Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 938: 173295, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38782293

ABSTRACT

Metallurgical activities are a significant source of settleable atmospheric particulate matter (SePM). The material is exposed to wind action, leading to its deposition throughout terrestrial and aquatic ecosystems, thus promoting contamination by metals and metalloids. However, knowledge of the impacts on biota is scarce. In aquatic coastal zones, evaluating hemolymph in invertebrates makes it possible to have insights into the pre-pathogenic effects and health status of organisms. Our study aimed to evaluate bioaccumulation and the sublethal effects of SePM on the mangrove crab Ucides cordatus by assessing biomarkers of cito-genotoxicity in the hemolymph. Organisms underwent a 30-day experiment with four treatments: control; 0.01 g.L-1, 0.1 g.L-1, 1 g.L-1 of SePM, with hemolymph sampled at 2, 7, 15, and 30 days of exposure to assess lipid peroxidation (LPO), DNA damage (strand break), cholinesterase (ChE) and lysosomal membrane stability (LMS). The results revealed metals' bioaccumulation in soft tissues (Al, Fe+, Fe++, Cu, Zr, Nb) and dose-time-dependent responses for LPO, DNA strand break, ChE, and LMS. Significant correlation was found between LPO and Cu (tissue), reduced LMS and Al and Fe (tissue), and Cu, Zn, Ag, and Bi in water. Hemolymph was related to the toxicokinetic and toxicodynamic of metals and metalloids from SePM in Ucides cordatus. New toxicological evidence was obtained to shed light on the impacts of SePM on the ecological status of coastal zones.

2.
Chemosphere ; 353: 141576, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462180

ABSTRACT

Bullfrog tadpoles, Aquarana catesbeiana, were exposed to settleable particulate matter (SePM), (1 g L-1, 96 h) and their organs were collected for analysis of metal/metalloid, oxidative stress and neurotoxicity in liver, muscle, kidney and brain. The SePM water of the exposed groups contained 18 of the 28 metals/metalloids detected in ambient particulate matter (APM). Fe56 and Al were those that presented the highest concentrations, Cr, Mn, Pb and Cu increased from 10 to 20 times and Ti, V, Sr, Rb, Cd, Sn and Ni increased from 1 to 3 times compared to the control. Bioaccumulation of metals/metalloids in the exposure water varied significantly between organs, with the muscle and liver showing the highest concentrations of metals, followed by the brain. Lipoperoxidation and malondialdehyde increased only in muscle, while carbonyl proteins increased only in the liver and brain. Regarding nitric oxide synthase, there was an increase in the liver and brain in the group exposed to SePM. Catalase activity decreased in the liver and muscle, while the activity of glutathione peroxidase, increased in the liver and kidney and decreased in muscle. Glutathione S-transferase, which is mainly responsible for detoxification, increased in the liver and decreased in muscle and the kidney. Cholinesterase activity increased only in the muscle. The results indicate oxidative stress, due to oxidation catalyzed by metals, components of SePM. Thus, the results contribute to the understanding that SePM has a deleterious effect on the aquatic environment, negatively affecting bullfrog tadpoles, in different ways and levels in relation to the analyzed organs.


Subject(s)
Metalloids , Water Pollutants, Chemical , Animals , Rana catesbeiana , Particulate Matter/analysis , Larva , Metals/analysis , Oxidative Stress , Water/pharmacology , Metalloids/analysis , Water Pollutants, Chemical/analysis
3.
Foods ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38472791

ABSTRACT

Today, consumption of diets rich in saturated fat and fructose, associated with a variety of metabolic deregulations, has increased. The aim of this study was to evaluate the effect of dietary supplementation with a residue of defatted chia seed on a diet with low nutritional quality. To do this, C57BL/6 male mice were fed with the Control (C), Low-Nutritional-Quality (LNQ), or supplemented-with-chia-defatted-flour (LNQ+C) diets. After 12 weeks, the glucose and lactate levels were determined in the serum, liver, and kidney, along with reactive oxygen species (ROS) levels, antioxidant enzyme activity, reduced glutathione (GSH), and protein oxidation (AOPP). The LNQ diet increased the glucose and lactate levels (+25% and +50% approx. in the liver, with respect to the control group) and generated oxidative stress by modifying the levels of ROS and the activity of antioxidant enzymes, causing oxidative damage to proteins (+12% in the liver, with respect to the control). Chia supplementation helped to restore the glucose to control levels and modulate the endogenous antioxidant system, resulting in a decrease in protein oxidation products with no differences compared to the control group. In conclusion, supplementation with chia showed beneficial effects on the general health of mice, even when fed a low-nutritional-quality diet.

