Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 27(2): e14392, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38400796

ABSTRACT

Trade-offs between current and future reproduction manifest as a set of co-varying life history and metabolic traits, collectively referred to as 'pace of life' (POL). Seasonal migration modulates environmental dynamics and putatively affects POL, however, the mechanisms by which migratory behaviour shapes POL remain unclear. We explored how migratory behaviour interacts with environmental and metabolic dynamics to shape POL. Using an individual-based model of movement and metabolism, we compared fitness-optimized trade-offs among migration strategies. We found annual experienced seasonality modulated by migratory movements and distance between end-points primarily drove POL differentiation through developmental and migration phenology trade-offs. Similarly, our analysis of empirically estimated metabolic data from 265 bird species suggested seasonal niche tracking and migration distance interact to drive POL. We show multiple viable life-history strategies are conducive to a migratory lifestyle. Overall, our findings suggest metabolism mediates complex interactions between behaviour, environment and life history.


Subject(s)
Life History Traits , Animals , Seasons , Reproduction , Birds , Phenotype , Animal Migration
2.
Ecol Evol ; 14(2): e11044, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380065

ABSTRACT

Life history traits are used to predict asymptotic odds of extinction from dynamic conditions. Less is known about how life history traits interact with stochasticity and population structure of finite populations to predict near-term odds of extinction. Through empirically parameterized matrix population models, we study the impact of life history (reproduction, pace), stochasticity (environmental, demographic), and population history (existing, novel) on the transient population dynamics of finite populations of plant species. Among fast and slow pace and either a uniform or increasing reproductive intensity or short or long reproductive lifespan, slow, semelparous species are at the greatest risk of extinction. Long reproductive lifespans buffer existing populations from extinction while the odds of extinction of novel populations decrease when the reproductive effort is uniformly spread across the reproductive lifespan. Our study highlights the importance of population structure, pace, and two distinct aspects of parity for predicting near-term odds of extinction.

3.
Ecol Evol ; 13(12): e10813, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38145018

ABSTRACT

Clark's nutcrackers (Nucifraga columbiana) are obligate seed dispersers for whitebark pine (Pinus albicaulis), but they frequently use other conifer seed resources because of annual variability in cone production or geographic variation in whitebark pine availability. Whitebark pine is declining from several threats including white pine blister rust, leading to potential population declines in the nutcracker and the pine. We hypothesize that where there are few additional seed resources, whitebark pine becomes the key and limiting resource supporting nutcracker populations. We investigated how nutcrackers use coniferous forest community types within Yellowstone National Park to determine potential seed resources and the importance of whitebark pine. We established sites representing five forest community types, including whitebark pine, lodgepole pine (P. contorta), Engelmann spruce (Picea engelmannii), limber pine (P. flexilis), and Douglas-fir (Pseudotsuga menziesii). Each transect annually generated nutcracker point counts, conifer cone production indices, community composition data, and seed resource use observations. We compared hierarchical distance sampling models, estimating nutcracker density and its relationship to forest community type, seed harvesting time-period, year, study site, and cone seed energy. We found cone production varied across years indicating annual variability in energy availability. Nutcracker density was best predicted by forest community type and survey time-period and was highest in whitebark pine stands during the mid-harvesting season. Nutcracker density was comparatively low for all other forest community types. This finding underscores the importance of whitebark pine as a key seed resource for Clark's nutcracker in Yellowstone National Park. The decline of whitebark pine potentially leads to a downward spiral in nutcrackers and whitebark pine, arguing for continued monitoring of nutcrackers and implementation of restoration treatments for whitebark pine.

