Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Front Med (Lausanne) ; 9: 821071, 2022.
Article in English | MEDLINE | ID: mdl-35223919

ABSTRACT

Antimicrobial resistance (AMR) is a well-recognized, widespread, and growing issue of concern. With increasing incidence of AMR, the ability to respond quickly to infection with or exposure to an AMR pathogen is critical. Approaches that could accurately and more quickly identify whether a pathogen is AMR also are needed to more rapidly respond to existing and emerging biological threats. We examined proteins associated with paired AMR and antimicrobial susceptible (AMS) strains of Yersinia pestis and Francisella tularensis, causative agents of the diseases plague and tularemia, respectively, to identify whether potential existed to use proteins as signatures of AMR. We found that protein expression was significantly impacted by AMR status. Antimicrobial resistance-conferring proteins were expressed even in the absence of antibiotics in growth media, and the abundance of 10-20% of cellular proteins beyond those that directly confer AMR also were significantly changed in both Y. pestis and F. tularensis. Most strikingly, the abundance of proteins involved in specific metabolic pathways and biological functions was altered in all AMR strains examined, independent of species, resistance mechanism, and affected cellular antimicrobial target. We have identified features that distinguish between AMR and AMS strains, including a subset of features shared across species with different resistance mechanisms, which suggest shared biological signatures of resistance. These features could form the basis of novel approaches to identify AMR phenotypes in unknown strains.

2.
Forensic Sci Int ; 297: 350-363, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30929674

ABSTRACT

Mass spectrometry-based proteomics has been a useful tool for addressing numerous questions in basic biology research for many years. This success, combined with the maturity of mass spectrometric instrumentation, the ever-increasing availability of protein sequence databases derived from genome sequencing, and the growing sophistication of data analysis methods, places proteomics in a position to have an important role in biological forensics. Because proteins contain information about genotype (sequence) and phenotype (expression levels), proteomics methods can both identify biological samples and characterize the conditions that produced them. In addition to serving as a valuable orthogonal method to genomic analyses, proteomics can be used in cases where nucleic acids are absent, degraded, or uninformative. Mass spectrometry provides both broad applicability and exquisite specificity, often without customized detection reagents like primers or antibodies. This review briefly introduces proteomics methods, and surveys a variety of forensic applications (including criminal justice, historical, archaeological, and national security areas). Finally, challenges and crucial areas for further research are addressed.


Subject(s)
Forensic Sciences , Proteomics , Archaeology , Body Fluids/metabolism , Bone and Bones/metabolism , Chromatography , Doping in Sports , Food , Hair/metabolism , Humans , Mass Spectrometry , Microbiota , Peptides/analysis , Proteolysis , Proteome , Sequence Analysis, Protein , Species Specificity , Toxins, Biological/metabolism
3.
PLoS One ; 13(12): e0209120, 2018.
Article in English | MEDLINE | ID: mdl-30557394

ABSTRACT

The spore forming pathogen Bacillus anthracis is the etiologic agent of anthrax in humans and animals. It cycles through infected hosts as vegetative cells and is eventually introduced into the environment where it generates an endospore resistant to many harsh conditions. The endospores are subsequently taken up by another host to begin the next cycle. Outbreaks of anthrax occur regularly worldwide in wildlife and livestock, and the potential for human infection exists whenever humans encounter infected animals. It is also possible to encounter intentional releases of anthrax spores, as was the case in October 2001. Consequently, it is important to be able to rapidly establish the provenance of infectious strains of B. anthracis. Here, we compare protein expression in seven low-passage wild isolates and four laboratory strains of B. anthracis grown under identical conditions using LC-MS/MS proteomic analysis. Of the 1,023 total identified proteins, 96 had significant abundance differences between wild and laboratory strains. Of those, 28 proteins directly related to sporulation were upregulated in wild isolates, with expression driven by Spo0A, CodY, and AbrB/ScoC. In addition, we observed evidence of changes in cell division and fatty acid biosynthesis between the two classes of strains, despite being grown under identical experimental conditions. These results suggest wild B. anthracis cells are more highly tuned to sporulate than their laboratory cousins, and this difference should be exploited as a method to differentiate between laboratory and low passage wild strains isolated during an anthrax outbreak. This knowledge should distinguish between intentional releases and exposure to strains in nature, providing a basis for the type of response by public health officials and investigators.


