Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 9(1): 15365, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31653970

ABSTRACT

Anti-EGFR antibodies are effective in therapies for late-stage colorectal cancer (CRC); however, many tumours are unresponsive or develop resistance. We performed genomic analysis of intrinsic and acquired resistance to anti-EGFR therapy in prospectively collected tumour samples from 25 CRC patients receiving cetuximab (an EGFR inhibitor). Of 25 CRC patients, 13 displayed intrinsic resistance to cetuximab; 12 were intrinsically sensitive. We obtained six re-biopsy samples at acquired resistance from the intrinsically sensitive patients. NCOA4-RET and LMNA-NTRK1 fusions and NRG1 and GNAS amplifications were found in intrinsic-resistant patients. In cetuximab-sensitive patients, we found KRAS K117N and A146T mutations in addition to BRAF V600E, AKT1 E17K, PIK3CA E542K, and FGFR1 or ERBB2 amplifications. The comparison between baseline and acquired-resistant tumours revealed an extreme shift in variant allele frequency of somatic variants, suggesting that cetuximab exposure dramatically selected for rare resistant subclones that were initially undetectable. There was also an increase in epithelial-to-mesenchymal transition at acquired resistance, with a reduction in the immune infiltrate. Furthermore, characterization of an acquired-resistant, patient-derived cell line showed that PI3K/mTOR inhibition could rescue cetuximab resistance. Thus, we uncovered novel genomic alterations that elucidate the mechanisms of sensitivity and resistance to anti-EGFR therapy in metastatic CRC patients.


Subject(s)
Cetuximab/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Genomics , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Base Sequence , Cell Line, Tumor , Cetuximab/pharmacology , Cohort Studies , Colorectal Neoplasms/diagnostic imaging , Drug Resistance, Neoplasm/drug effects , Female , Gene Dosage , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Middle Aged , Treatment Outcome
2.
Oncotarget ; 9(17): 13796-13806, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29568395

ABSTRACT

Merestinib is an oral multi-kinase inhibitor targeting a limited number of oncokinases including MET, AXL, RON and MKNK1/2. Here, we report that merestinib inhibits neurotrophic receptor tyrosine kinases NTRK1/2/3 which are oncogenic drivers in tumors bearing NTRK fusion resulting from chromosomal rearrangements. Merestinib is shown to be a type II NTRK1 kinase inhibitor as determined by x-ray crystallography. In KM-12 cells harboring TPM3-NTRK1 fusion, merestinib exhibits potent p-NTRK1 inhibition in vitro by western blot and elicits an anti-proliferative response in two- and three-dimensional growth. Merestinib treatment demonstrated profound tumor growth inhibition in in vivo cancer models harboring either a TPM3-NTRK1 or an ETV6-NTRK3 gene fusion. To recapitulate resistance observed from type I NTRK kinase inhibitors entrectinib and larotrectinib, we generated NIH-3T3 cells exogenously expressing TPM3-NTRK1 wild-type, or acquired mutations G595R and G667C in vitro and in vivo. Merestinib blocks tumor growth of both wild-type and mutant G667C TPM3-NTRK1 expressing NIH-3T3 cell-derived tumors. These preclinical data support the clinical evaluation of merestinib, a type II NTRK kinase inhibitor (NCT02920996), both in treatment naïve patients and in patients progressed on type I NTRK kinase inhibitors with acquired secondary G667C mutation in NTRK fusion bearing tumors.

3.
Cancer Cell ; 32(6): 761-776.e6, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29232554

ABSTRACT

Most cancers preserve functional retinoblastoma (Rb) and may, therefore, respond to inhibition of D-cyclin-dependent Rb kinases, CDK4 and CDK6. To date, CDK4/6 inhibitors have shown promising clinical activity in breast cancer and lymphomas, but it is not clear which additional Rb-positive cancers might benefit from these agents. No systematic survey to compare relative sensitivities across tumor types and define molecular determinants of response has been described. We report a subset of cancers highly sensitive to CDK4/6 inhibition and characterized by various genomic aberrations known to elevate D-cyclin levels and describe a recurrent CCND1 3'UTR mutation associated with increased expression in endometrial cancer. The results suggest multiple additional classes of cancer that may benefit from CDK4/6-inhibiting drugs such as abemaciclib.


