Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.945
Filter
1.
J Environ Sci (China) ; 148: 221-229, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095159

ABSTRACT

Polychlorinated naphthalenes (PCNs) are detrimental to human health and the environment. With the commercial production of PCNs banned, unintentional releases have emerged as a significant environmental source. However, relevant information is still scarce. In this study, provincial emissions for eight PCNs homologues from 37 sources in the Chinese mainland during the period of 1960-2019 were estimated based on a source-specific and time-varying emission factor database. The results showed that the total PCNs emissions in 2019 reached 757.0 kg with Hebei ranked at the top among all the provinces and iron & steel industry as the biggest source. Low-chlorinated PCNs comprised 90% of emissions by mass, while highly chlorinated PCNs dominated in terms of toxicity, highlighting divergent priorities for mitigating emissions and safeguarding human health. The emissions showed an overall upward trend from 1960 to 2019 driven by emission increase from iron & steel industry in terms of source, and from North China and East China in terms of geographic area. Per-capita emissions followed an inverted U-shaped environmental Kuznets curve while emission intensities decreased with increasing per-capita Gross Domestic Product (GDP) following a nearly linear pattern when log-transformed.


Subject(s)
Air Pollutants , Environmental Monitoring , Naphthalenes , China , Naphthalenes/analysis , Air Pollutants/analysis , Air Pollution/statistics & numerical data
2.
Animals (Basel) ; 14(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39272253

ABSTRACT

The literature shows that maternal stress can influence behavior and immune function in F1. Yet, most studies on these are from the laboratory, and replicated studies on the mechanisms by which maternal stress drives individual characteristics are still not fully understood in wild animals. We manipulated high- and low-density parental population density using large-scale field enclosures and examined behavior and immune traits. Within the field enclosures, we assessed anti-keyhole limpet hemocyanin immunoglobulin G (anti-KLH IgG) level, phytohemagglutinin (PHA) responses, hematology, cytokines, the depressive and anxiety-like behaviors and prevalence and intensity of coccidial infection. We then collected brain tissue from juvenile voles born at high or low density, quantified mRNA and protein expression of corticotropin-releasing hormone (CRH) and glucocorticoid receptor gene (NR3C1) and measured DNA methylation at CpG sites in a region that was highly conserved with the prairie vole CRH and NR3C1 promoter. At high density, we found that the F1 had a lower DNA methylation level of CRH and a higher DNA methylation level of NR3C1, which resulted in an increase in the expression levels of the CRH mRNA and protein expression and further reduced the expression levels of the NR3C1 mRNA and protein expression, and ultimately led to have delayed responses to acute immobilization stress. Juvenile voles born at high density also reduced anti-KLH IgG levels and PHA responses, increased cytokines, and depressive and anxiety-like behaviors, and the effects further led to higher coccidial infection. From the perspective of population density inducing the changes in behavior and immunity at the brain level, our results showed a physiological epigenetic mechanism for population self-regulation in voles. Our results indicate that altering the prenatal intrinsic stress environment can fundamentally impact behavior and immunity by DNA methylation of HPA-axis genes and can further drive population fluctuations in wild animals.

3.
Int J Mol Sci ; 25(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39273586

ABSTRACT

A narrow genetic basis limits further the improvement of modern Gossypium hirsutum cultivar. The abundant genetic diversity of wild species provides available resources to solve this dilemma. In the present study, a chromosome segment substitution line (CSSL) population including 553 individuals was established using G. darwinii accession 5-7 as the donor parent and G. hirsutum cultivar CCRI35 as the recipient parent. After constructing a high-density genetic map with the BC1 population, the genotype and phenotype of the CSSL population were investigated. A total of 235 QTLs, including 104 QTLs for fiber-related traits and 132 QTLs for seed-related traits, were identified from four environments. Among these QTLs, twenty-seven QTLs were identified in two or more environments, and twenty-five QTL clusters consisted of 114 QTLs. Moreover, we identified three candidate genes for three stable QTLs, including GH_A01G1096 (ARF5) and GH_A10G0141 (PDF2) for lint percentage, and GH_D01G0047 (KCS4) for seed index or oil content. These results pave way for understanding the molecular regulatory mechanism of fiber and seed development and would provide valuable information for marker-assisted genetic improvement in cotton.