Subject(s)
Bacillus anthracis/genetics , Bacillus anthracis/physiology , Bacterial Proteins/genetics , Gene Expression Profiling , Laboratories , Spores, Bacterial/physiology , Bacillus anthracis/metabolism , Species Specificity
4.
Article in English | MEDLINE | ID: mdl-30406093

ABSTRACT

For more than a decade, the United States has performed environmental monitoring by collecting and analyzing air samples for a handful of biological threat agents (BTAs) in order to detect a possible biological attack. This effort has faced numerous technical challenges including timeliness, sampling efficiency, sensitivity, specificity, and robustness. The cost of city-wide environmental monitoring using conventional technology has also been a challenge. A large group of scientists with expertise in bioterrorism defense met to assess the objectives and current efficacy of environmental monitoring and to identify operational and technological changes that could enhance its efficacy and cost-effectiveness, thus enhancing its value. The highest priority operational change that was identified was to abandon the current concept of city-wide environmental monitoring because the operational costs were too high and its value was compromised by low detection sensitivity and other environmental factors. Instead, it was suggested that the focus should primarily be on indoor monitoring and secondarily on special-event monitoring because objectives are tractable and these operational settings are aligned with likelihood and risk assessments. The highest priority technological change identified was the development of a reagent-less, real-time sensor that can identify a potential airborne release and trigger secondary tests of greater sensitivity and specificity for occasional samples of interest. This technological change could be transformative with the potential to greatly reduce operational costs and thereby create the opportunity to expand the scope and effectiveness of environmental monitoring.

5.
J Proteome Res ; 17(9): 3075-3085, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30109807

ABSTRACT

Bottom-up proteomics is increasingly being used to characterize unknown environmental, clinical, and forensic samples. Proteomics-based bacterial identification typically proceeds by tabulating peptide "hits" (i.e., confidently identified peptides) associated with the organisms in a database; those organisms with enough hits are declared present in the sample. This approach has proven to be successful in laboratory studies; however, important research gaps remain. First, the common-practice reliance on unique peptides for identification is susceptible to a phenomenon known as signal erosion. Second, no general guidelines are available for determining how many hits are needed to make a confident identification. These gaps inhibit the transition of this approach to real-world forensic samples where conditions vary and large databases may be needed. In this work, we propose statistical criteria that overcome the problem of signal erosion and can be applied regardless of the sample quality or data analysis pipeline. These criteria are straightforward, producing a p-value on the result of an organism or toxin identification. We test the proposed criteria on 919 LC-MS/MS data sets originating from 2 toxins and 32 bacterial strains acquired using multiple data collection platforms. Results reveal a > 95% correct species-level identification rate, demonstrating the effectiveness and robustness of proteomics-based organism/toxin identification.


Subject(s)
Bacterial Toxins/isolation & purification , Forensic Sciences/methods , Peptides/analysis , Proteomics/statistics & numerical data , Bacillus/chemistry , Bacillus/pathogenicity , Bacillus/physiology , Bacterial Toxins/chemistry , Chromatography, Liquid , Clostridium/chemistry , Clostridium/pathogenicity , Clostridium/physiology , Data Interpretation, Statistical , Desulfovibrio/chemistry , Desulfovibrio/pathogenicity , Desulfovibrio/physiology , Escherichia/chemistry , Escherichia/pathogenicity , Escherichia/physiology , Forensic Sciences/instrumentation , Forensic Sciences/statistics & numerical data , Humans , Peptides/chemistry , Probability , Proteomics/methods , Pseudomonas/chemistry , Pseudomonas/pathogenicity , Pseudomonas/physiology , Salmonella/chemistry , Salmonella/pathogenicity , Salmonella/physiology , Sensitivity and Specificity , Shewanella/chemistry , Shewanella/pathogenicity , Shewanella/physiology , Tandem Mass Spectrometry , Yersinia/chemistry , Yersinia/pathogenicity , Yersinia/physiology
6.
Talanta ; 187: 302-307, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29853051

ABSTRACT

A variety of toxins are produced by marine and freshwater microorganisms that present a threat to human health. These toxins have diverse chemical properties and specifically, a range of hydrophobicity. Methods for extraction and identification of these toxins are often geared toward specific classes of toxin depending on the sample type. There is a need for a general method of toxin extraction and identification for screening samples where the likely toxin content is not known a priori. We have applied a general method for metabolite extraction to toxin containing samples. This method was coupled with a simple dual liquid chromatography approach for separating a broad range of toxins. This liquid chromatography approach was coupled to triple quadrupole and quadrupole time-of-flight MS/MS platforms. The method was testing on a fish matrix for recovery of palytoxin as well as marine corals for detection of natural mixtures of palytoxin analogues. The recovery of palytoxin was found to produce a linear response (R2 of 0.95) when spiked into the fish matrix with a limit of quantitation of 2.5 ng/µL and recovery efficiency of 73% + /- 9%. The screening of corals revealed varying amount of palytoxin, and in one case, different palytoxin structural analogues. This demonstration illustrates the potential utility of this method for toxin extraction and detection.

7.
Talanta ; 186: 628-635, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29784413

ABSTRACT

A forensic method for the retrospective determination of preparation methods used for illicit ricin toxin production was developed. The method was based on a complex set of biomarkers, including carbohydrates, fatty acids, seed storage proteins, in combination with data on ricin and Ricinus communis agglutinin. The analyses were performed on samples prepared from four castor bean plant (R. communis) cultivars by four different sample preparation methods (PM1-PM4) ranging from simple disintegration of the castor beans to multi-step preparation methods including different protein precipitation methods. Comprehensive analytical data was collected by use of a range of analytical methods and robust orthogonal partial least squares-discriminant analysis- models (OPLS-DA) were constructed based on the calibration set. By the use of a decision tree and two OPLS-DA models, the sample preparation methods of test set samples were determined. The model statistics of the two models were good and a 100% rate of correct predictions of the test set was achieved.


Subject(s)
Ricin/analysis , Ricinus/chemistry , Biomarkers/analysis , Discriminant Analysis , Forensic Toxicology , Humans , Least-Squares Analysis , Ricin/adverse effects
8.
Toxicon ; 140: 18-31, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29031940

ABSTRACT

The toxic protein ricin (also known as RCA60), found in the seed of the castor plant (Ricinus communis) is frequently encountered in law enforcement investigations. The ability to detect ricin by analyzing its proteolytic (tryptic) peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS) is well established. However, ricin is just one member of a family of proteins in R. communis with closely related amino acid sequences, including R. communis agglutinin I (RCA120) and other ricin-like proteins (RLPs). Inferring the presence of ricin from its constituent peptides requires an understanding of the specificity, or uniqueness to ricin, of each peptide. Here we describe the set of ricin-derived tryptic peptides that can serve to uniquely identify ricin in distinction to closely-related RLPs and to proteins from other species. Other ricin-derived peptide sequences occur only in the castor plant, and still others are shared with unrelated species. We also characterized the occurrence and relative abundance of ricin and related proteins in an assortment of forensically relevant crude castor seed preparations. We find that whereas ricin and RCA120 are abundant in castor seed extracts, other RLPs are not represented by abundant unique peptides. Therefore, the detection of peptides shared between ricin and RLPs (other than RCA120) in crude castor seed extracts most likely reflects the presence of ricin in the sample.


Subject(s)
Chemical Warfare Agents/analysis , Ricin/analysis , Ricinus communis/chemistry , Amino Acid Sequence , Chemical Warfare Agents/chemistry , Chromatography, Liquid , Peptides/analysis , Plant Extracts/chemistry , Plant Proteins/analysis , Ricin/chemistry , Seeds/chemistry , Tandem Mass Spectrometry
9.
J Nat Prod ; 79(6): 1492-9, 2016 06 24.
Article in English | MEDLINE | ID: mdl-27232848

ABSTRACT

Siderophores are iron (Fe)-binding secondary metabolites that have been investigated for their uranium-binding properties. Previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl (UO2)-binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of UO2, yet they have not been widely studied. Desmalonichrome is a carboxylate siderophore that is not commercially available and so was obtained from the fungus Fusarium oxysporum cultivated under Fe-depleted conditions. The relative affinity for UO2 binding of desmalonichrome was investigated using a competitive analysis of binding affinities between UO2 acetate and different concentrations of Fe(III) chloride using electrospray ionization mass spectrometry. In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A), were studied to understand their relative affinities for the UO2(2+) ion at two pH values. The binding affinities of hydroxamate siderophores to UO2(2+) ions were observed to decrease with increasing Fe(III)Cl3 concentration at the lower pH. On the other hand, decreasing the pH has a smaller impact on the binding affinities between carboxylate siderophores and the UO2(2+) ion. Desmalonichrome in particular was shown to have the greatest relative affinity for UO2 at all pH and Fe(III) concentrations examined. These results suggest that acidic functional groups in the ligands are important for strong chelation with UO2 at lower pH.


Subject(s)
Fusarium/chemistry , Siderophores/chemistry , Uranium Compounds/chemistry , Analysis of Variance , Deferoxamine , Ferric Compounds/chemistry , Molecular Structure
10.
J Microbiol Methods ; 118: 18-24, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26295278

ABSTRACT

Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Analysis of cellular proteins is dependent upon efficient extraction from bacterial samples, which can be challenging with increasing complexity and refractory characteristics. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrichment for certain classes of proteins. The method presented here is technically simple, does not require specialized equipment such as a mechanical disrupter, and is effective for protein extraction of the particularly challenging sample type of Bacillus anthracis Sterne spores. The ability of Trichloroacetic acid (TCA) extraction to isolate proteins from spores and enrich for spore-specific proteins was compared to the traditional mechanical disruption method of bead beating. TCA extraction improved the total average number of proteins identified within a sample as compared to bead beating (547 vs 495, respectively). Further, TCA extraction enriched for 270 spore proteins, including those typically identified by first isolating the spore coat and exosporium layers. Bead beating enriched for 156 spore proteins more typically identified from whole spore proteome analyses. The total average number of proteins identified was equal using TCA or bead beating for easily lysed samples, such as B. anthracis vegetative cells. As with all assays, supplemental methods such as implementation of an alternative preparation method may simplify sample preparation and provide additional insight to the protein biology of the organism being studied.


Subject(s)
Bacillus anthracis/chemistry , Bacterial Proteins/analysis , Bacterial Proteins/isolation & purification , Proteome/analysis , Proteome/isolation & purification , Proteomics/methods , Spores, Bacterial/chemistry , Bacillus anthracis/drug effects , Spores, Bacterial/drug effects , Trichloroacetic Acid/metabolism
11.
Mol Cell Probes ; 28(2-3): 73-82, 2014.
Article in English | MEDLINE | ID: mdl-24486297

ABSTRACT

This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.