Subject(s)
Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Cyclin D/metabolism , Neoplasms/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Clinical Trials, Phase I as Topic , Cyclin D/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Xenograft Model Antitumor Assays
4.
Genome Res ; 23(9): 1422-33, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23788652

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide and has no effective treatment, yet the molecular basis of hepatocarcinogenesis remains largely unknown. Here we report findings from a whole-genome sequencing (WGS) study of 88 matched HCC tumor/normal pairs, 81 of which are Hepatitis B virus (HBV) positive, seeking to identify genetically altered genes and pathways implicated in HBV-associated HCC. We find beta-catenin to be the most frequently mutated oncogene (15.9%) and TP53 the most frequently mutated tumor suppressor (35.2%). The Wnt/beta-catenin and JAK/STAT pathways, altered in 62.5% and 45.5% of cases, respectively, are likely to act as two major oncogenic drivers in HCC. This study also identifies several prevalent and potentially actionable mutations, including activating mutations of Janus kinase 1 (JAK1), in 9.1% of patients and provides a path toward therapeutic intervention of the disease.


Subject(s)
Carcinoma, Hepatocellular/genetics , Genome, Human , Liver Neoplasms/genetics , Mutation , Amino Acid Sequence , Carcinoma, Hepatocellular/virology , DNA, Viral/genetics , Female , Hepatitis B virus/genetics , Humans , Janus Kinase 1/genetics , Liver Neoplasms/virology , Male , Molecular Sequence Data , STAT Transcription Factors/genetics , Sequence Analysis, DNA , Tumor Suppressor Protein p53/genetics , Virus Integration , Wnt Signaling Pathway/genetics , beta Catenin/genetics
5.
Mol Pharmacol ; 83(4): 770-80, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23303475

ABSTRACT

The activity of metabotropic glutamate receptors (mGluRs) is known to be altered as the consequence of neurodegenerative diseases such as Alzheimer, Parkinson, and Huntington disease. However, little attention has been paid to this receptor family's potential link with cancer. Recent reports indicate altered mGluR signaling in various tumor types, and several somatic mutations in mGluR1a in lung cancer were recently described. Group 1 mGluRs (mGluR1a and mGluR5) are coupled primarily to Gαq, leading to the activation of phospholipase C and to the formation of diacylglycerol and inositol 1,4,5-trisphosphate, leading to the release of Ca(2+) from intracellular stores and protein kinase C (PKC) activation. In the present study, we investigated the intracellular localization and G protein-dependent and -independent signaling of eight GRM1 (mGluR1a) somatic mutations. Two mutants found in close proximity to the glutamate binding domain and cysteine-rich region (R375G and G396V) show both decreased cell surface expression and basal inositol phosphate (IP) formation. However, R375G shows increased ERK1/2 activation in response to quisqualate stimulation. A mutant located directly in the glutamate binding site (A168V) shows increased quisqualate-induced IP formation and, similar to R375G, increased ERK1/2 activation. Additionally, a mutation in the G protein-coupled receptor kinase 2/PKC regulatory region (R696W) shows decreased ERK1/2 activation, whereas a mutation within the Homer binding region in the carboxyl-terminal tail (P1148L) does not alter the intracellular localization of the receptor, but it induces changes in cellular morphology and exhibits reduced ERK1/2 activation. Taken together, these results suggest that mGluR1a signaling in cancer is disrupted by somatic mutations with multiple downstream consequences.


Subject(s)
Intracellular Fluid/metabolism , Intracellular Membranes/metabolism , Mutation , Neoplasms/genetics , Receptors, Metabotropic Glutamate/genetics , Signal Transduction/genetics , Animals , Down-Regulation/genetics , Equidae , Genetic Variation/genetics , HEK293 Cells , Humans , Intracellular Fluid/physiology , Intracellular Membranes/chemistry , Intracellular Membranes/pathology , Mutation/genetics , Neoplasms/metabolism , Neoplasms/pathology , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism
6.
Mol Cancer Res ; 10(6): 739-49, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22516348

ABSTRACT

The roles of cholecystokinin 2 receptor (CCK2R) in numerous physiologic processes in the gastrointestinal tract and central nervous system are well documented. There has been some evidence that CCK2R alterations play a role in cancers, but the functional significance of these alterations for tumorigenesis is unknown. We have identified six mutations in CCK2R among a panel of 140 colorectal cancers and 44 gastric cancers. We show that these mutations increase receptor activity, activate multiple downstream signaling pathways, increase cell migration, and promote angiogenesis. Our findings suggest that somatic mutations in CCK2R may promote tumorigenesis through deregulated receptor activity and highlight the importance of evaluating CCK2R inhibitors to block both the normal and mutant forms of the receptor.


Subject(s)
Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/genetics , Mutation , Receptor, Cholecystokinin B/genetics , Stomach Neoplasms/genetics , Animals , Cell Movement/genetics , Cell Shape/genetics , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Coculture Techniques , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA Mutational Analysis , Endothelial Cells/metabolism , Endothelial Cells/physiology , HEK293 Cells , Humans , Immunoblotting , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/physiopathology , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Phenotype , RNA Interference , Receptor, Cholecystokinin B/metabolism , Receptor, Cholecystokinin B/physiology , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Transfection , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL