Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 318: 120872, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36529344

ABSTRACT

The effects of elevated carbon dioxide (CO2) concentration (e[CO2]) on nitrous oxide (N2O) emissions from paddy fields and the microbial processes involved in N2O emissions have recently received much attention. Ammonia-oxidizing microorganisms and denitrifying bacteria dominate the production of N2O in paddy soils. To better understand the dynamics of N2O production under e[CO2], a field experiment was conducted after five years of CO2 fumigation based on three treatments: CK (ambient atmospheric CO2), T1 (CK + increase of 40 ppm per year until 200 ppm), and T2 (CK + 200 ppm). N2O fluxes, soil physicochemical properties, and N2O production potential were quantified during the rice-growth period. The functional gene abundance and community composition of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were analyzed using quantitative polymerase chain reaction (qPCR) and those of ammonia-denitrifying bacteria (nirS- and nirK-type) were analyzed using Illumina MiSeq sequencing. N2O emissions decreased by 173% and 41% under the two e[CO2] treatments during grain filling and milk ripening, respectively (P < 0.05). N2O emissions increased by 279% and 172% in the T2 treatment compared with T1 during the tillering and milk-ripening stages, respectively (P < 0.05). Furthermore, the N2O production potential was significantly higher in the CK treatment than in T1 and T2 during the elongation stage. The N2O production potential and abundance of AOA amoA genes in T1 treatment were significantly lower than those in CK treatment during the high N2O emission phase caused by mid-season drainage (P < 0.05). Although nirK- and nirS-type denitrifying bacteria community structure and diversity did not respond significantly (P > 0.05) to e[CO2], the abundance of nirK-type denitrifying bacteria significantly affected the N2O flux (P < 0.05). Linear regression analysis showed that the N2O production potential, AOA amoA gene abundance, and nirK gene abundance explained 47.2% of the variation in N2O emissions. In addition, soil nitrogen (N) significantly affected the nirK- and nirS-type denitrifier communities. Overall, our results revealed that e[CO2] suppressed N2O emissions, which was closely associated with the abundance of AOA amoA and nirK genes (P < 0.05).


Subject(s)
Microbiota , Soil , Soil/chemistry , Carbon Dioxide/analysis , Ammonia/analysis , Soil Microbiology , Bacteria/genetics , Archaea/genetics , Nitrous Oxide/analysis
2.
Environ Pollut ; 307: 119480, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35588957

ABSTRACT

Elevated carbon dioxide (ECO2) concentration has profound impacts on ecosystem carbon fluxes, with consequent changes in carbon sequestration and its feedback to climate change. Agroecosystem plays an essential role in global carbon sequestration. However, it is not well understood how the carbon fluxes of agroecosystem respond to increasing atmospheric CO2 concentrations. In this study, an in-situ 2-year field experiment was conducted using open-top chamber with treatments including ambient CO2 concentration (CK) and ambient plus 200 µmol mol-1 (T) to investigate the characteristics and main factors influencing carbon fluxes during the 2017-2019 winter wheat growing seasons. Results showed that the dynamics of CO2 fluxes under different treatments had similar seasonal trends, with the peak flux observed at the heading-filling stage. Compared to the CK, T treatment increased the cumulative amount of CO2 (CAC) by 17.2% and 24.0% in 2017-2018 and 2018-2019 growing seasons, respectively. In addition, the seasonal CAC was highly dependent on treatment and varied with year, while there was no interactive effect of treatment and year (p > 0.05). ECO2 concentration increased the biomass of wheat by an average of 8.28% over two growing seasons. There was a significant positive correlation between biomass and CAC, with biomass elucidating 52% and 76% of the variations in CAC under CK and T treatments, respectively. A good correlation was found between net ecosystem exchange (NEE) and environmental variables under different treatments. During the pre-milk ripening period, the NEE mainly depended on photosynthetically active radiation (PAR) and air temperature (Ta), while NEE was mainly controlled by PAR and soil water content (SWC) during the post-milk ripening period. Overall, the findings presented here demonstrate that the carbon exchange in wheat fields under different treatments serves as carbon sequestration, while ECO2 concentration enhances the capacity of winter wheat fields to act as carbon sinks, which may have feedback to the climate system in the future.


Subject(s)
Carbon Dioxide , Triticum , Carbon Cycle , Ecosystem , Seasons
3.
Environ Monit Assess ; 193(7): 441, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34165640

ABSTRACT

Agricultural drought risk analysis is useful for reducing probable drought risk in the background of global warming. This study aims to identify spatiotemporal characteristics of drought and drought disaster risk in the summer maize growth period under climate change condition. In this research, we use daily datasets from 79 meteorological stations and the maize yield data in the Huang-Huai-Hai (HHH) plain, eastern China during the period 1960-2015. The drought disaster risk index (DDRI) model was applied to assess the drought disaster risk. The maize drought disaster risk maps were drawn under current and future climate change conditions. The results showed that the high DDRI was distributed in northern region and low DDRI was distributed in most of southern region in the HHH plain. During the summer maize growth period, the DDRI decreased gradually from the northern to southern region. The results also exhibited that under the RCP4.5 (Representative Concentration Pathway 4.5) scenario, about one half of the HHH plain belonged to the slight and sub-slight DDRI region in the future 80 years. Overall, our results demonstrated that the DDRI model provided an accurate assessment in both spatial and temporal scales and had a theoretical guidance for improving the adaptation of crop production. Elevating maize drought risk management helps to lessen the anticipated risk to crop production in the HHH plain under the context of climate change.


Subject(s)
Disasters , Droughts , China , Climate Change , Environmental Monitoring , Risk Assessment , Zea mays
4.
Sci Total Environ ; 773: 145629, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33940739

ABSTRACT

Understanding the process of methanogenesis in paddy fields under the scenarios of future climate change is of great significance for reducing greenhouse gas emissions and regulating the soil carbon cycle. Methyl Coenzyme M Reductase subunit A (mcrA) of methanogens is a rate-limiting enzyme that catalyzes the final step of CH4 production. However, the mechanism of methanogenesis change in the paddy fields under different elevated CO2 concentrations (e[CO2]) is rarely explored in earlier studies. In this research, we explored how the methanogens affect CH4 flux in paddy fields under various (e[CO2]). CH4 flux and CH4 production potential (MPP), and mcrA gene abundance were quantitatively analyzed under C (ambient CO2 concentration), C1 (C + 160 ppm CO2), and C2 (C + 200 ppm CO2) treatments. Additionally, the community composition and structure of methanogens were also compared with Illumina MiSeq sequencing. The results showed that C2 treatment significantly increased CH4 flux and MPP at the tillering stage. E[CO2] had a positive effect on the abundance of methanogens, but the effect was insignificant. We detected four known dominant orders of methanogenesis in this study, such as Methanosarcinales, Methanobacteriales, Methanocellales, and Methanomicrobiales. Although e[CO2] did not significantly change the overall community structure and diversity of methanogens, C2 treatment significantly reduced the relative abundance of two uncultured genera compared to C treatment. A linear regression model of DOC, methanogenic abundance, and MPP can explain 67.2% of the variation of CH4 flux under e[CO2]. Overall, our results demonstrated that CH4 flux in paddy fields under e[CO2] was mainly controlled by soil unstable C substrate and the abundance and activity of methanogens in rhizosphere soil.


Subject(s)
Carbon Dioxide , Methane , Methanosarcinales , Oxidoreductases , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...