Subject(s)
Bacterial Proteins/genetics , Molecular Typing/methods , Staphylococcus/classification , Superoxide Dismutase/genetics , Aconitate Hydratase/chemistry , Aconitate Hydratase/genetics , Bacterial Proteins/chemistry , Chromatography, Liquid , DNA, Bacterial/analysis , DNA, Bacterial/chemistry , Evolution, Molecular , Genetic Markers , Genetic Variation , Humans , Ketoglutarate Dehydrogenase Complex/chemistry , Ketoglutarate Dehydrogenase Complex/genetics , Male , Mass Spectrometry/methods , Oligonucleotide Array Sequence Analysis , Peptides/analysis , Peptides/chemistry , Phylogeny , Proteomics , RNA, Ribosomal, 16S/genetics , Software , Staphylococcus/genetics , Superoxide Dismutase/chemistry
12.
Mol Cell Probes ; 28(2-3): 58-64, 2014.
Article in English | MEDLINE | ID: mdl-24486519

ABSTRACT

Staphylococcal strains (CoNS) were speciated in this study. Digests of proteins released from whole cells were converted to tryptic peptides for analysis. Liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI MS/MS, Orbitrap) was employed for peptide analysis. Data analysis was performed employing the open-source software X!Tandem which uses sequenced genomes to generate a virtual peptide database for comparison to experimental data. The search database was modified to include the genomes of the 11 Staphylococcus species most commonly isolated from man. The number of total peptides matching each protein along with the number of peptides specifically matching to the homologue (or homologues) for strains of the same species were assessed. Any peptides not matching to the species examined were considered conflict peptides. The proteins typically identified with the largest percentage of sequence coverage, number of matched peptides and number of peptides corresponding to only the correct species were elongation factor Tu (EF Tu) and enolase (Enol). Additional proteins with consistently observed peptides as well as peptides matching only homologues from the same species were citrate synthase (CS) and 1-pyrroline-5-carboxylate dehydrogenase (1P5CD). Protein markers, previously identified from gel slices, (aconitate hydratase and oxoglutarate dehydrogenase) were found to provide low confidence scores when employing whole cell digests. The methodological approach described here provides a simple yet elegant way of identification of staphylococci. However, perhaps more importantly the technology should be applicable universally for identification of any bacterial species.


Subject(s)
Bacterial Proteins/analysis , Mass Spectrometry/methods , Molecular Typing/methods , Peptides/analysis , Staphylococcus/classification , Bacterial Proteins/chemistry , Biomarkers/analysis , Biomarkers/chemistry , Chromatography, Liquid/methods , Genome, Bacterial , Humans , Male , Peptide Elongation Factor Tu/analysis , Peptide Elongation Factor Tu/chemistry , Peptides/chemistry , Software , Staphylococcus/metabolism
13.
Mol Cell Probes ; 28(1): 41-50, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24184563

ABSTRACT

This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.


Subject(s)
Bacterial Proteins/genetics , Chromatography, Liquid/methods , Molecular Typing/methods , Spectrometry, Mass, Electrospray Ionization , Staphylococcus/classification , Staphylococcus/genetics , Superoxide Dismutase/genetics , Tandem Mass Spectrometry , Amino Acid Sequence , Bacterial Proteins/chemistry , Base Sequence , Biomarkers , Genetic Variation , Humans , Male , Peptide Elongation Factor Tu/genetics , Peptides/analysis , Phylogeny , Proteome , RNA, Ribosomal, 16S/genetics , Software , Staphylococcus/metabolism , Superoxide Dismutase/chemistry
14.
Mol Cell Probes ; 28(1): 34-40, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23994725

ABSTRACT

Staphylococcal strains (CoNS) were speciated in this study. Digests of proteins released from whole cells were converted to tryptic peptides for analysis. Liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI MS/MS, Orbitrap) was employed for peptide analysis. Data analysis was performed employing the open-source software X!Tandem which uses sequenced genomes to generate a virtual peptide database for comparison to experimental data. The search database was modified to include the genomes of the 11 Staphylococcus species most commonly isolated from man. The number of total peptides matching each protein along with the number of peptides specifically matching to the homologue (or homologues) for strains of the same species were assessed. Any peptides not matching to the species examined were considered conflict peptides. The proteins typically identified with the largest percentage of sequence coverage, number of matched peptides and number of peptides corresponding to only the correct species were elongation factor Tu (EF Tu) and enolase (Enol). Additional proteins with consistently observed peptides as well as peptides matching only homologues from the same species were citrate synthase (CS) and 1-pyrroline-5-carboxylate dehydrogenase (1P5CD). Protein markers, previously identified from gel slices, (aconitate hydratase and oxoglutarate dehydrogenase) were found to provide low confidence scores when employing whole cell digests. The methodological approach described here provides a simple yet elegant way of identification of staphylococci. However, perhaps more importantly the technology should be applicable universally for identification of any bacterial species.


Subject(s)
Bacterial Proteins/analysis , Chromatography, Liquid , Molecular Typing/methods , Peptides/analysis , Spectrometry, Mass, Electrospray Ionization , Staphylococcus/classification , Tandem Mass Spectrometry/methods , Biomarkers/analysis , Biomarkers/chemistry , Peptide Elongation Factor Tu , Peptides/chemistry , Phosphopyruvate Hydratase , Software , Staphylococcus/metabolism
15.
Mol Cell Probes ; 28(2-3): 65-72, 2014.
Article in English | MEDLINE | ID: mdl-24333237

ABSTRACT

The detection of high consequence pathogens, such as Yersinia pestis, is well established in biodefense laboratories for bioterror situations. Laboratory protocols are well established using specified culture media and a growth temperature of 37 °C for expression of specific antigens. Direct detection of Y. pestis protein markers, without prior culture, depends on their expression. Unfortunately protein expression can be impacted by the culture medium which cannot be predicted ahead of time. Furthermore, higher biomass yields are obtained at the optimal growth temperature (i.e. 28 °C-30 °C) and therefore are more likely to be used for bulk production. Analysis of Y. pestis grown on several types of media at 30 °C showed that several protein markers were found to be differentially detected in different media. Analysis of the identified proteins against a comprehensive database provided an additional level of organism identification. Peptides corresponding to variable regions of some proteins could separate large groups of strains and aid in organism identification. This work illustrates the need to understand variability of protein expression for detection targets. The potential for relating expression changes of known proteins to specific media factors, even in nutrient rich and chemically complex culture medium, may provide the opportunity to draw forensic information from protein profiles.


Subject(s)
Bacterial Proteins/metabolism , Culture Media/chemistry , Peptides/analysis , Yersinia pestis/growth & development , Bacterial Proteins/analysis , Biomarkers/analysis , Biomarkers/metabolism , Chromatography, High Pressure Liquid , Databases, Protein , Gene Expression Regulation, Bacterial , Genetic Variation , Peptides/chemistry , Sequence Homology, Amino Acid , Tandem Mass Spectrometry , Yersinia pestis/classification
16.
Analyst ; 138(21): 6385-97, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-23979794

ABSTRACT

The field of microbial forensics has recently sought to develop methods to discern biological signatures to indicate production methods for biological agents. Viral agents have received less attention to date. Their obligate propagation in living cells makes purification from cellular material a challenge. This leads to potential carryover of protein-rich signatures of their production system. Here we have explored a proteomic analysis of vaccinia virus as a model poxvirus system in which to compare samples of virus propagated in different cell lines and subjected to different purification schemes. The proteomic data sets indicated viral, host cell and culture medium proteins. Several layers of data analysis were applied to build confidence in the peptide identification and capture information on the taxonomic utility of each. The analysis showed clear shifts in protein profiles with virus purification, with successive gradient purification steps showing different levels of viral protein enrichment. Peptides from cellular proteins, including those present in purified virus preparations, provided signatures which enabled discrimination of cell line substrates, including distinguishing between cells derived from different primate species. The ability to discern multiple aspects of viral production demonstrates the potential value of proteomic analysis as tool for microbial forensics.