4.
Sci Rep ; 13(1): 814, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36646769

ABSTRACT

The ability of animals to sync the timing and location of molting (the replacement of hair, skin, exoskeletons or feathers) with peaks in resource availability has important implications for their ecology and evolution. In migratory birds, the timing and location of pre-migratory feather molting, a period when feathers are shed and replaced with newer, more aerodynamic feathers, can vary within and between species. While hypotheses to explain the evolution of intraspecific variation in the timing and location of molt have been proposed, little is known about the genetic basis of this trait or the specific environmental drivers that may result in natural selection for distinct molting phenotypes. Here we take advantage of intraspecific variation in the timing and location of molt in the iconic songbird, the Painted Bunting (Passerina ciris) to investigate the genetic and ecological drivers of distinct molting phenotypes. Specifically, we use genome-wide genetic sequencing in combination with stable isotope analysis to determine population genetic structure and molting phenotype across thirteen breeding sites. We then use genome-wide association analysis (GWAS) to identify a suite of genes associated with molting and pair this with gene-environment association analysis (GEA) to investigate potential environmental drivers of genetic variation in this trait. Associations between genetic variation in molt-linked genes and the environment are further tested via targeted SNP genotyping in 25 additional breeding populations across the range. Together, our integrative analysis suggests that molting is in part regulated by genes linked to feather development and structure (GLI2 and CSPG4) and that genetic variation in these genes is associated with seasonal variation in precipitation and aridity. Overall, this work provides important insights into the genetic basis and potential selective forces behind phenotypic variation in what is arguably one of the most important fitness-linked traits in a migratory bird.


Subject(s)
Passeriformes , Songbirds , Animals , Molting/genetics , Genome-Wide Association Study , Songbirds/genetics , Passeriformes/genetics , Feathers/chemistry , Seasons
5.
J Anim Ecol ; 92(7): 1320-1331, 2023 07.
Article in English | MEDLINE | ID: mdl-36411970

ABSTRACT

Climatic conditions affect animals but range-wide impacts at the population level remain largely unknown, especially in migratory species. However, studying climate-population relationships is still challenging in small migrants due to a lack of efficient and cost-effective geographic tracking method. Spatial distribution patterns of environmental stable isotopes (so called 'isoscapes') generally overcome these limitations but none of the currently available isoscapes provide a substantial longitudinal gradient in species-rich sub-Saharan Africa. In this region, sulphur (δ34 S) has not been sufficiently explored on a larger scale. We developed a δ34 S isoscape to trace animal origins in sub-Saharan Africa by coupling known-origin samples from tracked migratory birds with continental remotely sensed environmental data building on environment-δ34 S relationships using a flexible machine learning technique. Furthermore, we link population-specific nonbreeding grounds with interannual climatic variation that might translate to breeding population trends. The predicted δ34 S isotopic map featured east-west and coast-to-inland isotopic gradients and was applied to predict nonbreeding grounds of three breeding populations of Eurasian Reed Warblers Acrocephalus scirpaceus with two distinct migratory phenotypes. Breeding populations as well as migratory phenotypes exhibited large-scale segregation within the African nonbreeding range. These regions also differed substantially in the interannual climatic variation, with higher interannual variability in the eastern part of the range during 2001-2012. Over the same period, the eastern European breeding population seemed to have experienced a more steep decline in population size. The link between migratory patterns and large-scale climatic variability appears important to better understand population trajectories in many declining migratory animals. We believe animal tracing using sulphur isotopes will facilitate these efforts and offers manifold ecological and forensic applications in the biodiversity hotspot of sub-Saharan Africa.


Subject(s)
Songbirds , Animals , Sulfur Isotopes , Animal Migration , Africa , Population Density , Seasons
6.
PLoS One ; 17(8): e0270957, 2022.
Article in English | MEDLINE | ID: mdl-35925977

ABSTRACT

Determining the dynamics of where and when individuals occur is necessary to understand population declines and identify critical areas for populations of conservation concern. However, there are few examples where a spatially and temporally explicit model has been used to evaluate the migratory dynamics of a bird population across its entire annual cycle. We used geolocator-derived migration tracks of 84 Dunlin (Calidris alpina) on the East Asian-Australasian Flyway (EAAF) to construct a migratory network describing annual subspecies-specific migration patterns in space and time. We found that Dunlin subspecies exhibited unique patterns of spatial and temporal flyway use. Spatially, C. a. arcticola predominated in regions along the eastern edge of the flyway (e.g., western Alaska and central Japan), whereas C. a. sakhalina predominated in regions along the western edge of the flyway (e.g., N China and inland China). No individual Dunlin that wintered in Japan also wintered in the Yellow Sea, China seas, or inland China, and vice-versa. However, similar proportions of the 4 subspecies used many of the same regions at the center of the flyway (e.g., N Sakhalin Island and the Yellow Sea). Temporally, Dunlin subspecies staggered their south migrations and exhibited little temporal overlap among subspecies within shared migration regions. In contrast, Dunlin subspecies migrated simultaneously during north migration. South migration was also characterized by individuals stopping more often and for more days than during north migration. Taken together, these spatial-temporal migration dynamics indicate Dunlin subspecies may be differentially affected by regional habitat change and population declines according to where and when they occur. We suggest that the migration dynamics presented here are useful for guiding on-the-ground survey efforts to quantify subspecies' use of specific sites, and to estimate subspecies' population sizes and long-term trends. Such studies would significantly advance our understanding of Dunlin space-time dynamics and the coordination of Dunlin conservation actions across the EAAF.


