Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37862546

ABSTRACT

The Abel transform is often used to reconstruct plasma density profiles from O-Mode polarized reflectometry diagnostics. However, standard numerical trapezoidal evaluation of the Abel inversion integral can be computationally expensive for a large number of evaluation points, and an endpoint singularity exists on the upper-bound of the integral, which can result in an increased error. In this work, Chebyshev-Gauss quadrature is introduced as a new method to evaluate the Abel inversion integral for the problem of O-Mode plasma reflectometry. The method does not require numerical evaluation of an integral singularity and is shown to have similar accuracy compared to existing methods while being computationally efficient.

2.
Phys Rev Lett ; 121(5): 055001, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30118250

ABSTRACT

Efficient lower hybrid current drive (LHCD) is demonstrated at densities up to n[over ¯]_{e}≈1.5×10^{20} m^{-3} in diverted plasmas on the Alcator C-Mod tokamak by operating at increased plasma current-and therefore reduced Greenwald density fraction. This density exceeds the nominal "LH density limit" at n[over ¯]_{e}≈1.0×10^{20} m^{-3} reported previously, above which an anomalous loss of current drive efficiency was observed. The recovery of current drive efficiency to a level consistent with engineering scalings is correlated with a reduction in density shoulders and turbulence levels in the far scrape-off layer. Concurrently, rf wave interaction with the edge and/or scrape-off-layer plasma is reduced, as indicated by a minimal broadening of the wave frequency spectrum measured at the plasma edge. These results have important implications for sustaining steady-state tokamak operation and indicate a pathway forward for implementing efficient LHCD in a reactor.

3.
Phys Rev Lett ; 110(6): 065006, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23432265

ABSTRACT

New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q<1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma density and temperature.

4.
Rev Sci Instrum ; 83(10): 10E309, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126969

ABSTRACT

A swept-frequency X-mode reflectometer has been built on Alcator C-Mod to measure the scrape-off layer (SOL) density profiles adjacent to the lower hybrid launcher. The reflectometer system operates between 100 and 146 GHz at sweep rates from 10 µs to 1 ms and covers a density range of ∼10(16)-10(20) m(-3) at B(0) = 5-5.4 T. This paper discusses the analysis of reflectometer density profiles and presents first experimental results of SOL density profile modifications due to the application of lower hybrid range-of-frequencies power to L-mode discharges. Comparison between density profiles measured by the X-mode reflectometer and scanning Langmuir probes is also shown.

5.
Rev Sci Instrum ; 83(7): 073501, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22852689

ABSTRACT

A scintillator-based energetic ion loss detector has been successfully commissioned on the Alcator C-Mod tokamak. This probe is located just below the outer midplane, where it captures ions of energies up to 2 MeV resulting from ion cyclotron resonance heating. After passing through a collimating aperture, ions impact different regions of the scintillator according to their gyroradius (energy) and pitch angle. The probe geometry and installation location are determined based on modeling of expected lost ions. The resulting probe is compact and resembles a standard plasma facing tile. Four separate fiber optic cables view different regions of the scintillator to provide phase space resolution. Evolving loss levels are measured during ion cyclotron resonance heating, including variation dependent upon individual antennae.

6.
Rev Sci Instrum ; 81(10): 10E111, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033976

ABSTRACT

An ion sensitive probe (ISP) is developed as a robust diagnostic for measuring plasma potentials (Φ(P)) in magnetized plasmas. The ISP relies on the large difference between the ion and electron gyroradii (ρ(i)/ρ(e)∼60) to reduce the electron collection at a collector recessed behind a separately biased wall distance ∼ρ(i). We develop a new ISP method to measure the plasma potential that is independent of the precise position and shape of the collector. Φ(P) is found as the wall potential when charged current to the probe collector vanishes during the voltage sweep. The plasma potentials obtained from the ISP match Φ(P) measured with an emissive probe over a wide range of plasma conditions in a small magnetized plasma.

7.
Phys Rev Lett ; 102(16): 165003, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19518719

ABSTRACT

Groups of frequency chirping modes observed between sawtooth crashes in the Alcator C-Mod tokamak are interpreted as reversed shear Alfvén eigenmodes near the q=1 surface. These modes indicate that a reversed shear q profile is generated during the relaxation phase of the sawtooth cycle. Two important parameters, q_{min} and its radial position, are deduced from comparisons of measured density fluctuations with calculations from the ideal MHD code NOVA. These studies provide valuable constraints for further modeling of the sawtooth cycle.

8.
Phys Rev Lett ; 101(23): 235002, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-19113561

ABSTRACT

Strong toroidal flow (Vphi) and poloidal flow (Vtheta) have been observed in D-3He plasmas with ion cyclotron range of frequencies (ICRF) mode-conversion (MC) heating on the Alcator C-Mod tokamak. The toroidal flow scales with the rf power Prf (up to 30 km/s per MW), and is significantly larger than that in ICRF minority heated plasmas at the same rf power or stored energy. The central Vphi responds to Prf faster than the outer regions, and the Vphi(r) profile is broadly peaked for r/a < or =0.5. Localized (0.3 < or = r/a < or =0.5) Vtheta appears when Prf > or =1.5 MW and increases with power (up to 0.7 km/s per MW). The experimental evidence together with numerical wave modeling suggests a local flow drive source due to the interaction between the MC ion cyclotron wave and 3He ions.

9.
Rev Sci Instrum ; 79(10): 10F114, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044598

ABSTRACT

A two-frequency x-mode reflectometer operating from 100 to 146 GHz is deployed on Alcator C-Mod to measure the density profile and fluctuations in the scrape-off layer (SOL) immediately in front of the new J-port ICRF antenna and the new C-port lower hybrid launcher. The reflectometer covers densities from 10(16) to 10(20) m(-3) at 5-5.4 T. To provide the greatest flexibility and capability to deal with density fluctuations approaching 100% peak-to-peak in the SOL, both full-phase and differential-phase measurement capabilities with sweep speeds of approximately 10 micros to >1 ms are implemented. The differential-phase measurement uses a difference frequency of 500 MHz, corresponding to cutoff layer separations ranging from about 0.1 to 1 mm. The reflectometer has six sets of launchers: three on the ICRF antenna and three on the lower hybrid launcher. Both the ICRF antenna and the lower hybrid launcher incorporate reflectometer antennas at their top, bottom, and midplane locations.

10.
Phys Rev Lett ; 90(15): 155004, 2003 Apr 18.
Article in English | MEDLINE | ID: mdl-12732043

ABSTRACT

The process of mode conversion, whereby an externally launched electromagnetic wave converts into a shorter wavelength mode(s) in a thermal plasma near a resonance in the index of refraction, is particularly important in a multi-ion species plasma near the ion cyclotron frequency. Using phase contrast imaging techniques (PCI), mode-converted electromagnetic ion cyclotron waves have been detected for the first time in the Alcator C-Mod tokamak near the H-3He ion-ion hybrid resonance region during high power rf heating experiments. The results agree with theoretical predictions.

SELECTION OF CITATIONS
SEARCH DETAIL