Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(5): e202302111, 2024 May.
Article in English | MEDLINE | ID: mdl-38453650

ABSTRACT

Phytochemical studies on 95 % ethanol extract of the heartwood of Solanum verbascifolium L. resulted in the isolation of one new amide derivative (1), and 21 known phenylpropanoids compounds. The structures were characterized by spectral analysis and high-resolution mass spectrometric analysis. The anti-inflammatory activity of amide compounds 1-4 and 6-9 by investigating their impact on the release of nitric oxide (NO) in MH-S cells. Our findings unveiled significant inhibitory effects on NO secretion. Compound 1 exhibited robust dose-dependent suppression, with pronounced inhibition observed at both 20 µM (P<0.01) and 40 µM (P<0.01). Furthermore, compound 9 demonstrated noteworthy inhibitory effects at 40 µM (P<0.01). Similarly, compounds 3 and 4 displayed substantial inhibition of NO secretion at the same concentration, although the significance level was slightly lower (P<0.05). It is expected that there is a substantial association between the anti-inflammatory activities of amides and their targets, specifically PTGS2, by combining network pharmacology and molecular docking techniques. This discovery emphasizes amides' potential as an interesting subject for additional study in the realm of anti-inflammatory medications.


Subject(s)
Anti-Inflammatory Agents , Molecular Docking Simulation , Nitric Oxide , Solanum , Solanum/chemistry , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cyclooxygenase 2/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Network Pharmacology , Amides/chemistry , Amides/pharmacology , Amides/isolation & purification , Mice , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Cell Line , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
2.
Adv Skin Wound Care ; 37(4): 216-223, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38353666

ABSTRACT

OBJECTIVE: To compare the efficacy of several local antibiotic regimens in preventing surgical site infection (SSI) in clean surgical wounds. DATA SOURCES: The authors searched CNKI (China National Knowledge Infrastructure), the VIP (VIP information resource integration service platform), Wanfang Data knowledge service platform (WANFANG), SinoMed, Cochrane Library, EMBASE, and PubMed. STUDY SELECTION: A total of 20 randomized controlled trials published between January 1, 2000 and April 1, 2021 were included in this meta-analysis. DATA EXTRACTION: Authors extracted the name of the first author, publication date, country, type of surgery, follow-up time, mean age of participants, sample size of each group, interventions, outcome indicators, and study type from each article. DATA SYNTHESIS: The overall effectiveness of eight local managements in reducing the incidence of the SSI effect were compared through the SUCRA (surface under the cumulative ranking curve) probabilities. The results of a network meta-analysis demonstrated that gentamicin ointment (odds ratio [OR], 0.16; 95% CI, 0.04-0.60), mupirocin ointment (OR, 0.44; 95% CI, 0.21-0.94), and gentamicin soaking of the graft (OR, 0.63; 95% CI, 0.44-0.91) significantly reduced the incidence of SSI compared with control. Further, vancomycin soaking of the graft (86.7%) ranked first, followed by gentamicin ointment (81.1%), gentamicin irrigation (79.9%), mupirocin ointment (56.8%), triple antibiotic ointment (47.8%), gentamicin soaking of the graft (42.3%), and vancomycin powder (22.1%); ampicillin powder (17.8%) was the least effective drug. CONCLUSIONS: The findings indicate that local antibiotics combined with conventional antibiotics in the wound before wound closure are effective in reducing the incidence of SSI in clean surgical wounds. Vancomycin inoculation of the graft exhibited the best effect.