Subject(s)
Animal Migration , Charadriiformes , Animals , Birds , Ecosystem , Humans , Seasons
7.
Ecology ; 103(3): e3617, 2022 03.
Article in English | MEDLINE | ID: mdl-34923636

ABSTRACT

Seasonal migration is a widespread phenomenon undertaken by myriad organisms, including birds. Competing hypotheses about ultimate drivers of seasonal migration in birds contrast relative resource abundances at high latitudes ("southern home hypothesis") against avoidance of winter resource scarcity ("dispersal-migration hypothesis"). However, direct tests of these competing hypotheses have been rare and to date limited to historical biogeographic reconstructions. Here we derive novel predictions about the dynamics of individual niches from each hypothesis and provide a framework for evaluating support for these competing hypotheses using contemporary environmental and behavioral data. Using flammulated owls (Psiloscops flammeolus) as a model, we characterized year-round occupied niche dynamics using high-resolution global positioning system tracking and remote-sensed environmental data. We also compared occupied niche dynamics to counterfactual niches using simulated alternative nonmigratory strategies. Owl occupied mean niche was conserved among seasons, whereas niche variance was generally higher during migratory periods. Simulated year-round residents in Mexico would have experienced putatively more productive niches than migrants. These findings provide ecological support for the "dispersal-migration" hypothesis in which winter resource scarcity is the primary driver of migration rather than summer resource abundances.


Subject(s)
Animal Migration , Strigiformes , Animals , Mexico , Seasons
8.
Ecol Evol ; 11(1): 599-611, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437454

ABSTRACT

Organisms assess biotic and abiotic cues at multiple sites when deciding where to settle. However, due to temporal constraints on this prospecting, the suitability of available habitat may be difficult for an individual to assess when cues are most reliable, or at the time they are making settlement decisions. For migratory birds, the postbreeding season may be the optimal time to prospect and inform settlement decisions for future breeding seasons.We investigated the fall movements of flammulated owls (Psiloscops flammeolus) within breeding habitat after fledglings had gained independence and before adults left for migration. From 2013 to 2016, we trapped owls within a breeding population wherein all nesting owls and their young have been banded since 1981. We used stable isotopes in combination with mark-recapture data to identify local individuals and differentiate potential prospecting behavior from other seasonal movements such as migration or staging.We commonly captured owls in the fall-predominantly hatch-year owls-that were not known residents of the study area. Several of these nonresident owls were later found breeding within the study area. Stable isotope data suggested a local origin for virtually all owls captured during the fall.Our results suggest that hatch-year flammulated owls, but also some after-hatch-year owls, use the period between the breeding season and fall migration to prospect for future breeding sites. The timing of this behavior is likely driven by seasonally variable costs associated with prospecting.Determining the timing of prospecting and the specific cues that are being assessed will be important in helping predict the extent to which climate change and/or altered disturbance regimes will modify the ecology, behavior, and demographics associated with prospecting.

9.
Ecol Modell ; 436: 109288, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32982015

ABSTRACT

In this letter we present comments on the article "A global-scale ecological niche model to predict SARS-CoV-2 coronavirus" by Coro published in 2020.

10.
R Soc Open Sci ; 7(6): 200231, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32742690

ABSTRACT

Science provides a method to learn about the relationships between observed patterns and the processes that generate them. However, inference can be confounded when an observed pattern cannot be clearly and wholly attributed to a hypothesized process. Over-reliance on traditional single-hypothesis methods (i.e. null hypothesis significance testing) has resulted in replication crises in several disciplines, and ecology exhibits features common to these fields (e.g. low-power study designs, questionable research practices, etc.). Considering multiple working hypotheses in combination with pre-data collection modelling can be an effective means to mitigate many of these problems. We present a framework for explicitly modelling systems in which relevant processes are commonly omitted, overlooked or not considered and provide a formal workflow for a pre-data collection analysis of multiple candidate hypotheses. We advocate for and suggest ways that pre-data collection modelling can be combined with consideration of multiple working hypotheses to improve the efficiency and accuracy of research in ecology.

