Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 213: 190-207, 2024 03.
Article in English | MEDLINE | ID: mdl-38242246

ABSTRACT

The Keap1-Nrf2 signalling to transcriptionally regulate antioxidant response element (ARE)-driven target genes has been accepted as key redox-sensitive pathway governing a vast variety of cellular stresses during healthy survival and disease development. Herein, we identified two nuanced isoforms α and ß of Keap1 in HepG2 cells, arising from its first and another in-frame translation starting codons, respectively. In identifying those differential expression genes monitored by Keap1α and/or Keap1ß, an unusual interaction of Keap1 with Smad2/3 was discovered by parsing transcriptome sequencing, Keap1-interacting protein profiling and relevant immunoprecipitation data. Further examination validated that Smad2/3 enable physical interaction with Keap1, as well as its isoforms α and ß, by both EDGETSD and DLG motifs in the linker regions between their MH1 and MH2 domains, such that the stability of Smad2/3 and transcriptional activity are enhanced with their prolonged half-lives and relevant signalling responses from the cytoplasmic to nuclear compartments. The activation of Smad2/3 by Keap1, Keap1α or Keap1ß was much likely contributable to a coordinative or another competitive effect of Nrf2, particularly in distinct Keap1-based cellular responses to its cognate growth factor (i.e. TGF-ß1) or redox stress (e.g. stimulated by tBHQ and DTT). Overall, this discovery presents a novel functional bridge crossing the Keap1-Nrf2 redox signalling and the TGF-ß1-Smad2/3 pathways so as to coordinately regulate the healthy growth and development.


Subject(s)
NF-E2-Related Factor 2 , Transforming Growth Factor beta1 , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Transforming Growth Factor beta1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Protein Isoforms/genetics , Protein Isoforms/metabolism
2.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142252

ABSTRACT

Nrf2 (nuclear factor E2-related factor 2, encoded by Nfe2l2) acts as a master transcriptional regulator in mediating antioxidant, detoxification, and cytoprotective responses against oxidative, electrophilic, and metabolic stress, but also plays a crucial role in cancer metabolism and multiple oncogenic pathways, whereas the redox sensor Keap1 functions as a predominant inhibitor of Nrf2 and, hence, changes in its expression abundance directly affect the Nrf2 stability and transcriptional activity. However, nuanced functional isoforms of Keap1 α and ß have rarely been identified to date. Herein, we have established four distinct cell models stably expressing Keap1-/-, Keap1ß(Keap1Δ1-31), Keap1-Restored, and Keap1α-Restored aiming to gain a better understanding of similarities and differences of two Keap1 isoforms between their distinct regulatory profiles. Our experimental evidence revealed that although Keap1 and its isoforms are still localized in the cytoplasmic compartments, they elicited differential inhibitory effects on Nrf2 and its target HO-1. Furthermore, transcriptome sequencing unraveled that they possess similar but different functions. Such functions were further determined by multiple experiments in vivo (i.e., subcutaneous tumour formation in nude mice) and in vitro (e.g., cell cloning, infection, migration, wound healing, cell cycle, apoptosis, CAT enzymatic activity, and intracellular GSH levels). Of note, the results obtained from tumourigenesis experiments in xenograft model mice were verified based on the prominent changes in the PTEN signaling to the PI3K-AKT-mTOR pathways, in addition to substantially aberrant expression patterns of those typical genes involved in the EMT (epithelial-mesenchymal transition), cell cycle, and apoptosis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , NF-E2-Related Factor 2 , Animals , Humans , Mice , Antioxidants/pharmacology , Carcinoma, Hepatocellular/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Liver Neoplasms/genetics , Mice, Nude , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...