4.
Heliyon ; 10(1): e24125, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38226208

ABSTRACT

Food processing and digestion can alter bioactive compound composition of food, affecting their potential biological activity. In this study, we evaluated the direct and protective antioxidant effects of polyphenols extracted from defatted chia flour (DCF) (salviaflaside, rosmarinic and fertaric acid as major compounds), sweet cookies supplemented with DCF (CFC) (same major compounds), and their digested fractions (rosmarinic acid, salviaflaside, fertaric and salvianolic E/B/L acid as major compounds) in HepG2 cells in basal and in oxidative stress conditions. DCF showed protective antioxidant effects by decreasing reactive oxygen species (ROS) and protein oxidation products (POP) while increasing reduced glutathione (GSH). Additionally, CFC revealed similar protective effects and even showed enhanced modulation of the antioxidant system due to the activation of antioxidant enzymes. However, the digested fractions only decreased ROS, indicating continued antioxidant effects. This study underscores the importance of evaluating manufacturing and digestion effects to confirm a food's antioxidant properties.

5.
Sci Total Environ ; 902: 166119, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37567312

ABSTRACT

Settleable atmospheric particulate matter (SeAPM) containing a mixture of metals, including metallic nanoparticles, has increased throughout the world, and caused environmental and biota contamination. The metal bioconcentration pattern in Nile tilapia (Oreochromis niloticus) was evaluated during a 30-day exposure to 1 g L-1 SeAPM and assessed the human health risk from consuming fish fillets (muscle) based on the estimated daily intake (EDI). SeAPM was collected surrounding an iron ore processing and steel industrial complex in Vitória city (Espírito Santo, Brazil) area. Water samples were collected daily for physicochemical analyses, and every 3 days for multi-elemental analyses. Metal bioconcentrations were determined in the viscera and fillet of fish every 3 days. The elements B, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Pb, Hg, Ba, Bi, W, Ti, Zr, Y, La, Nb, and Ce were analyzed in SeAPM, water, and fish using inductively coupled plasma mass spectrometry. The metal concentration in SeAPM-contaminated water was higher than in control water. Most metals bioconcentrated preferentially in the fish viscera, except for the Hg and Rb, which bioconcentrated mostly in the fillet. The bioconcentration pattern was Fe > Al > Mn > Pb > V > La > Ce > Y > Ni > Se > As > W > Bi in the viscera; it was higher than the controls throughout the 30-day exposure. Ti, Zr, Nb, Rb, Cd, Hg, B, and Cr showed different bioconcentration patterns. The Zn, Cu, Sr, Sn, Ag, and Ta did not differ from controls. The differences in metal bioconcentration were attributed to diverse metal bioavailability in water and the dissimilar ways fish can cope with each metal, including inefficient excretion mechanisms. The EDI calculation indicated that the consumption of the studied fish is not safe for children, because the concentrations of As, La, Zr, and Hg exceed the World Health Organization's acceptable daily intake for these elements.


Subject(s)
Mercury , Metalloids , Metals, Heavy , Water Pollutants, Chemical , Animals , Child , Humans , Bioaccumulation , Cadmium/analysis , Particulate Matter/analysis , Lead/analysis , Mercury/analysis , Metalloids/analysis , Water/analysis , Metals, Heavy/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 881: 163380, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37044328