11.
Ecol Lett ; 23(2): 231-241, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31746098

ABSTRACT

Migratory divides are proposed to be catalysts for speciation across a diversity of taxa. However, it is difficult to test the relative contributions of migratory behaviour vs. other divergent traits to reproductive isolation. Comparing hybrid zones with and without migratory divides offers a rare opportunity to directly examine the contribution of divergent migratory behaviour to reproductive barriers. We show that across replicate sampling transects of two pairs of barn swallow (Hirundo rustica) subspecies, strong reproductive isolation coincided with a migratory divide spanning 20 degrees of latitude. A third subspecies pair exhibited no evidence for a migratory divide and hybridised extensively. Within migratory divides, overwintering habitats were associated with assortative mating, implicating a central contribution of divergent migratory behaviour to reproductive barriers. The remarkable geographic coincidence between migratory divides and genetic breaks supports a long-standing hypothesis that the Tibetan Plateau is a substantial barrier contributing to the diversity of Siberian avifauna.


Subject(s)
Birds , Reproductive Isolation , Animals , Phenotype , Reproduction , Tibet
12.
Oecologia ; 191(4): 777-789, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31642988

ABSTRACT

Statistical regression relationships between the hydrogen (H) and oxygen (O) isotope ratios (δ2H and δ18O, respectively) of animal organic tissues and those of environmental water have been widely used to reconstruct animal movements, paleoenvironments, and diet and trophic relationships. In natural populations, however, tissue-environment isotopic relationships are highly variable among animal types and geographic regions. No systematic understanding of the origin(s) of this variability currently exists, clouding the interpretation of isotope data. Here, we present and apply a model, based on fundamental metabolic relationships, to test the sensitivity of consumer tissue H and O isotope ratios, and thus tissue-environment relationships, to basic physiological, behavioral, and environmental parameters. We then simulate patterns in consumer tissue isotopic compositions under several 'real-world' scenarios, demonstrating that the new model can reproduce-and potentially explain-previously observed patterns in consumer tissue H isotope ratios, including between-continent differences in feather-precipitation relationships and 2H-enrichment with trophic level across species. The model makes several fundamental predictions about the organic O isotope system, which constitute hypotheses for future testing as new data are obtained. By highlighting potential sources of variability and bias in tissue-environment relationships and establishing a framework within which such effects can be predicted, these results should advance the application of H and O isotopes in ecological, paleoecological, and forensic research.


Subject(s)
Hydrogen , Nutritional Status , Animals , Carbon Isotopes , Deuterium , Feathers , Nitrogen Isotopes , Oxygen Isotopes
13.
Curr Biol ; 28(3): R99-R100, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29408264

ABSTRACT

In their 2015 Current Biology paper, Streby et al.[1] reported that Golden-winged Warblers (Vermivora chrysoptera), which had just migrated to their breeding location in eastern Tennessee, performed a facultative and up to ">1,500 km roundtrip" to the Gulf of Mexico to avoid a severe tornadic storm. From light-level geolocator data, wherein geographical locations are estimated via the timing of sunrise and sunset, Streby et al.[1] concluded that the warblers had evacuated their breeding area approximately 24 hours before the storm and returned about five days later. The authors presented this finding as evidence that migratory birds avoid severe storms by temporarily moving long-distances. However, the tracking method employed by Streby et al.[1] is prone to considerable error and uncertainty. Here, we argue that this interpretation of the data oversteps the limits of the used tracking technique. By calculating the expected geographical error range for the tracked birds, we demonstrate that the hypothesized movements fell well within the geolocators' inherent error range for this species and that such deviations in latitude occur frequently even if individuals remain stationary.