Subject(s)
Forensic Sciences/methods , Poxviridae/genetics , Poxviridae/isolation & purification , Proteomics/methods , Amino Acid Sequence , Animals , Chlorocebus aethiops , HeLa Cells , Humans , Macaca mulatta , Molecular Sequence Data , Pongo , Vero Cells , Viral Proteins/analysis , Viral Proteins/genetics
17.
Anal Chem ; 85(8): 3933-9, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23550890

ABSTRACT

Here we demonstrate that when Yersinia pesitis is grown in laboratory media, peptides from the medium remain associated with cellular biomass even after washing and inactivation of the bacteria by different methods. These peptides are characteristic of the type of growth medium and of the manufacturer of the medium, reflecting the specific composition of the medium. We analyzed biomass-associated peptides from cultures of two attenuated strains of Yersinia pestis [KIM D27 (pgm-) and KIM D1 (lcr-)] grown in several formulations of 4 different media (tryptic soy broth (TSB), brain-heart infusion (BHI), Luria-Bertani broth (LB), and glucose (G) medium) made from components purchased from different suppliers. Despite the range of growth medium sources and the associated manufacturing processes used in their production, a high degree of peptide similarity was observed for a given medium recipe; however, notable differences in the termination points of select peptides were observed in media formulated using products from some suppliers, presumably reflecting the process by which a manufacturer performed protein hydrolysis for use in culture media. These results may help explain the presence of peptides not explicitly associated with target organisms during proteomic analysis of microbes and other biological systems that require culturing. While the primary aim of this work is to outline the range and type of medium peptides associated with Yersinia pestis biomass and improve the quality of proteomic measurements, these peptides may also represent a potentially useful forensic signature that could provide information about microbial culturing conditions.


Subject(s)
Bacterial Proteins/isolation & purification , Culture Media/chemistry , Peptides/isolation & purification , Proteomics/standards , Yersinia pestis/metabolism , Adsorption , Amino Acid Sequence , Bacterial Proteins/metabolism , Chromatography, Liquid , Mass Spectrometry , Molecular Sequence Data , Peptides/metabolism , Yersinia pestis/growth & development
18.
J Proteome Res ; 11(7): 3690-703, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22663564

ABSTRACT

Francisella tularensis causes the zoonosis tularemia in humans and is one of the most virulent bacterial pathogens. We utilized a global proteomic approach to characterize protein changes in bronchoalveolar lavage fluid from mice exposed to one of three organisms, F. tularensis ssp. novicida, an avirulent mutant of F. tularensis ssp. novicida (F.t. novicida-ΔmglA), and Pseudomonas aeruginosa. The composition of bronchoalveolar lavage fluid (BALF) proteins was altered following infection, including proteins involved in neutrophil activation, oxidative stress, and inflammatory responses. Components of the innate immune response were induced including the acute phase response and the complement system; however, the timing of their induction varied. F. tularensis ssp. novicida infected mice do not appear to have an effective innate immune response in the first hours of infection; however, within 24 h, they show an upregulation of innate immune response proteins. This delayed response is in contrast to P. aeruginosa infected animals which show an early innate immune response. Likewise, F.t. novicida-ΔmglA infection initiates an early innate immune response; however, this response is diminished by 24 h. Finally, this study identifies several candidate biomarkers, including Chitinase 3-like-1 (CHI3L1 or YKL-40) and peroxiredoxin 1, that are associated with F. tularensis ssp. novicida but not P. aeruginosa infection.