ABSTRACT

Some atmospheric pollutants may affect aquatic ecosystems after settling, generating contamination, bioaccumulation, and threats to aquatic species. Metallurgical processes result in the emission of settleable atmospheric particulate matter (SePM), including metals and metalloids, along with rare earth elements (REE) that are considered emerging contaminants. We report the 30-day exposure of brown mussels (Perna perna) to SePM collected in a metallurgical area of southeast Brazil close to estuarine ecosystems, followed by a 30-day clearance period, to evaluate the toxic potential of SePM to this model mollusk. The bioaccumulation of 28 elements identified in SePM and the sublethal effects were evaluated. REEs were found in SePM (Ce, Y, and La). Significant bioaccumulation of eight metals (Fe, Ni, Cu, Zn, Rb, Sr, Cd, and Ba) was found in the bivalves and correlates with the cytotoxicity and genotoxicity, showing a dose-dependent mode and suggesting a pre-pathological condition that could lead to ecological disturbances over time. Conversely, the unchanged lipid-peroxidation level after SePM exposure could indicate the effectiveness of the antioxidant system in protecting gills and digestive glands. The clearance period was not enough to successfully reverse the negative effects observed. So far, the current results enhance the comprehension of the negative role of SePM on metal bioaccumulation and metal-induced toxicity to aquatic biota. Thus, this report adds innovative findings on the role of SePM in aquatic pollution in coastal areas affected by atmospheric pollution, which should be relevant for future public policies to verify and control the environmental pollution.


Subject(s)
Bivalvia , Metalloids , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring/methods , Metals/toxicity , Metals/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
7.
Chemosphere ; 330: 138715, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37098361

ABSTRACT

Metallic smoke released by steel industries is constitute by a mixture of fine and gross particles containing metals, including the emerging ones, which sedimentation contaminates soil and aquatic ecosystems and put in risk the resident biota. This study determined the metal/metalloids in the atmospheric settleable particulate matter (SePM, particles >10 µm) from a metallurgical industrial area and evaluated metal bioconcentration, antioxidant responses, oxidative stress, and the histopathology in the gills, hepatopancreas and kidneys of fat snook fish (Centropomus parallelus) exposed to different concentrations of SePM (0.0, 0.01, 0.1 and 1.0 g L-1), for 96 h. From the 27 metals (Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Ba, La, Ce, W, Hg, Pb, Bi) analyzed, 18 were quantified in SePM and dissolved in seawater. Metal bioconcentrations differed among organs; Fe and Zn were the metals most bioconcentrated in all organs, Fe was higher in hepatopancreas and Zn > Fe > Sr > Al was higher in kidneys. The activity of superoxide dismutase (SOD) decreased in the gills; SOD, catalase (CAT) decreased, and glutathione peroxidase (GPx) increased in hepatopancreas and, CAT, glutathione-S-transferase (GST) and the level of glutathione (GSH) increased in kidneys. The unchanged levels of lipid peroxidation and oxidized protein in any organ indicate that the antioxidant responses were efficient to avoid oxidative stress. Organ lesion indices were higher in the gills > kidneys > hepatopancreas, being higher in fish exposed to 0.01 g L-1 SePM. All changes indicate a tissue-specific metal/metalloids bioconcentration, antioxidant and morphological responses that all together compromise fish health. Regulatory normative are needed to control the emission of these metalliferous PM to preserve the environment and biota.


Subject(s)
Metalloids , Perciformes , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Bioaccumulation , Gills/metabolism , Hepatopancreas/metabolism , Particulate Matter/metabolism , Ecosystem , Water Pollutants, Chemical/analysis , Metals/toxicity , Metals/metabolism , Fishes/metabolism , Superoxide Dismutase/metabolism , Perciformes/metabolism , Catalase/metabolism , Oxidative Stress , Glutathione/metabolism , Kidney/metabolism
8.
J Therm Biol ; 111: 103421, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36585086

ABSTRACT

Heat stress in poultry is a major concern, especially in regions with hot summers and scarce cooling infrastructure. Dietary supplementation with antioxidants, such as polyphenols, has risen as a strategy to mitigate the physiological consequences of heat stress. A by-product of the extraction of oil from chia seeds, which is discarded if not used, could be a possible source of polyphenols. The aim of the present study was to evaluate the effects of dietary supplementation with polyphenols from defatted chia seed cake on the general performance, and oxidative status of Japanese quail exposed to heat stress. Furthermore, productive performance, egg quality and yolk fatty acid composition were also assessed. A total of 36 females (96 days of age) were randomly assigned to different diets: BASAL (control), LDCP (low dose of chia polyphenols), or HDCP (high dose of chia polyphenols). Half the animals in each diet group were exposed to 34 °C for 9 h a day (Heat Stress; HS), while the other half remained at the standard 24 °C (No Heat Stress; NHS). After 23 days of experimental conditions, animals under HS showed higher body temperatures and time spent panting, but lower egg laying rate. Moreover, HS modulated the activity of catalase and glutathione peroxidase enzymes, increasing lipid peroxidation in serum and liver; and increased saturated fatty acids in egg yolk. Supplementation with chia polyphenols helped to mitigate the HS effects, especially on glutathione peroxidase activity, decreasing lipid peroxidation. In addition, supplementation with HDCP showed the highest proportion of polyunsaturated fatty acids in liver and egg yolk. In conclusion, the use of defatted chia seed cake could represent a sustainable strategy to mitigate heat stress effects on Japanese quail, due to its capacity to decrease oxidative stress and improve the nutritional quality of egg, while decreasing the amount of waste generated by the food industry.


