Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Microbiome ; 10(1): 5, 2022 01 16.
Article in English | MEDLINE | ID: mdl-35034639

ABSTRACT

BACKGROUND: Microbial colonization of subsurface shales following hydraulic fracturing offers the opportunity to study coupled biotic and abiotic factors that impact microbial persistence in engineered deep subsurface ecosystems. Shale formations underly much of the continental USA and display geographically distinct gradients in temperature and salinity. Complementing studies performed in eastern USA shales that contain brine-like fluids, here we coupled metagenomic and metabolomic approaches to develop the first genome-level insights into ecosystem colonization and microbial community interactions in a lower-salinity, but high-temperature western USA shale formation. RESULTS: We collected materials used during the hydraulic fracturing process (i.e., chemicals, drill muds) paired with temporal sampling of water produced from three different hydraulically fractured wells in the STACK (Sooner Trend Anadarko Basin, Canadian and Kingfisher) shale play in OK, USA. Relative to other shale formations, our metagenomic and metabolomic analyses revealed an expanded taxonomic and metabolic diversity of microorganisms that colonize and persist in fractured shales. Importantly, temporal sampling across all three hydraulic fracturing wells traced the degradation of complex polymers from the hydraulic fracturing process to the production and consumption of organic acids that support sulfate- and thiosulfate-reducing bacteria. Furthermore, we identified 5587 viral genomes and linked many of these to the dominant, colonizing microorganisms, demonstrating the key role that viral predation plays in community dynamics within this closed, engineered system. Lastly, top-side audit sampling of different source materials enabled genome-resolved source tracking, revealing the likely sources of many key colonizing and persisting taxa in these ecosystems. CONCLUSIONS: These findings highlight the importance of resource utilization and resistance to viral predation as key traits that enable specific microbial taxa to persist across fractured shale ecosystems. We also demonstrate the importance of materials used in the hydraulic fracturing process as both a source of persisting shale microorganisms and organic substrates that likely aid in sustaining the microbial community. Moreover, we showed that different physicochemical conditions (i.e., salinity, temperature) can influence the composition and functional potential of persisting microbial communities in shale ecosystems. Together, these results expand our knowledge of microbial life in deep subsurface shales and have important ramifications for management and treatment of microbial biomass in hydraulically fractured wells. Video Abstract.


Subject(s)
Hydraulic Fracking , Microbiota , Animals , Bacteria/genetics , Canada , Microbiota/genetics , Predatory Behavior
3.
Appl Environ Microbiol ; 85(12)2019 06 15.
Article in English | MEDLINE | ID: mdl-30979840

ABSTRACT

Bacterial Halanaerobium strains become the dominant persisting microbial community member in produced fluids across geographically distinct hydraulically fractured shales. Halanaerobium is believed to be inadvertently introduced into this environment during the drilling and fracturing process and must therefore tolerate large changes in pressure, temperature, and salinity. Here, we used a Halanaerobium strain isolated from a natural gas well in the Utica Point Pleasant formation to investigate metabolic and physiological responses to growth under high-pressure subsurface conditions. Laboratory incubations confirmed the ability of Halanaerobium congolense strain WG8 to grow under pressures representative of deep shale formations (21 to 48 MPa). Under these conditions, broad metabolic and physiological shifts were identified, including higher abundances of proteins associated with the production of extracellular polymeric substances. Confocal laser scanning microscopy indicated that extracellular polymeric substance (EPS) production was associated with greater cell aggregation when biomass was cultured at high pressure. Changes in Halanaerobium central carbon metabolism under the same conditions were inferred from nuclear magnetic resonance (NMR) and gas chromatography measurements, revealing large per-cell increases in production of ethanol, acetate, and propanol and cessation of hydrogen production. These metabolic shifts were associated with carbon flux through 1,2-propanediol in response to slower fluxes of carbon through stage 3 of glycolysis. Together, these results reveal the potential for bioclogging and corrosion (via organic acid fermentation products) associated with persistent Halanaerobium growth in deep, hydraulically fractured shale ecosystems, and offer new insights into cellular mechanisms that enable these strains to dominate deep-shale microbiomes.IMPORTANCE The hydraulic fracturing of deep-shale formations for hydrocarbon recovery accounts for approximately 60% of U.S. natural gas production. Microbial activity associated with this process is generally considered deleterious due to issues associated with sulfide production, microbially induced corrosion, and bioclogging in the subsurface. Here we demonstrate that a representative Halanaerobium species, frequently the dominant microbial taxon in hydraulically fractured shales, responds to pressures characteristic of the deep subsurface by shifting its metabolism to generate more corrosive organic acids and produce more polymeric substances that cause "clumping" of biomass. While the potential for increased corrosion of steel infrastructure and clogging of pores and fractures in the subsurface may significantly impact hydrocarbon recovery, these data also offer new insights for microbial control in these ecosystems.


