Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Elife ; 122023 08 08.
Article in English | MEDLINE | ID: mdl-37552050

ABSTRACT

Loss-of-function genetic tools are widely applied for validating therapeutic targets, but their utility remains limited by incomplete on- and uncontrolled off-target effects. We describe artificial RNA interference (ARTi) based on synthetic, ultra-potent, off-target-free shRNAs that enable efficient and inducible suppression of any gene upon introduction of a synthetic target sequence into non-coding transcript regions. ARTi establishes a scalable loss-of-function tool with full control over on- and off-target effects.


Subject(s)
RNA Interference , RNA, Small Interfering/genetics
2.
Nat Commun ; 13(1): 5969, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36216795

ABSTRACT

Targeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit a target protein and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. In the clinic, the oral route of administration is the option of choice but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules. We aimed to achieve orally bioavailable molecules that selectively degrade the BAF Chromatin Remodelling complex ATPase SMARCA2 over its closely related paralogue SMARCA4, to allow in vivo evaluation of the synthetic lethality concept of SMARCA2 dependency in SMARCA4-deficient cancers. Here we outline structure- and property-guided approaches that led to orally bioavailable VHL-recruiting degraders. Our tool compound, ACBI2, shows selective degradation of SMARCA2 over SMARCA4 in ex vivo human whole blood assays and in vivo efficacy in SMARCA4-deficient cancer models. This study demonstrates the feasibility for broadening the E3 ligase and physicochemical space that can be utilised for achieving oral efficacy with bifunctional molecules.


Subject(s)
Adenosine Triphosphatases , Transcription Factors , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proteolysis , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
3.
Oncoimmunology ; 11(1): 2080328, 2022.
Article in English | MEDLINE | ID: mdl-35756842

ABSTRACT

Upregulation of inhibitory receptors, such as lymphocyte activation gene-3 (LAG-3), may limit the antitumor activity of therapeutic antibodies targeting the programmed cell death protein-1 (PD-1) pathway. We describe the binding properties of ezabenlimab, an anti-human PD-1 antibody, and BI 754111, an anti-human LAG-3 antibody, and assess their activity alone and in combination. Ezabenlimab bound with high affinity to human PD-1 (KD = 6 nM) and blocked the interaction of PD-1 with PD-L1 and PD-L2. Ezabenlimab dose-dependently increased interferon-γ secretion in human T cells expressing PD-1 in co-culture with PD-L1-expressing dendritic cells. Administration of ezabenlimab to human PD-1 knock-in mice dose-dependently inhibited growth of MC38 tumors. To reduce immunogenicity, ezabenlimab was reformatted from a human IgG4 to a chimeric variant with a mouse IgG1 backbone (BI 905725) for further in vivo studies. Combining BI 905725 with anti-mouse LAG-3 antibodies improved antitumor activity versus BI 905725 monotherapy in the MC38 tumor model. We generated BI 754111, which bound with high affinity to human LAG-3 and prevented LAG-3 interaction with its ligand, major histocompatibility complex class II. In an in vitro model of antigen-experienced memory T cells expressing PD-1 and LAG-3, interferon-γ secretion increased by an average 1.8-fold versus isotype control (p = 0.027) with BI 754111 monotherapy, 6.9-fold (p < 0.0001) with ezabenlimab monotherapy and 13.2-fold (p < 0.0001) with BI 754111 plus ezabenlimab. Overall, ezabenlimab and BI 754111 bound to their respective targets with high affinity and prevented ligand binding. Combining ezabenlimab with BI 754111 enhanced in vitro activity versus monotherapy, supporting clinical investigation of this combination (NCT03156114; NCT03433898).


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Animals , Antibodies, Blocking , Antibodies, Monoclonal/pharmacology , Clinical Studies as Topic , Immune Checkpoint Inhibitors , Interferon-gamma , Ligands , Mice
4.
Mol Cancer Ther ; 20(11): 2250-2261, 2021 11.
Article in English | MEDLINE | ID: mdl-34482286

ABSTRACT

Despite some impressive clinical results with immune checkpoint inhibitors, the majority of patients with cancer do not respond to these agents, in part due to immunosuppressive mechanisms in the tumor microenvironment. High levels of adenosine in tumors can suppress immune cell function, and strategies to target the pathway involved in its production have emerged. CD73 is a key enzyme involved in adenosine production. This led us to identify a novel humanized antagonistic CD73 antibody, mAb19, with distinct binding properties. mAb19 potently inhibits the enzymatic activity of CD73 in vitro, resulting in an inhibition of adenosine formation and enhanced T-cell activation. We then investigated the therapeutic potential of combining CD73 antagonism with other immune modulatory and chemotherapeutic agents. Combination of mAb19 with a PD-1 inhibitor increased T-cell activation in vitro Interestingly, this effect could be further enhanced with an agonist of the adenosine receptor ADORA3. Adenosine levels were found to be elevated upon doxorubicin treatment in vivo, which could be blocked by CD73 inhibition. Combining CD73 antagonism with doxorubicin resulted in superior responses in vivo Furthermore, a retrospective analysis of rectal cancer patient samples demonstrated an upregulation of the adenosine pathway upon chemoradiation, providing further rationale for combining CD73 inhibition with chemotherapeutic agents.This study demonstrates the ability of a novel CD73 antibody to enhance T-cell function through the potent suppression of adenosine levels. In addition, the data highlight combination opportunities with standard of care therapies as well as with an ADORA3 receptor agonist to treat patients with solid tumors.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Adenosine/therapeutic use , Immunosuppression Therapy/methods , Adenosine/pharmacology , Animals , Female , Humans , Mice , Tumor Microenvironment
5.
PLoS One ; 14(6): e0215031, 2019.
Article in English | MEDLINE | ID: mdl-31163034