Subject(s)
Coturnix , Diet , Animals , Female , Animal Feed/analysis , Antioxidants/pharmacology , Coturnix/physiology , Diet/veterinary , Dietary Supplements , Fatty Acids/pharmacology , Glutathione Peroxidase , Oxidative Stress
9.
Sci Total Environ ; 856(Pt 2): 159168, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36195137

ABSTRACT

Iron and steel industries discharge a large amount of atmospheric particulate matter (PM) containing metals and metallic nanoparticles (NPs) that contaminate not only the air, but also settle into the aquatic environments. However, the effects of settleable atmospheric particulate matter (SePM) on aquatic fauna are still poorly understood. This study aimed to evaluate the sublethal effects of a short-term exposure to a realistic concentration of SePM on Nile tilapia (Oreochromis niloticus) using a multi-biomarker approach: relative ventricular mass (RVM) and heart function, blood oxidative stress, stress indicators, hemoglobin concentration, metallic NPs internalization, and metal bioaccumulation. Exposed fish exhibited reduced hemoglobin content and elevated plasma cortisol and glucose levels, reflecting stressed states. Furthermore, SePM caused blood oxidative stress increasing lipid and protein oxidation, decreasing glutathione levels, and inhibiting superoxide and glutathione reductase activities. SePM exposure also increased RVM and improved cardiac performance, increasing myocardial contractile force and rates of contraction and relaxation. In the heart tissue there was a significant accumulation of Fe > Zn > > Cr > Cu > Rb > Ni > V > Mn > Se > Mo > As. On the other hand, in the erythrocytes there was significant accumulation of Sn > Zn > > Cr > Ti > Mn = Ni > Nb > As > Bi. The highest bioaccumulation factors were found for Cr, Zn and Ni in both tissues. NPs (Ti, Sn, Al, Fe, Cu, Si, Zn) were also detected in ventricular myocardium of fish exposed and nanocrystallographic analysis revealed a predominance of anatase phase of TiO2-NP, which is regarded to be more cytotoxic. The association between blood oxidative stress and energy expenditure to sustain increased cardiac pumping capacity under stress condition suggests that SePM has negative impacts on fish physiological performance, threatening their survival, growth rate and/or population establishment.


Subject(s)
Cichlids , Animals , Cichlids/metabolism , Particulate Matter/metabolism , Oxidative Stress , Biomarkers/metabolism , Metals/metabolism , Hemoglobins/metabolism
10.
Nat Prod Res ; 36(4): 885-890, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33185143

ABSTRACT

Numerous reports describe the antioxidant and antimicrobial activity of polyphenols-rich plant extracts. The aim of this study was to determine the total polyphenols content (TPC), and the in vitro (DPPH, FRAP and TEAC) antioxidant and antibacterial activity of leaves and wood of six native woody species (Aspidosperma quebracho-blanct, Sarcomphalus mistol, Geoffroea decorticans, Prosopis chilensis, Larrea divaricata and Larrea cuneifolia) from Catamarca. Also, the phenolic profile was determined in the species with higher activity. L. cuneifolia leaf extracts showed the highest antioxidant activity followed by L. divaricata and S. mistol, while S. mistol wood extracts showed the highest. Furthermore, Larrea species showed antibacterial activity against S. aureus and E. faecalis strains showing cidal effects mainly against S. aureus. Fifty-nine polyphenols were identified in leaves and wood of Larrea and S. mistol species, which are likely to be responsible for the different activities observed.


