted brain structural images were post-processed by the iBEAT2.0 software utilizing advanced deep learning approaches. Cortical surface maps were reconstructed from the segmented brain images and parcellated to 34 regions in each brain hemisphere, and mean cortical thickness for each region was computed for partial correlation analyses with physical activity measures, with appropriate multiple comparison corrections and potential confounders controlled. Results: At 4-10 weeks of pregnancy, mother's daily total activity count positively correlated (FDR corrected P ≤ 0.05) with newborn's cortical thickness in the left caudal middle frontal gyrus (rho = 0.48, P = 0.04), right medial orbital frontal gyrus (rho = 0.48, P = 0.04), and right transverse temporal gyrus (rho = 0.48, P = 0.04); mother's daily time in moderate activity mode positively correlated with newborn's cortical thickness in the right transverse temporal gyrus (rho = 0.53, P = 0.03). At ∼24 weeks of pregnancy, mother's daily total activity count positively correlated (FDR corrected P ≤ 0.05) with newborn's cortical thickness in the left (rho = 0.56, P = 0.02) and right isthmus cingulate gyrus (rho = 0.50, P = 0.05). Conclusion: We identified significant relationships between physical activity in healthy pregnant women during the 1st and 2nd trimester and brain cortical development in newborns. Higher maternal physical activity level is associated with greater neonatal brain cortical thickness, presumably indicating better cortical development.

17.
Proc Natl Acad Sci U S A ; 119(33): e2121748119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939665

ABSTRACT

Surface area of the human cerebral cortex expands extremely dynamically and regionally heterogeneously from the third trimester of pregnancy to 2 y of age, reflecting the spatial heterogeneity of the underlying microstructural and functional development of the cerebral cortex. However, little is known about the developmental patterns and regionalization of cortical surface area during this critical stage, due to the lack of high-quality imaging data and accurate computational tools for pediatric brain MRI data. To fill this critical knowledge gap, by leveraging 1,037 high-quality MRI scans with the age between 29 post-menstrual weeks and 24 mo from 735 pediatric subjects in two complementary datasets, i.e., the Baby Connectome Project (BCP) and the developing Human Connectome Project (dHCP), and state-of-the-art dedicated image-processing tools, we unprecedentedly parcellate the cerebral cortex into a set of distinct subdivisions purely according to the developmental patterns of the cortical surface. Our discovered developmentally distinct subdivisions correspond well to structurally and functionally meaningful regions and reveal spatially contiguous, hierarchical, and bilaterally symmetric patterns of early cortical surface expansion. We also show that high-order association subdivisions, where cortical folds emerge later during prenatal stages, undergo more dramatic cortical surface expansion during infancy, compared with the central regions, especially the sensorimotor and insula cortices, thus forming a distinct central-pole division in early cortical surface expansion. These results provide an important reference for exploring and understanding dynamic early brain development in health and disease.


Subject(s)
Cerebral Cortex , Connectome , Cerebral Cortex/growth & development , Connectome/methods , Humans , Image Processing, Computer-Assisted/methods , Infant , Infant, Newborn , Magnetic Resonance Imaging/methods
18.
Article in English | MEDLINE | ID: mdl-35572069

ABSTRACT

Brain cortical surfaces, which have an intrinsic spherical topology, are typically represented by triangular meshes and mapped onto a spherical manifold in neuroimaging analysis. Inspired by the strong capability of feature learning in Convolutional Neural Networks (CNNs), spherical CNNs have been developed accordingly and achieved many successes in cortical surface analysis. Motivated by the recent success of the transformer, in this paper, for the first of time, we extend the transformer into the spherical space and propose the spherical transformer, which can better learn contextual and structural features than spherical CNNs. We applied the spherical transformer in the important task of automatic quality assessment of infant cortical surfaces, which is a necessary procedure to identify problematic cases due to extremely low tissue contrast and strong motion effects in pediatric brain MRI studies. Experiments on 1,860 infant cortical surfaces validated its superior effectiveness and efficiency in comparison with spherical CNNs.