Subject(s)
Chromosome Mapping , Chromosomes, Plant , Cotton Fiber , Gossypium , Phenotype , Quantitative Trait Loci , Seeds , Gossypium/genetics , Seeds/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Plant Breeding/methods , Genotype
4.
Neuroscience ; 559: 303-315, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39276842

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) play a crucial role in mediating Amyloid-ß (Aß) synaptotoxicity. Our previous studies have demonstrated an opposite (neuroprotection and neurotoxicity) effect of activating astrocytic and neuronal NMDARs with higher dose (10 µM) of NMDA, an agonist of NMDARs. By contrast, activating neuronal or astrocyitc NMDARs with lower dose (1 µM) of NMDA both exerts neuroprotective effect in Aß-induced neurotoxicity. However, the underlying mechanism of activating astrocytic NMDARs with lower dose of NMDA to protect against Aß neurotoxicity remains unclear. Based on our previous related work, in this study, using a co-cultured cell model of primary hippocampal neurons and astrocytes, we further investigated the possible factors involved in 1 µM of NMDA activating astrocytic NMDARs to oppose Aß-induced synaptotoxicity. Our results showed that activation of astrocytic NMDARs by 1 µM NMDA rescued Aß-induced reduction of brain-derived neurotrophic factor (BDNF), and inhibited Aß-induced increase of GFAP, complement 3 (C3) and activation of NF-κB. Furthermore, blockade of astrocytic GluN2A with TCN201 abrogated the ability of 1 µM NMDA to counteract the effects of Aß decreasing BDNF, and increasing GFAP, C3 and activation of NF-κB. These findings suggest that activation of astrocytic NMDARs protect against Aß-induced synaptotoxicity probably through elevating BDNF and suppressing GFAP and C3. Our present research provides valuable insights for elucidating the underlying mechanism of astrocytic NMDARs activation resisting the toxic effects of Aß.

5.
Org Lett ; 26(37): 7891-7896, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39240619

ABSTRACT

In this paper, novel sulfur-containing 1,6-dihydrofuro[3,2-b]pyrazolo[3,4-e][1,4]thiazine skeletons were constructed from the simple and readily available materials enaminone, 5-aminopyrazole, and 1,4-dithiane-2,5-diol. Furthermore, a novel 1,4-dithiane-2,5-diol reaction mode has been developed through a double-dipole-reversal process induced by iodine that results in the formation of six new bonds and two new rings in a one-pot reaction. This method shows good substrate compatibility, and the products can be further modified with a variety of pharmaceuticals. Additionally, this novel skeleton exhibits good fluorescence properties in solution, enabling bright and stable green fluorescence imaging in HeLa cells.

6.
Int Immunopharmacol ; 142(Pt B): 113190, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39306890

ABSTRACT

NETosis happens when neutrophils are activated and neutrophil extracellular traps (NETs) are formed synchronously, which is a hallmark of psoriasis. However, the specific trigger that drives NET formation and the distinct contents and interaction with interleukin-36 receptor (IL-36R) of NETs remain to be further elucidated. This work identified NET formation driven by toll-like receptor (TLR) 3 ligand (especially polyinosinic-polycytidylic acid (Poly(I:C)) were enhanced by purinergic receptor P2X ligand-gated ion channel 7 receptor (P2X7R) ligands (especially adenosine 5'-triphosphate (ATP)). NET formation was accompanied by the secretion of inflammatory cytokines and characterized by IL-1ß decoration. NET formation blockade decreased expressions of inflammatory cytokines and chemokines, which consequently improved inflammatory responses. Additionally, imiquimod (IMQ)-induced psoriasiform symptoms including neutrophilic infiltration tended to be time-sensitive. Mouse primary keratinocytes and mice deficient in Il1rl2, which encodes IL-36R, mitigated inflammatory responses and NET formation, thereby delaying the pathophysiology of psoriasis. Together, the findings provided the therapeutic potential for IL-36 targeting NET inhibitors in psoriasis treatment.