Subject(s)
Antioxidants , Wood , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Argentina , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves , Staphylococcus aureus
11.
Environ Sci Pollut Res Int ; 29(8): 11685-11698, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34546525

ABSTRACT

The insecticide fipronil and the herbicide 2,4-D are the most applied pesticides in sugarcane crops leading to aquatic contamination. The whole-body bioconcentration of fipronil and 2,4-D, single and in mixture, was evaluated in Danio rerio after 96-h exposure. The activities of catalase (CAT) and glutathione S-transferase(GST) in whole body and in the gills and the acetylcholinesterase (AChE) in muscle were determined. The gill histopathology and the morphology of the pavement (PVC) and the mitochondria-rich(MRC) cells at gill surface were analyzed. Bioconcentration occurred after exposure to fipronil (2.69 L kg-1) and 2,4-D (1.73 L kg-1) single and in mixture of fipronil (3.10 L kg-1) and 2,4-D (1.27 L kg-1). Whole-body CAT activity was unchanged, and its activity decreased in the gills after exposure to fipronil and increased after exposure to 2,4-D and mixture. GST and AChE increased after single exposure to each pesticide and mixture of both. Fish exposed to mixture increased the MRC fractional area (MRCFA) which suggested possible ionic regulation disturbance and reduced the microridge of the PVC surface. Synergistic interactions occurred in the CAT activity and MRCFA after exposure to mixture of pesticides. The results indicate that the recommended application dose of fipronil and 2,4-D, single or in mixture, for sugarcane crops affects this fish species altering its homeostasis.


Subject(s)
Water Pollutants, Chemical , Zebrafish , 2,4-Dichlorophenoxyacetic Acid/toxicity , Acetylcholinesterase , Animals , Bioaccumulation , Catalase/metabolism , Glutathione Transferase/metabolism , Pyrazoles , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
12.
Aquat Toxicol ; 240: 105987, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34644674

ABSTRACT

The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and the insecticide fipronil have been used widely in agriculture and detected in aquatic ecosystems, where they threaten wildlife. This study evaluated the whole-body bioconcentration and the biochemical and morphological changes in the gills of the neotropical fish Prochilodus lineatus exposed for 96 h to 2,4-D or fipronil as single compounds or as a mixture (2,4-D + fipronil). Fish exposed to either compound alone bioconcentrated 2,4-D (77 ± 23 ng g - 1 fish dry mass) and fipronil (789 ± 178 ng g - 1 fish dry mass). Fish exposed to 2,4-D + fipronil bioconcentrated fipronil (683 ± 73 ng g - 1 fish dry mass) but not 2,4-D. In the gills, catalase (CAT) and glutathione-S-transferase (GST) activities and the lipid peroxidation (LPO) level increased after exposure to 2,4-D. GST activity increased after exposure to fipronil. Conversely, no changes occurred in CAT and GST activities and LPO upon exposure to 2,4-D + fipronil. Histopathological changes such as hyperplasia, cellular hypertrophy, epithelial lifting, and vascular congestion were frequent in the gills of fish exposed to 2,4-D or fipronil individually or 2,4-D + fipronil. The mitochondria-rich cell (MRC) density increased on gill surface in fish exposed to fipronil or 2,4-D + fipronil. Only exposure to 2,4-D alone induced oxidative stress in the gills. Most morphological changes showed defense responses against the pesticides; however, hypertrophy and the change in MRC indicated compensatory responses to maintain the gill osmoregulatory function. The 2,4-D + fipronil mixture showed antagonistic interaction, except for the MRC fractional area at gill surface, which showed synergistic interaction. This is the first report showing antagonistic interaction of 2,4-D and fipronil in the gills after exposing fish to the mixture of both pesticides. The biochemical and morphological changes in gills endanger the gill functions, a phenomenon that implies an energy cost for fish.


Subject(s)
Characiformes , Herbicides , Water Pollutants, Chemical , 2,4-Dichlorophenoxyacetic Acid/toxicity , Animals , Bioaccumulation , Catalase/metabolism , Characiformes/metabolism , Ecosystem , Gills/metabolism , Glutathione Transferase/metabolism , Herbicides/metabolism , Herbicides/toxicity , Lipid Peroxidation , Liver/metabolism , Oxidative Stress , Pyrazoles , Water Pollutants, Chemical/toxicity
13.
Sci Total Environ ; 800: 149516, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34391145

ABSTRACT

Fish from both aquaculture and wild capture are exposed to veterinary and medicinal antibiotics (ABs). This study explored the occurrence and probable source of 46 antibiotic residues in muscle of farmed salmon and wild trout from Chile. Results showed that at least one AB was detected in all studied samples. Diverse patterns were observed between farmed and wild specimens, with higher ABs concentrations in wild fish. Considering antimicrobial resistance, detected ABs corresponded to the categories B (Restrict), C (Caution) and D (Prudence) established by Antimicrobial Advice Ad Hoc Expert Group (European Medicines Agency). Multivariate statistic was used to verify differences between farmed and wild populations, looking for the probable source of ABs as well. Principal components analysis (PCA) revealed that ciprofloxacin, moxifloxacin, enrofloxacin, amoxicillin, penicillin G, oxolinic acid, sulfamethoxazole, trimethoprim and clarithromycin were associated with wild samples, collected during the cold season. Conversely, norfloxacin, sulfaquinoxaline, sulfadimethoxine, nitrofurantoin, nalidixic acid, penicillin V, doxycycline, flumequine, oxacillin, pipemidic acid and sulfamethizole were associated with wild samples collected during the warm season. All farmed salmon samples were associated with ofloxacin, tetracycline, cephalexin, erythromycin, azithromycin, roxithromycin, sulfabenzamide, sulfamethazine, sulfapyridine, sulfisomidin, and sulfaguanidine. In addition, linear discriminant analysis showed that the AB profile in wild fish differ from farmed ones. Most samples showed ABs levels below the EU regulatory limit for edible fish, except for sulfaquinoxaline in one sample. Additionally, nitrofurantoin (banned in EU) was detected in one aquaculture sample. The differences observed between farmed and wild fish raise questions on the probable source of ABs, either aquaculture or urban anthropic activities. Further research is necessary for linking the ABs profile in wild fish with the anthropic source. However, to our knowledge, this is the first report showing differences in the ABs profile between wild and aquaculture salmonids, which could have both environmental and health consequences.


Subject(s)
Anti-Bacterial Agents , Salmonidae , Animals , Aquaculture , Chile , Salmon
14.
Food Chem ; 332: 127380, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32603916

ABSTRACT

The occurrence of 46 antibiotics (amphenicols, cephalosporins, dihydrofolate reductase inhibitors, fluroquinolones, macrolides, nitrofurans, penicillins, quinolones, sulfamides and tetracyclines) in Argentinean market fish were investigated by UPLC-MS/MS. Veterinary and human antimicrobials enrofloxacin, clarithromycin, roxithromycin, doxycycline and oxytetracycline were detected in 100% of the samples, being to our knowledge the first report of clarithromycin in edible fish muscle. Maximum Residual Limits were exceeded for at least one antibiotic in 82% of pacú, 57% of shad, 57% of trout and 50% of salmon samples. Chloramphenicol, furazolidone and nitrofurantoin (banned compounds in food items) were detected in 41%, 22% and 4% of the samples, respectively. Based on the estimated daily intake calculation, samples do not pose a serious risk to public health. Further investigation on the chronic impact and risk calculation of the mixture of antibiotics on the aquatic environment and human health is urgently needed.


Subject(s)
Anti-Bacterial Agents/analysis , Drug Residues/analysis , Fishes , Seafood/analysis , Animals , Anti-Bacterial Agents/adverse effects , Argentina , Drug Residues/adverse effects , Humans , Risk Assessment
15.
Food Chem ; 316: 126279, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32059164

ABSTRACT

The aim of this work was to improve the antioxidant quality of cookies using defatted chia flour (DCF), which is a by-|product of the food industry. We prepared cookies containing DFC (5, 10 and 20%), and evaluated the technological and sensory qualities of cookies. Additionally, we verified the effects of processing and simulated gastrointestinal digestion on polyphenols content. The addition of DFC did not affect the technological quality of cookies, with the exception of color. Furthermore, cookies supplemented with 10% DFC were sensorial preferred over the others. The addition of DFC increased the polyphenol content and the in vitro antioxidant capacity of cookies. Besides, the simulated gastrointestinal digestion suggested that 73% of total polyphenols could be absorbed in the intestine, showing an antioxidant effect greater than expected, also showing prebiotic effects. Supplementation of cookies with 10% DFC could be recommended to improve antioxidant quality without reducing the technological or sensorial properties.