Subject(s)
Extracellular Polymeric Substance Matrix/metabolism , Firmicutes/metabolism , Hydraulic Fracking , Pressure
4.
Nat Microbiol ; 4(2): 352-361, 2019 02.
Article in English | MEDLINE | ID: mdl-30510171

ABSTRACT

The deep terrestrial biosphere harbours a substantial fraction of Earth's biomass and remains understudied compared with other ecosystems. Deep biosphere life primarily consists of bacteria and archaea, yet knowledge of their co-occurring viruses is poor. Here, we temporally catalogued viral diversity from five deep terrestrial subsurface locations (hydraulically fractured wells), examined virus-host interaction dynamics and experimentally assessed metabolites from cell lysis to better understand viral roles in this ecosystem. We uncovered high viral diversity, rivalling that of peatland soil ecosystems, despite low host diversity. Many viral operational taxonomic units were predicted to infect Halanaerobium, the dominant microorganism in these ecosystems. Examination of clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) spacers elucidated lineage-specific virus-host dynamics suggesting active in situ viral predation of Halanaerobium. These dynamics indicate repeated viral encounters and changing viral host range across temporally and geographically distinct shale formations. Laboratory experiments showed that prophage-induced Halanaerobium lysis releases intracellular metabolites that can sustain key fermentative metabolisms, supporting the persistence of microorganisms in this ecosystem. Together, these findings suggest that diverse and active viral populations play critical roles in driving strain-level microbial community development and resource turnover within this deep terrestrial subsurface ecosystem.


Subject(s)
Bacteriophages/physiology , Firmicutes/growth & development , Firmicutes/virology , Microbial Consortia , Oil and Gas Fields/microbiology , Oil and Gas Fields/virology , Bacteriophages/classification , Bacteriophages/genetics , Biodiversity , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Firmicutes/classification , Firmicutes/genetics , Hydraulic Fracking , Metagenome , Microbial Consortia/genetics , Virus Activation
5.
Environ Microbiol ; 20(12): 4596-4611, 2018 12.
Article in English | MEDLINE | ID: mdl-30394652

ABSTRACT

About 60% of natural gas production in the United States comes from hydraulic fracturing of unconventional reservoirs, such as shales or organic-rich micrites. This process inoculates and enriches for halotolerant microorganisms in these reservoirs over time, resulting in a saline ecosystem that includes methane producing archaea. Here, we survey the biogeography of methanogens across unconventional reservoirs, and report that members of genus Methanohalophilus are recovered from every hydraulically fractured unconventional reservoir sampled by metagenomics. We provide the first genomic sequencing of three isolate genomes, as well as two metagenome assembled genomes (MAGs). Utilizing six other previously sequenced isolate genomes and MAGs, we perform comparative analysis of the 11 genomes representing this genus. This genomic investigation revealed distinctions between surface and subsurface derived genomes that are consistent with constraints encountered in each environment. Genotypic differences were also uncovered between isolate genomes recovered from the same well, suggesting niche partitioning among closely related strains. These genomic substrate utilization predictions were then confirmed by physiological investigation. Fine-scale microdiversity was observed in CRISPR-Cas systems of Methanohalophilus, with genomes from geographically distinct unconventional reservoirs sharing spacers targeting the same viral population. These findings have implications for augmentation strategies resulting in enhanced biogenic methane production in hydraulically fractured unconventional reservoirs.


Subject(s)
Hydraulic Fracking , Methanosarcinaceae/physiology , Ecosystem , Genome, Bacterial , Metagenome , Methanosarcinaceae/genetics , Natural Gas , Oil and Gas Fields
6.
J Econ Entomol ; 95(1): 121-8, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11942746

ABSTRACT

This study examined the responses of two termite species, the Formosan subterranean termite, Coptotermes formosanus Shiraki, and the eastern subterranean termite, Reticulitermes flavipes (Kollar), to three types of wood decay fungi: a brown rot fungus, Gloeophyllum trabeum (Persoon: Fries) Murrill; a white rot fungus, Phanerochaete chrysosporium Burdsall; and a litter rot fungus, Marasmiellus troyanus (Murrill) Singer. We also examined the responses of termites to these three types of fungi grown on different substrates. For all three fungal species, both termite species showed a strong preference for fungus-infected sawdust over uninfected sawdust. In choice tests, both termite species preferred sawdust infected with either M. troyanus or P. chrysosporium over G. trabeum. However, termites did not show any preference for fungus-infected potato dextrose agar over uninfected potato dextrose agar. Tunneling activity of C. formosanus was greater in sand treated with methanol extracts of fungus-infected sawdust than in sand treated with extracts of uninfected sawdust. Because chemicals in the fungal extracts caused termites to tunnel further into treated sand than untreated sand, these chemicals could potentially be used to direct termite foraging toward bait stations in the field.


Subject(s)
Appetitive Behavior/physiology , Isoptera/physiology , Pest Control, Biological/methods , Agaricales/growth & development , Agaricales/metabolism , Animals , Phanerochaete/growth & development , Phanerochaete/metabolism , Polyporaceae/growth & development , Polyporaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...