7.
Water Res ; 267: 122453, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39306934

ABSTRACT

H2O2 as a green oxidant plays a crucial role in numerous green chemical reactions. However, how to improve its activation and utilization efficiency as well as regulate the distribution of ROS remains a pressing challenge. In this work, a sulfur quantum dots (SQDs) modified zero-valent iron (SQDs@ZVI) was delicately designed and prepared, whose iron sites can coordinate with strongly electronegative sulfur atoms to construct highly reactive Fe-S dual active sites, for high-efficient selective H2O2 activation and utilization with potent •OH production. Experimental tests, in situ FTIR/Raman spectra and theoretical calculations demonstrated that SQDs modulates the local coordination structure and electronic density of iron centers, thus effectively enhancing its Fenton reactivity and promoting the rate-limiting H2O2 adsorption and subsequent barrierless dissociation of peroxyl bonds into •OH via the formation of bridged S-O-O-Fe complexes. Consequently, substantial generated surface-bound •OH induced by the highly reactive Fe-S dual sites enabled excellent degradation of miscellaneous organic pollutants over a broad pH range (3.0-9.0). The developed device-scale Fenton filter realized durable performance (up to 200 h), verifying the vast potential of SQDs@ZVI with diatomic sites for practical application. This work presents a promising strategy to construct metal-nonmetal diatomic active sites toward boosting selective activation and effective utilization of H2O2, which may inspire the design of efficient heterogeneous Fenton reaction for water decontamination.

8.
Int J Gen Med ; 17: 3699-3709, 2024.
Article in English | MEDLINE | ID: mdl-39219673

ABSTRACT

Background: Older age and female sex are risk factors for osteoarthritis and osteoporosis (OP). This study evaluated the knowledge, attitudes, and practices of patients with knee osteoarthritis (KOA) in China regarding OP and its prevention. This cross-sectional, questionnaire-based study enrolled patients with KOA at four grade-A tertiary hospitals in Shandong Province between 1st September and 20th November 2022. Methods: The administered questionnaire contained 55 items across four dimensions (demographic information, knowledge, attitude, and practice). Logistic regression analyses were performed to identify factors associated with an overall questionnaire score ≥70% of the maximum possible score. SPSS 26.0 was used for the analyses; P<0.05 was considered significant. Results: The analysis included 434 participants (261 females). The median knowledge, attitude, and practice scores were 7 (interquartile range: 5-10) (possible range, 0-17 points), 44 (interquartile range: 42-49) (possible range, 11-55 points), and 43 (interquartile range: 38-47) (possible range, 13-65 points), respectively. Multivariable logistic regression indicated that female sex (odds ratio [OR], 2.421; 95% confidence interval [95% CI] 1.558-3.762; P<0.001), age 56-65 years-old (OR, 4.222; 95% CI, 1.763-10.109; P=0.001 vs ≤55 years-old), age >65 years-old (OR, 4.358; 95% CI, 1.863-10.195; P=0.001 vs ≤55 years-old), middle/high/technical secondary school education (OR, 1.853; 95% CI, 1.002-3.428; P=0.049 vs primary school or below), and having KOA for 4-5 years (OR, 2.682; 95% CI, 1.412-5.094; P=0.003 vs ≤3 years) were independently associated with a high KAP score. Conclusion: There is room for improvement in the knowledge and practices of patients with osteoarthritis in China regarding OP. The findings of this study may facilitate the design and implementation of education programs to increase awareness about OP prevention among patients with KOA.

9.
Mater Today Bio ; 28: 101186, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39221220

ABSTRACT

Diabetic wounds pose a clinical challenge due to persistent inflammation, severe bacterial infections, inadequate vascularization, and pronounced oxidative stress. Current therapeutic modalities fail to provide satisfactory outcomes in managing these conditions, resulting in considerable patient distress. Two-dimensional nanomaterials (2DNMs), characterized by their unique nanosheet structures, expansive surface areas, and remarkable physicochemical properties, have garnered considerable attention for their potential in therapeutic applications. Emerging 2DNMs can be loaded with various pharmacological agents, including small molecules, metal ions, and liposomes. Moreover, they can be integrated with various biomaterials such as hydrogels, microneedles, and microspheres, thus demonstrating unprecedented advantages in expediting the healing process of diabetic wounds. Moreover, 2DNMs exhibit exceptional performance characteristics, including high biocompatibility, effective antimicrobial properties, optimal phototherapeutic effects, and enhanced electrostimulation capabilities. These properties enable them to modulate the wound microenvironment, leading to widespread application in tissue repair with remarkable outcomes. This review delineates several emerging 2DNMs, such as graphene and its derivatives, black phosphorus, MXenes, and transition metal dichalcogenides, in the context of diabetic wound repair. Furthermore, it elucidates the translational challenges and future perspectives of 2DNMs in wound healing treatments. Overall, 2DNMs present a highly promising strategy for ameliorating diabetic wounds, thus providing novel avenues for diagnostic and therapeutic strategies in diabetic wound management.

10.
Heliyon ; 10(16): e35442, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39229529

ABSTRACT

Objective: While post-transcriptional modifications play a pivotal role in the autophagy regulation, studies on dental pulp disease are limited. This study investigated the effect of BRF1 on autophagy in inflamed pulp tissue and human dental pulp stem cells (hDPSCs). Methods: Immunohistochemical analysis was used to examine BRF1 expression, autophagy levels, and dentinogenic markers in normal and inflamed pulp. The presence of autophagosomes was observed by transmission electron microscopy. Primary hDPSCs were treated with 1 µg/mL lipopolysaccharide (LPS) for different lengths of time. The expression of BRF1 and autophagy makers was determined by Western blotting. BRF1 knockdown and 3 MA treatment were employed to assess changes in autophagy and dentinogenic differentiation. Double immunofluorescence staining was performed to co-localize BRF1 with LC3B in pulp tissue. Results: The expressions of BRF1, LC3, DMP1, and DSP were significantly elevated in the inflamed pulp. LPS enhanced the protein production of IL-6, BRF1, LC3, and Beclin-1 from 6 h to 24 h after the treatment. BRF1 knockdown reduced the ratio of LC3-II/LC3-I and the differentiation ability of hDPSCs, while 3 MA inhibited LPS-mediated dentinogenic differentiation. Double-labeling revealed that BRF1 co-localized with LC3B in inflamed pulp. Conclusion: This study demonstrated that BRF1 promoted autophagy activation and odontogenic differentiation in pulpitis.

11.
Iran J Basic Med Sci ; 27(10): 1276-1283, 2024.
Article in English | MEDLINE | ID: mdl-39229575

ABSTRACT

Objectives: Ulcerative colitis (UC) is a commonly recurrent inflammatory bowel disease. T helper 17 (Th17)/regulatory T (Treg) cell balance plays an essential role in UC progression. However, it is unknown whether curcumin chitosan microspheres (CCM) regulate the Th17/Treg cell balance. Materials and Methods: The UC mouse model was established by administering 3% dextran sodium sulfate and treated with CCM. The influence of CCM on the Th17/Treg balance was detected using flow cytometry. Cell experiments were conducted to investigate the role and mechanism of IGF2BP1 in Th17/Treg balance. Results: We revealed that CCM demonstrated a significant therapeutic effect on UC. CCM obviously decreased the Th17 cell percentage but boosted the Treg cell percentage in UC mice. CCM remarkably increased the mRNA expression of Foxp3 but suppressed RORγt and interleukin-10 mRNA expression. PCR array of RNA modification-related genes revealed that the m6A binding protein IGF2BP1 was a key molecule in CCM regulation of Th17/Treg balance. IGF2BP1 overexpression dramatically repressed the CCM-induced balance of Th17/Treg cell differentiation. Mechanically, IGF2BP1 targeted LRP5 and regulated LRP5 through m6A modification. Furthermore, the silencing of LRP5 canceled the suppressive effect of IGF2BP1 on Th17/Treg cell percentage. Conclusion: CCM modulated the Th17/Treg balance through IGF2BP1-mediated m6A modification, thereby alleviating UC, and providing new ideas for the treatment of UC.

12.
J Colloid Interface Sci ; 678(Pt A): 1099-1108, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39243476

ABSTRACT

Photocatalytic water splitting technology for H2 production represents a promising and sustainable approach to clean energy generation. In this study, a high concentration of oxygen vacancies was introduced into tungsten trioxide (WO3) to create a vacancy-rich layer. This modified WO3 (WO3-x) was then combined with N-doped Zn0.6Cd0.4S through a hydrothermal synthesis, resulting in the formation of a Z-scheme heterojunction composite aimed at enhancing photocatalytic performance. Under visible light, the H2 production activity of the composite reached an impressive 8.52 mmol·g-1 without adding co-catalyst Pt. This corresponds to enhancements of 7.82 and 4.39 times the production yield of pure ZCS and ZCSN, respectively. However, the hydrogen production increased to 21.98 mmol·g-1 when Pt was added as a co-catalyst. Furthermore, an array of characterizations were employed to elucidate the presence of oxygen vacancies and the establishment of the Z-scheme heterojunction. This structural enhancement significantly facilitates the utilization of photo-generated electrons while effectively preventing photo-corrosion of ZCSN, thus improving material stability. Our study provides a new scheme for the incorporation of oxygen-rich vacancy and the construction of Z-scheme heterojunction, demonstrating a synergistic effect that greatly advances photocatalytic performance.

13.
Nat Commun ; 15(1): 7700, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227599

ABSTRACT

Despite the pivotal role of stannum doping in achieving ultrahigh piezoelectric performance in barium titanate-based ceramics, the fundamental mechanisms underlying this enhancement remain elusive. Here, we introduce a single variable nonstoichiometric stannum strategy in lead-free barium titanate-based ceramics with giant piezoelectricity, revealing that stannum doping contributes intrinsically and extrinsically to enhance piezoelectricity. Density functional theory calculations elucidate the intrinsic enhancement of polarization arising from lattice distortion and increased space for titanium-oxygen bonds induced by optimal stannum doping, which is corroborated by Rayleigh analysis. A phase transition from ferroelectric multiphase coexistence to paraelectric phase is observed, alongside a rapid miniaturized and eventually disappeared domains with increasing stannum doping. This evolution in phase structure and domain configuration induces a nearly vanishing polarization anisotropy and low domain wall energy, facilitating easy polarization rotation and domain wall motion, thereby significantly contributing to the extrinsic piezoelectric response. Consequently, the origins of ultrahigh performance can be attributed to the synergistic effect of stannum-induced intrinsic and extrinsic contributions in barium titanate-based ceramics. This study provides fundamental insights into the role of doping elements and offers guidance for the design of high-performance piezoelectrics.

14.
Theranostics ; 14(13): 5235-5261, 2024.
Article in English | MEDLINE | ID: mdl-39267781

ABSTRACT

As novel biomedical materials, microalgae have garnered significant interest because of their ability to generate photosynthetic oxygen, their antioxidant activity, and their favorable biocompatibility. Many studies have concentrated on the hypoxia-alleviating effects of microalgae within tumor microenvironments. However, recent findings indicate that microalgae can significantly increase the regeneration of various tissues and organs. To augment microalgae's therapeutic efficacy and mitigate the limitations imposed by immune clearance, it is essential to process microalgae through various processing strategies. This review examines common microalgal species in biomedical applications, such as Chlorella, Chlamydomonas reinhardtii, diatoms, and Spirulina. This review outlines diverse processing methods, including microalgae extracts, microalgae‒nanodrug composite delivery systems, surface modifications, and living microalgae‒loaded hydrogels. It also discusses the latest developments in tissue repair using processed microalgae for skin, gastrointestinal, bone, cardiovascular, lung, nerve, and oral tissues. Furthermore, future directions are presented, and research gaps for processed microalgae are identified. Collectively, these insights may inform the innovation of processed microalgae for various uses and offer guidance for ongoing research in tissue repair.