Subject(s)
Anti-Bacterial Agents , Surgical Wound , Humans , Anti-Bacterial Agents/therapeutic use , Mupirocin , Vancomycin , Network Meta-Analysis , Ointments , Powders , Surgical Wound Infection/epidemiology , Gentamicins
3.
World J Gastrointest Oncol ; 16(1): 144-181, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38292838

ABSTRACT

BACKGROUND: The pyruvate dehydrogenase E1 subunit ß (PDHB) gene which regulates energy metabolism is located in mitochondria. However, few studies have elucidated the role and mechanism of PDHB in different cancers. AIM: To comprehensive pan-cancer analysis of PDHB was performed based on bioinformatics approaches to explore its tumor diagnostic and prognostic value and tumor immune relevance in cancer. In vitro experiments were performed to examine the biological regulation of PDHB in liver cancer. METHODS: Pan-cancer data related to PDHB were obtained from the Cancer Genome Atlas (TCGA) database. Analysis of the gene expression profiles of PDHB was based on TCGA and Genotype Tissue Expression Dataset databases. Cox regression analysis and Kaplan-Meier methods were used to assess the correlation between PDHB expression and survival prognosis in cancer patients. The correlation between PDHB and receiver operating characteristic diagnostic curve, clinicopathological staging, somatic mutation, tumor mutation burden (TMB), microsatellite instability (MSI), DNA methylation, and drug susceptibility in pan-cancer was also analyzed. Various algorithms were used to analyze the correlation between PDHB and immune cell infiltration and tumor chemotaxis environment, as well as the co-expression analysis of PDHB and immune checkpoint (ICP) genes. The expression and functional phenotype of PDHB in single tumor cells were studied by single-cell sequencing, and the functional enrichment analysis of PDHB-related genes was performed. The study also validated the level of mRNA or protein expression of PDHB in several cancers. Finally, in vitro experiments verified the regulatory effect of PDHB on the proliferation, migration, and invasion of liver cancer. RESULTS: PDHB was significantly and differently expressed in most cancers. PDHB was significantly associated with prognosis in patients with a wide range of cancers, including kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, breast invasive carcinoma, and brain lower grade glioma. In some cancers, PDHB expression was clearly associated with gene mutations, clinicopathological stages, and expression of TMB, MSI, and ICP genes. The expression of PDHB was closely related to the infiltration of multiple immune cells in the immune microenvironment and the regulation of tumor chemotaxis environment. In addition, single-cell sequencing results showed that PDHB correlated with different biological phenotypes of multiple cancer single cells. This study further demonstrated that down-regulation of PDHB expression inhibited the proliferation, migration, and invasion functions of hepatoma cells. CONCLUSION: As a member of pan-cancer, PDHB may be a novel cancer marker with potential value in diagnosing cancer, predicting prognosis, and in targeted therapy.

4.
Chem Biodivers ; 20(11): e202300999, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37933979

ABSTRACT

Dendrobium officinale Kimura et Migo is a valuable and homologous medicine and food traditional Chinese medicine. Currently there are few studies on the anti-inflammatory activity of lipophilic components. The aim of this study was to explore the anti-inflammatory effect and mechanism of the lipophilic compounds in Dendrobium officinale. Six compounds were isolated and identified, including three bibenzyl compounds, dendrocandin U, dendronbibisline B, erianin, and three lignans, (-)-syringaresinol, (+)-syringaresinol-O-ß-D-glucopyranoside, 5-methoxy-(+)-isolariciresinol. Among them, dendronbibisline B and 5-methoxy-(+)-isolariciresinol were isolated from Dendrobium officinale for the first time. Besides, we found dendrocandin U, dendronbibisline B and (-)-syringaresinol exhibited the anti-inflammation to inhibit nitric oxide secretion induced by lipopolysaccharide (LPS)/interferon (IFN-γ) in MH-S cells. Furthermore, dendrocandin U could inhibit the expression of tumor necrosis factor-α (TNF-α), Cluster of Differentiation 86 (CD86), and reduce inflammatory morphological changes of macrophages. Meanwhile, we confirmed that the anti-inflammation mechanism of dendrocandin U was to inhibit M1 polarization by suppressing toll-like receptor 4 (TLR4)/recombinant myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κB) signaling pathway. In this paper, dendrocandin U with significant anti-inflammatory activity was found from Dendrobium officinale, which could provide a basis for the study of its anti-inflammatory drugs.


Subject(s)
Dendrobium , NF-kappa B , NF-kappa B/metabolism , Macrophages, Alveolar/metabolism , Signal Transduction , Anti-Inflammatory Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...