19.
IEEE Trans Med Imaging ; 41(10): 2764-2776, 2022 10.
Article in English | MEDLINE | ID: mdl-35500083

ABSTRACT

Infancy is a critical period for the human brain development, and brain age is one of the indices for the brain development status associated with neuroimaging data. The difference between the predicted age based on neuroimaging and the chronological age can provide an important early indicator of deviation from the normal developmental trajectory. In this study, we utilize the Graph Convolutional Network (GCN) to predict the infant brain age based on resting-state fMRI data. The brain connectivity obtained from rs-fMRI can be represented as a graph with brain regions as nodes and functional connections as edges. However, since the brain connectivity is a fully connected graph with features on edges, current GCN cannot be directly used for it is a node-based method for sparse graphs. Hence, we propose an edge-based Graph Path Convolution (GPC) method, which aggregates the information from different paths and can be naturally applied on dense graphs. We refer the whole model as Brain Connectivity Graph Convolutional Networks (BC-GCN). Further, two upgraded network structures are proposed by including the residual and attention modules, referred as BC-GCN-Res and BC-GCN-SE to emphasize the information of the original data and enhance influential channels. Moreover, we design a two-stage coarse-to-fine framework, which determines the age group first and then predicts the age using group-specific BC-GCN-SE models. To avoid accumulated errors from the first stage, a cross-group training strategy is adopted for the second stage regression models. We conduct experiments on infant fMRI scans from 6 to 811 days of age. The coarse-to-fine framework shows significant improvements when being applied to several models (reducing error over 10 days). Comparing with state-of-the-art methods, our proposed model BC-GCN-SE with coarse-to-fine framework reduces the mean absolute error of the prediction from >70 days to 49.9 days. The code is now available at https://github.com/SCUT-Xinlab/BC-GCN.


Subject(s)
Brain , Neuroimaging , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neuroimaging/methods
20.
Neuroimage ; 253: 119097, 2022 06.
Article in English | MEDLINE | ID: mdl-35301130

ABSTRACT

Spatiotemporal (four-dimensional) infant-dedicated brain atlases are essential for neuroimaging analysis of early dynamic brain development. However, due to the substantial technical challenges in the acquisition and processing of infant brain MR images, 4D atlases densely covering the dynamic brain development during infancy are still scarce. Few existing ones generally have fuzzy tissue contrast and low spatiotemporal resolution, leading to degraded accuracy of atlas-based normalization and subsequent analyses. To address this issue, in this paper, we construct a 4D structural MRI atlas for infant brains based on the UNC/UMN Baby Connectome Project (BCP) dataset, which features a high spatial resolution, extensive age-range coverage, and densely sampled time points. Specifically, 542 longitudinal T1w and T2w scans from 240 typically developing infants up to 26-month of age were utilized for our atlas construction. To improve the co-registration accuracy of the infant brain images, which typically exhibit dynamic appearance with low tissue contrast, we employed the state-of-the-art registration method and leveraged our generated reliable brain tissue probability maps in addition to the intensity images to improve the alignment of individual images. To achieve consistent region labeling on both infant and adult brain images for facilitating region-based analysis across ages, we mapped the widely used Desikan cortical parcellation onto our atlas by following an age-decreasing mapping manner. Meanwhile, the typical subcortical structures were manually delineated to facilitate the studies related to the subcortex. Compared with the existing infant brain atlases, our 4D atlas has much higher spatiotemporal resolution and preserves more structural details, and thus can boost accuracy in neurodevelopmental analysis during infancy.


Subject(s)
Connectome , Adult , Brain/diagnostic imaging , Cohort Studies , Humans , Image Processing, Computer-Assisted/methods , Infant , Magnetic Resonance Imaging/methods , Neuroimaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...