Subject(s)
Antioxidants/metabolism , Candy/analysis , Flour/analysis , Gastrointestinal Tract/metabolism , Digestion , Fermentation , Humans , Polyphenols/analysis , Taste
16.
Toxics ; 6(1)2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29267202

ABSTRACT

Glyphosate is the most widely used herbicide worldwide. However, there are some uncertain aspects with respect to its environmental fate. To evaluate the existence and distribution of this pesticide and its metabolite, aminomethylphosphonic acid (AMPA), their presence in fresh water, sediment, and suspended particulate matter (SPM) was measured in samples collected in a river running across a large city and through areas with intensive and extensive agriculture. The aquatic risk associated to the occurrence of these compounds was estimated using the hazard quotient (HQ) calculation for water and sediment. From the analyzed samples, overall 35% contained glyphosate, AMPA, or both compounds. Concentrations of the analytes were spread in different percentages depending on the environmental matrices considered, with levels ranging from 12 to 20 times higher for glyphosate and AMPA in sediment and SPM, as compared with the levels found in water. The most polluted area was situated within a green belt zone of the city; while in second place were sites located in areas of extensive agriculture. Aquatic organisms inhabiting areas both inside and outside agricultural areas are threatened by water glyphosate concentrations. Benthic organisms inside the greenbelt zone and inside the lower basin are threatened by the concentrations of glyphosate in sediment. Even when the concentrations measured in water were below the levels of concern for wildlife, results showed the risk of agricultural practices to aquatic biota. An update of the limits established for freshwater biota protection is needed.

17.
J Agric Food Chem ; 65(47): 10325-10331, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29099589

ABSTRACT

A series of benzyl-substituted thiobenzoazoles were synthesized by an environmentally friendly approach, to search for new antifungal agrochemicals. Compounds were prepared starting from 2-mercaptobenzoazoles, using KOH, benzyl halides, and water, resulting in a simple and ecological method. New antifungals were tested against a group of phytopathogenic fungi. Two compounds showed an interesting activity against Botrytis cinerea, Fusarium oxysporum, and Aspergillus spp.: 2-((4-(trifluoromethyl)benzyl)thio)benzo[d]thiazole, 3ac, and 2-((4-methylbenzyl)thio)benzo[d]thiazole, 3al. Thus, 3ac and 3al can be considered as broad spectrum antifungal agents. Furthermore, two new compounds, 2-((4-iodobenzyl)thio)benzo[d]thiazole, 3aj, and 2-(benzylthio)benzo[d]oxazole, 3ba, showed better inhibitory effect against Botrytis cinerea and Fusarium oxysporum when compared to the commercial fungicide Captan. Thus, 3aj and 3ba can be considered reduced-spectrum antifungals.


Subject(s)
Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/pharmacology , Aspergillus/drug effects , Azoles/chemistry , Benzyl Compounds/chemistry , Botrytis/drug effects , Fungicides, Industrial/chemistry , Fusarium/drug effects , Green Chemistry Technology , Microbial Sensitivity Tests , Molecular Structure
18.
Environ Pollut ; 215: 302-313, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27213571

ABSTRACT

Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle were experimentally exposed to increasing levels of iron (0, 10, 20 and 100 mg L(-1) added Fe(II) in Hoagland's nutritive medium). The uptake and translocation of iron from roots to stems and leaves, Fe-secretion through salt glands (Avicennia schaueriana and Laguncularia racemosa) as well as anatomical and histochemical changes in plant tissues were evaluated. The main goal of this work was to assess the diverse capacity of these plants to detect mangroves at risk in an area affected by iron pollution (Vitoria, Espírito Santo, Brazil). Results show that plants have differential patterns with respect to bioaccumulation, translocation and secretion of iron through salt glands. L. racemosa showed the best environmental sensing capacity since the bioaccumulation of iron in both Fe-plaque and roots was higher and increased as the amount of added-iron rose. Fewer changes in translocation factors throughout increasing added-iron were observed in this species. Furthermore, the amount of iron secreted through salt glands of L. racemosa was strongly inhibited when exposed to added-iron. Among three studied species, A. schaueriana showed the highest levels of iron in stems and leaves. On the other hand, Rhizophora mangle presented low values of iron in these compartments. Even so, there was a significant drop in the translocation factor between aerial parts with respect to roots, since the bioaccumulation in plaque and roots of R. mangle increased as iron concentration rose. Moreover, rhizophores of R. mangle did not show changes in bioaccumulation throughout the studied concentrations. So far, we propose L. racemosa as the best species for monitoring iron pollution in affected mangroves areas. To our knowledge, this is the first detailed report on the response of these plants to increasing iron concentration under controlled conditions, complementing existing data on the behavior of the same plants under field exposure.