Subject(s)
Passeriformes , Songbirds , Animal Migration , Animals , Avoidance Learning , Breeding
14.
Sci Rep ; 7(1): 16894, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203929

ABSTRACT

Determining patterns of migratory connectivity for highly-mobile, wide-ranging species, such as sea turtles, is challenging. Here, we combined satellite telemetry and stable isotope analysis to estimate foraging locations for 749 individual loggerheads nesting along the east central Florida (USA) coast, the largest rookery for the Northwest Atlantic population. We aggregated individual results by year, identified seven foraging hotspots and tracked these summaries to describe the dynamics of inter-annual contributions of these geographic areas to this rookery over a nine-year period. Using reproductive information for a subset of turtles (n = 513), we estimated hatchling yields associated with each hotspots. We found considerable inter-annual variability in the relative contribution of foraging areas to the nesting adults. Also reproductive success differed among foraging hotspots; females using southern foraging areas laid nests that produced more offspring in all but one year of the study. These analyses identified two high priority areas for future research and conservation efforts: the continental shelf adjacent to east central Florida and the Great Bahama Bank, which support higher numbers of foraging females that provide higher rates of hatchling production. The implementation of the continuous-surface approach to determine geographic origins of unknown migrants is applicable to other migratory species.


Subject(s)
Population Dynamics , Turtles/physiology , Animal Migration , Animals , Atlantic Ocean , Carbon Isotopes/chemistry , Conservation of Natural Resources , Female , Isotope Labeling , Nitrogen Isotopes/chemistry , Reproduction , Satellite Communications , Telemetry , Turtles/growth & development
15.
Ecol Evol ; 7(21): 9027-9040, 2017 11.
Article in English | MEDLINE | ID: mdl-29152195

ABSTRACT

Tree recruitment is a spatially structured process that may undergo change over time because of variation in postdispersal processes. We examined seed pilferage, seed germination, and seedling survival in whitebark pine to determine whether 1) microsite type alters the initial spatial pattern of seed caches, 2) higher abiotic stress (i.e. higher elevations) exacerbates spatial distribution changes, and 3) these postdispersal processes are spatially clustered. At two study areas, we created a seed distribution pattern by burying seed caches in microsite types frequently used by whitebark pine's avian seed disperser (Clark's nutcracker) in upper subalpine forest and at treeline, the latter characterized by high abiotic environmental stress. We monitored caches for two years for pilferage, germination, and seedling survival. Odds of pilferage (both study areas), germination (northern study area), and survival (southern study area) were higher at treeline relative to subalpine forest. At the southern study area, we found higher odds of 1) pilferage near rocks and trees relative to no object in subalpine forest, 2) germination near rocks relative to trees within both elevation zones, and 3) seedling survival near rocks and trees relative to no object at treeline. No microsite effects were detected at the northern study area. Findings indicated that the microsite distribution of seed caches changes with seed/seedling stage. Higher odds of seedling survival near rocks and trees were observed at treeline, suggesting abiotic stress may limit safe site availability, thereby shifting the spatial distribution toward protective microsites. Higher odds of pilferage at treeline, however, suggest rodents may limit treeline recruitment. Further, odds of pilferage were higher near rocks and trees relative to no object in subalpine forest but did not differ among microsites at treeline, suggesting pilferage can modulate the spatial structure of regeneration, a finding supported by limited clustering of postdispersal processes.

16.
Ecol Evol ; 6(15): 5144-57, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27551372

ABSTRACT

In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northern Rocky Mountains of the U.S. and Canada, Pinus albicaulis, a stress-tolerant pine, initiates tree islands at higher frequencies than other conifers - that is, leads to leeward tree establishment more frequently. The facilitation provided by a solitary (isolated) P. albicaulis leading to tree island initiation may be important for different life-history stages for leeward conifers, but it is not known which life-history stages are influenced and protection provided. However, P. albicaulis mortality from the non-native pathogen Cronartium ribicola potentially disrupts these facilitative interactions, reducing tree island initiation. In two Rocky Mountain eastern slope study areas, we experimentally examined fundamental plant-plant interactions which might facilitate tree island formation: the protection offered by P. albicaulis to leeward seed and seedling life-history stages, and to leeward krummholz conifers. In the latter case, we simulated mortality from C. ribicola for windward P. albicaulis to determine whether loss of P. albicaulis from C. ribicola impacts leeward conifers. Relative to other common solitary conifers at treeline, solitary P. albicaulis had higher abundance. More seeds germinated in leeward rock microsites than in conifer or exposed microsites, but the odds of cotyledon seedling survival during the growing season were highest in P. albicaulis microsites. Planted seedling survival was low among all microsites examined. Simulating death of windward P. albicaulis by C. ribicola reduced shoot growth of leeward trees. Loss of P. albicaulis to exotic disease may limit facilitation interactions and conifer community development at treeline and potentially impede upward movement as climate warms.