Subject(s)
Microalgae , Humans , Animals , Tissue Engineering/methods , Hydrogels/chemistry , Regeneration/physiology , Chlamydomonas reinhardtii/physiology , Biocompatible Materials , Chlorella , Diatoms/physiology , Spirulina
15.
Chem Commun (Camb) ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253897

ABSTRACT

Coulombic efficiency (CE) and rate capability are crucial parameters for advanced secondary batteries. Herein, for the first time, we report controllable amorphization and morphology engineering on mixed-valence Fe(II,III)-MOFs from the crystalline to amorphous state and micro-clustered to hollow nano-spherical geometry through valence manipulation by a dissolved oxygen-mediated pathway. The disordered structure and the hollow nanostructure can endow the MOFs with the highest initial CE (>80%) to date for MOF electrodes, and ultrafast and super-stable near-pseudocapacitance lithium storage. These findings can provide new ideas for the engineering of MOF systems for application in LIBs.

16.
BMC Musculoskelet Disord ; 25(1): 703, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227806

ABSTRACT

BACKGROUND: Keen Osteoarthritis (KOA) is a common chronic disabling disease characterized by joint pain and dysfunction, which seriously affects patients' quality of life. Recent studies have shown that transcranial direct current stimulation (tDCS) was a promising treatment for KOA. PURPOSE: Investigate the effects of tDCS on pain and physical function in patients with KOA. METHODS: Randomized controlled trials related to tDCS and KOA were systematically searched in the PubMed, Embase, Medline, Cochrane Library, CINHL, and Web of Science databases from inception to July 23, 2024. The pain intensity was evaluated using the visual analog scale or the numeric rating scale, and the pain sensitivity was assessed using conditioned pain modulation, pressure pain threshold, heat pain threshold, or heat pain tolerance. The physical function outcome was evaluated using the Western Ontario and McMaster Universities Osteoarthritis Index or the Knee injury and Osteoarthritis Outcome Score. Statistical analysis was performed using Review Manager 5.4. RESULTS: Seven studies with a total of 503 participants were included. Compared to sham tDCS, tDCS was effective in reducing the short-term pain intensity (SMD: -0.58; 95% CI: -1.02, -0.14; p = 0.01) and pain sensitivity (SMD: -0.43; 95% CI: -0.70, -0.16; p = 0.002) but failed to significantly improve the long-term pain intensity (SMD: -0.26; 95% CI: -0.59, 0.08; p = 0.13) in KOA patients. In addition, tDCS did not significantly improve the short-term (SMD: -0.13; 95% CI: -0.35, 0.08; p = 0.22) and long-term (SMD: 0.02; 95% CI: -0.22, 0.25; p = 0.90) physical function in patients with KOA. CONCLUSIONS: The tDCS can reduce short-term pain intensity and sensitivity but fails to significantly relieve long-term pain intensity and improve the physical function in patients with KOA. Thus, tDCS may be a potential therapeutic tool to reduce short-term pain intensity and pain sensitivity in patients with KOA.


Subject(s)
Osteoarthritis, Knee , Pain Measurement , Randomized Controlled Trials as Topic , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Osteoarthritis, Knee/therapy , Osteoarthritis, Knee/physiopathology , Treatment Outcome , Pain Measurement/methods , Arthralgia/therapy , Arthralgia/diagnosis , Arthralgia/physiopathology , Arthralgia/etiology , Pain Threshold , Pain Management/methods , Quality of Life , Knee Joint/physiopathology
17.
Sci Rep ; 14(1): 20874, 2024 09 06.
Article in English | MEDLINE | ID: mdl-39242655