Subject(s)
Avicennia/metabolism , Combretaceae/metabolism , Environmental Monitoring/methods , Environmental Pollutants/metabolism , Iron/metabolism , Plant Structures/metabolism , Rhizophoraceae/metabolism , Animals , Biological Transport , Brazil , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Stems/metabolism
19.
Ecotoxicol Environ Saf ; 129: 311-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27060258

ABSTRACT

The pesticides cypermethrin (CYP) and chlorpyrifos (CPF) were found together in water bodies located in agricultural and urban areas. However, the impact to non-target biota from exposure to mixtures has received little attention. In the current study, we evaluated changes in swimming behavior and cholinesterase enzymes activity in Jenynsia multidentata, to investigate the possible effects of these insecticides individually and in mixtures. Moreover, differences between technical and commercial mixtures of the pesticides were evaluated. Females of J. multidentata were exposed over 96-h to CYP (0.04 and 0.4µgL(-1)), CPF (0.4 and 4µgL(-1)), individually and in a technical and commercial mixtures. Swimming behavior was recorded after 24h and 96h of exposure. Also, we measured cholinesterase enzymes activity in brain and muscle after 96h of exposure. Exposure to CYP increased the exploratory activity of J. multidentata in the upper area of the aquarium. Fish exposed to CPF (4µg L(-1)) showed a decrease in swimming activity and an increase in the time spent at the bottom of the aquarium. Interestingly, fish exposed to the technical and commercial mixture of CYP and CPF displayed a different behavior based on the concentration of exposure. Low concentration of pesticides elicited an increase in J. multidentata swimming activity with preference for the upper area of the aquarium, and high concentrations caused decrease in swimming activity with preference for the bottom area of the aquarium. Based on the response of cholinesterase enzymes, acetylcholinesterase in muscle was more sensitive to exposure to CYP, CPF and their mixtures than in brain. A decrease in swimming behavior correlates significantly with the inhibition of acetylcholinesterase activity in muscle of J. multidentata exposed to high concentrations of pesticides. These results draw attention to the need of more studies on the potential ecotoxicological impact of pesticides and its mixtures at environmental relevant concentrations.


Subject(s)
Acetylcholinesterase/metabolism , Chlorpyrifos/toxicity , Cyprinodontiformes/physiology , Pesticides/toxicity , Pyrethrins/toxicity , Animals , Behavior, Animal/drug effects , Female , Muscle, Skeletal/drug effects , Swimming
20.
Chemosphere ; 127: 27-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25655694

ABSTRACT

In Brazil, some mangrove areas are subjected to air pollution by particulate iron from mining activities. However, the effect of this pollutant on mangrove plants is not well known. This study aimed to comparatively analyze the morphoanatomy, histochemistry, and iron accumulation in leaves of Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle. Samples were collected from five mangrove sites of Espírito Santo state, each of which is exposed to different levels of particulate iron pollution. The amount of particulate material settled on the leaf surface was greater in A. schaueriana and L. racemosa, which contain salt glands. High iron concentrations were found in leaves of this species, collected from mangrove areas with high particulate iron pollution, which suggests the foliar absorption of this element. None of the samples from any of the sites showed morphological or structural damage on the leaves. Scanning electron microscopy (SEM) coupled to X-ray diffraction rendered a good method for evaluating iron on leaves surfaces. A histochemical test using Prussian blue showed to be an appropriate method to detect iron in plant tissue, however, proved to be an unsuitable method for the assessment of the iron bioaccumulation in leaves of A. schaueriana and R. mangle. So far, this study demonstrates the need of evaluating the pathway used by plants exposed to contaminated particulate matter to uptake atmospheric pollutants.


Subject(s)
Avicennia/drug effects , Combretaceae/drug effects , Environmental Pollution/analysis , Iron/metabolism , Particulate Matter/pharmacology , Plant Leaves/metabolism , Rhizophoraceae/drug effects , Avicennia/metabolism , Brazil , Combretaceae/metabolism , Environmental Monitoring/methods , Microscopy, Electron, Scanning , Rhizophoraceae/metabolism , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...