17.
Ecol Appl ; 25(2): 320-35, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26263657

ABSTRACT

Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: (1) a nominal approach through discriminant analysis and (2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively determine geographic origin for large numbers of untracked individuals. Regular monitoring of sea turtle nesting aggregations with stable isotope sampling can be used to fill critical data gaps regarding habitat use and migration patterns. Probabilistic assignment to origin with isoscapes has not been previously used in the marine environment, but the methods presented here could also be applied to other migratory marine species.


Subject(s)
Animal Migration/physiology , Carbon/chemistry , Nitrogen/chemistry , Turtles/physiology , Animal Distribution , Animal Identification Systems , Animals , Carbon Isotopes , Nesting Behavior , Nitrogen Isotopes , Spacecraft , Time Factors
18.
PLoS One ; 10(7): e0132599, 2015.
Article in English | MEDLINE | ID: mdl-26208098

ABSTRACT

Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn-the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as 'risk from turbines is highest in habitats between hoary bat summering and wintering grounds'. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.


Subject(s)
Animal Migration/physiology , Chiroptera/physiology , Models, Theoretical , Animals , Environmental Monitoring , North America , Renewable Energy , Seasons , Wind
19.
Ecol Appl ; 24(4): 602-16, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24988763

ABSTRACT

Long-distance migration evolved independently in bats and unique migration behaviors are likely, but because of their cryptic lifestyles, many details remain unknown. North American hoary bats (Lasiurus cinereus cinereus) roost in trees year-round and probably migrate farther than any other bats, yet we still lack basic information about their migration patterns and wintering locations or strategies. This information is needed to better understand unprecedented fatality of hoary bats at wind turbines during autumn migration and to determine whether the species could be susceptible to an emerging disease affecting hibernating bats. Our aim was to infer probable seasonal movements of individual hoary bats to better understand their migration and seasonal distribution in North America. We analyzed the stable isotope values of non-exchangeable hydrogen in the keratin of bat hair and combined isotopic results with prior distributional information to derive relative probability density surfaces for the geographic origins of individuals. We then mapped probable directions and distances of seasonal movement. Results indicate that hoary bats summer across broad areas. In addition to assumed latitudinal migration, we uncovered evidence of longitudinal movement by hoary bats from inland summering grounds to coastal regions during autumn and winter. Coastal regions with nonfreezing temperatures may be important wintering areas for hoary bats. Hoary bats migrating through any particular area, such as a wind turbine facility in autumn, are likely to have originated from a broad expanse of summering grounds from which they have traveled in no recognizable order. Better characterizing migration patterns and wintering behaviors of hoary bats sheds light on the evolution of migration and provides context for conserving these migrants.


Subject(s)
Animal Migration/physiology , Body Temperature Regulation/physiology , Chiroptera/physiology , Seasons , Animals , Demography , Ecosystem , North America , Trees
20.
Mol Ecol ; 22(16): 4163-4176, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23906339

ABSTRACT

Methods for determining patterns of migratory connectivity in animal ecology have historically been limited due to logistical challenges. Recent progress in studying migratory bird connectivity has been made using genetic and stable-isotope markers to assign migratory individuals to their breeding grounds. Here, we present a novel Bayesian approach to jointly leverage genetic and isotopic markers and we test its utility on two migratory passerine bird species. Our approach represents a principled model-based combination of genetic and isotope data from samples collected on the breeding grounds and is able to achieve levels of assignment accuracy that exceed those of either method alone. When applied at large scale the method can reveal specific migratory connectivity patterns. In Wilson's warblers (Wilsonia pusilla), we detect a subgroup of birds wintering in Baja that uniquely migrate preferentially from the coastal Pacific Northwest. Our approach is implemented in a way that is easily extended to accommodate additional sources of information (e.g. bi-allelic markers, species distribution models, etc.) or adapted to other species or assignment problems.


Subject(s)
Animal Migration/physiology , Genetics, Population/methods , Models, Statistical , Songbirds/genetics , Animals , Bayes Theorem , Breeding , California , Isotopes , Microsatellite Repeats/genetics , Northwestern United States , Songbirds/classification , Songbirds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...