Subject(s)
Bronchoalveolar Lavage Fluid/chemistry , Francisella tularensis/immunology , Proteome/chemistry , Tularemia/metabolism , Acute-Phase Proteins/chemistry , Acute-Phase Proteins/metabolism , Animals , Complement System Proteins/chemistry , Complement System Proteins/metabolism , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Oxidative Stress , Proteome/metabolism , Proteomics , Pseudomonas Infections/immunology , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/immunology , Tularemia/immunology , Tularemia/microbiology
19.
Analyst ; 137(9): 2077-85, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22416271

ABSTRACT

The investigation of crimes involving chemical or biological agents is infrequent, but presents unique analytical challenges. The protein toxin ricin is encountered more frequently than other agents and is found in the seeds of Ricinus communis, commonly known as the castor plant. Typically, the toxin is extracted from castor seeds utilizing a variety of different recipes that result in varying purity of the toxin. Moreover, these various purification steps can also leave or differentially remove a variety of exogenous and endogenous residual components with the toxin that may indicate the type and number of purification steps involved. We have applied three gas chromatography-mass spectrometry (GC-MS) based analytical methods to measure the variation in seed carbohydrates and castor oil ricinoleic acid, as well as the presence of solvents used for purification. These methods were applied to the same samples prepared using four previously identified toxin preparation methods, starting from four varieties of castor seeds. The individual data sets for seed carbohydrate profiles, ricinoleic acid, or acetone amount each provided information capable of differentiating different types of toxin preparations across seed types. However, the integration of the data sets using multivariate factor analysis provided a clear distinction of all samples based on the preparation method, independent of the seed source. In particular, the abundance of mannose, arabinose, fucose, ricinoleic acid, and acetone were shown to be important differentiating factors. These complementary tools provide a more confident determination of the method of toxin preparation than would be possible using a single analytical method.


Subject(s)
Analytic Sample Preparation Methods/methods , Gas Chromatography-Mass Spectrometry/methods , Ricin/analysis , Systems Integration , Acetone/analysis , Acetone/chemistry , Hydrogen-Ion Concentration , Monosaccharides/analysis , Monosaccharides/chemistry , Multivariate Analysis , Ricin/chemistry , Ricin/isolation & purification , Ricinoleic Acids/analysis , Ricinoleic Acids/chemistry , Ricinus/chemistry , Ricinus/enzymology , Seeds/chemistry , Seeds/enzymology
20.
Talanta ; 85(5): 2352-60, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21962653

ABSTRACT

Biological materials generally require stabilization to retain activity or viability in a dry form. A number of industrial products, such as vaccines, probiotics and biopesticides have been produced as dry preparations. The same methods and materials used for stabilizing commercial microbial products may be applicable to preserving biothreat pathogens in a dry form. This is a likely step that may be encountered when looking at samples from terrorism attempts since only spores, such as those from Bacillus anthracis, are inherently stable when dried. The stabilizers for microbial preparations generally include one or more small carbohydrates. Different formulations have been reported for different industrial products and are often determined empirically. However sugar alcohols (mannitol and sorbitol) and disaccharides (lactose, sucrose and trehalose) are the common constituents of these formulations. We have developed an analytical method for sample preparation and detection of these simple carbohydrates using two complementary analytical tools, MALDI-MS and GC-MS. The native carbohydrates and other constituents of the formulation are detected by MALDI-MS as a screening tool. A longer and more detailed analysis is then used to specifically identify the carbohydrates by derivatization and GC-MS detection. Both techniques were tested against ten different types of stabilization recipes with Yersinia pestis cell mass cultured on different media types used as the biological component. A number of additional components were included in these formulations including proteins and peptides from serum or milk, polymers (e.g. poly vinyl pyrrolidone - PVP) and detergents (e.g. Tween). The combined method was characterized to determine several figures of merit. The accuracy of the method was 98% for MALDI-MS and 100% for GC-MS. The repeatability for detection of carbohydrates by MALDI-MS was determined to be 96%. The repeatability of compound identification by GC-MS was determined by monitoring variation in retention time, which is vital for identification of isomeric carbohydrates. The figures of merit illustrate an effective and accurate method for mono and disaccharide detection independent of formulation. This meets our primary goal for method development as small carbohydrates are among the most common stabilizers employed.

SELECTION OF CITATIONS
SEARCH DETAIL
...