ABSTRACT

Persistent subretinal fluid (PSF) after scleral bucking of rhegmatogenous retinal detachment may delay recovery and affect the final visual quality, but with no effective treatment. This study firstly investigated the safety and efficacy of 577 nm yellow subthreshold micropulse laser (SML) on PSF after scleral bucking surgery. This double-masked randomized clinical trial was conducted from December 2020 to October 2022 at Chongqing Aier Eye Hospital. Participants with PSF last for 1 month after scleral bucking surgery with break closed and retina reattachment were recruitment. These participants were treated by 577 nm yellow SML or sham treatment. Funduscopy, optical coherence tomography (OCT) volume change, best corrected vision acuity (BCVA) and visual field test were evaluated for six mouths follow-up. A total of 24 participants were randomized into SML group or Sham group equally. Compared with Sham group, the OCT volume within 6 mm of macular fovea was significantly less in SML group 6 months after therapy (P = 0.048). There were no statistically significant differences of OCT volume at 1, 2 and 3 months from baseline between groups. BCVA of ETDRS letters had no statistically significant difference. Pattern Standard Deviation amelioration (P = 0.039) had statistically significance in SML group compared with Sham group. There were no complications in the 2 groups. These preliminary findings suggest that 577 nm yellow SML therapy could accelerate PSF absorption after scleral bucking surgery.Trial registration: Chinese Clinical Trial Registry No. ChiCTR2000037838, 02/09/2020, https://www.chictr.org.cn/showproj.html?proj=51885 .


Subject(s)
Retinal Detachment , Scleral Buckling , Subretinal Fluid , Tomography, Optical Coherence , Visual Acuity , Humans , Female , Male , Scleral Buckling/methods , Scleral Buckling/adverse effects , Retinal Detachment/surgery , Middle Aged , Tomography, Optical Coherence/methods , Adult , Treatment Outcome , Double-Blind Method
18.
Virol Sin ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293542

ABSTRACT

Nipah virus (NiV) is a zoonotic paramyxovirus in the genus Henipavirus that is prevalent in Southeast Asia. NiV leads to severe respiratory disease and encephalitis in humans and animals, with a mortality rate of up to 75%. Despite the grave threat to public health and global biosecurity, no medical countermeasures are available for humans. Here, based on self-assembled ferritin nanoparticles (FeNPs), we successfully constructed two candidate FeNP vaccines by loading mammalian cells expressing NiV sG (residues 71-602, FeNP-sG) and Ghead (residues 182-602, FeNP-Ghead) onto E. coli-expressed FeNPs (FeNP-sG and FeNP-Ghead, respectively) through Spycatcher/Spytag technology. Compared with sG and Ghead alone, FeNP-sG and FeNP-Ghead elicited significant NiV specific neutralizing antibody levels and T-cell responses in mice, whereas the immune response in the FeNP-sG immunized group was greater than that in the FeNP-Ghead group. These results further demonstrate that sG possesses greater antigenicity than Ghead and that FeNPs can dramatically enhance immunogenicity. Furthermore, FeNP-sG provided 100% protection against NiV challenge in a hamster model when it was administered twice at a dose of 5 µg/per animal. Our study provides not only a promising candidate vaccine against NiV, but also a theoretical foundation for the design of a NiV immunogen for the development of novel strategies against NiV infection.

19.
Environ Sci Technol ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291786

ABSTRACT

Exposure to the indoor airborne microbiome is closely related to the air that individuals breathe. However, the floor dust-borne microbiome is commonly used as a proxy for indoor airborne microbiome, and the spatial distribution of indoor airborne microbiome is less well understood. This study aimed to characterize indoor airborne microorganisms at varying heights and compare them with those in floor dust. An assembly of three horizontally and three vertically positioned Petri dishes coated with mineral oil was applied for passive air sampling continuously at three heights without interruption. The airborne microbiomes at the three different heights showed slight stratification and differed significantly from those found in the floor dust. Based on the apportionment results from the fast expectation-maximization algorithm (FEAST), shoe sole dust contributed approximately 4% to indoor airborne bacteria and 14% to airborne fungi, a contribution that is comparable to that from the floor dust-borne microbiome. The results indicated that floor dust may not be a reliable proxy for indoor airborne microbiome. Moreover, the study highlights the need for height-resolved studies of indoor airborne microbiomes among humans in different activity modes and life states. Additionally, shoe sole-dust-associated microorganisms could potentially be a source to "re-wild" the indoor microbiota.

SELECTION OF CITATIONS
SEARCH DETAIL