ABSTRACT

Many mRNA-based vaccines have been investigated for their specific potential to activate dendritic cells (DCs), the highly-specialized antigen-presenting cells of the immune system that play a key role in inducing effective CD4+ and CD8+ T-cell responses. In this paper we report a new vaccine/gene delivery platform that demonstrates the benefits of using a self-amplifying ("replicon") mRNA that is protected in a viral-protein capsid. Purified capsid protein from the plant virus Cowpea Chlorotic Mottle Virus (CCMV) is used to in vitro assemble monodisperse virus-like particles (VLPs) containing reporter proteins (e.g., Luciferase or eYFP) or the tandem-repeat model antigen SIINFEKL in RNA gene form, coupled to the RNA-dependent RNA polymerase from the Nodamura insect virus. Incubation of immature DCs with these VLPs results in increased activation of maturation markers - CD80, CD86 and MHC-II - and enhanced RNA replication levels, relative to incubation with unpackaged replicon mRNA. Higher RNA uptake/replication and enhanced DC activation were detected in a dose-dependent manner when the CCMV-VLPs were pre-incubated with anti-CCMV antibodies. In all experiments the expression of maturation markers correlates with the RNA levels of the DCs. Overall, these studies demonstrate that: VLP protection enhances mRNA uptake by DCs; coupling replicons to the gene of interest increases RNA and protein levels in the cell; and the presence of anti-VLP antibodies enhances mRNA levels and activation of DCs in vitro. Finally, preliminary in vivo experiments involving mouse vaccinations with SIINFEKL-replicon VLPs indicate a small but significant increase in antigen-specific T cells that are doubly positive for IFN and TFN induction.


Subject(s)
Bromovirus/metabolism , Capsid Proteins/genetics , Dendritic Cells/immunology , RNA, Messenger/administration & dosage , Vaccines, Virus-Like Particle/genetics , Animals , Bromovirus/genetics , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Cricetinae , Dendritic Cells/virology , Female , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Genetic Vectors/immunology , Mice , RNA, Messenger/immunology , Single-Cell Analysis , Virus Assembly
6.
Cancer Lett ; 421: 112-120, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29454094

ABSTRACT

Interactions between a new potent Bromodomain and extraterminal domain (BET) inhibitor BI 894999 and the polo-like kinase (PLK) inhibitor volasertib were studied in acute myeloid leukemia cell lines in vitro and in vivo. We provide data for the distinct mechanisms of action of these two compounds with a potential utility in AML based on gene expression, cell cycle profile and modulation of PD biomarkers such as MYC and HEXIM1. In contrast to BI 894999, volasertib treatment neither affects MYC nor HEXIM1 expression, but augments and prolongs the decrease of MYC expression caused by BI 894999 treatment. In vitro combination of both compounds leads to a decrease in S-Phase and to increased apoptosis. In vitro scheduling experiments guided in vivo experiments in disseminated AML mouse models. Co-administration of BI 894999 and volasertib dramatically reduces tumor burden accompanied by long-term survival of tumor-bearing mice and eradication of AML cells in mouse bone marrow. Together, these preclinical findings provide evidence for the strong synergistic effect of BI 894999 and volasertib, warranting future clinical studies in patients with AML to investigate this paradigm.


Subject(s)
Benzene Derivatives/pharmacology , Leukemia, Myeloid, Acute/pathology , Protein Kinase Inhibitors/pharmacology , Proteins/antagonists & inhibitors , Pteridines/pharmacology , Animals , Cell Line , Drug Synergism , Genes, myc , Humans , Leukemia, Myeloid, Acute/genetics , Mice
7.
Exp Hematol ; 42(2): 114-25.e4, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24513167

ABSTRACT

Insertional mutagenesis resulting from the integration of retroviral vectors has led to the discovery of many oncogenes associated with leukemia. We investigated the role of HOXC6, identified by proximal provirus integration in a large animal hematopoietic stem cell gene therapy study, for a potential involvement in hematopoietic stem cell activity and hematopoietic cell fate decision. HOXC6 was overexpressed in the murine bone marrow transplantation model and tested in a competitive repopulation assay in comparison to the known hematopoietic stem cell expansion factor, HOXB4. We have identified HOXC6 as a factor that enhances competitive repopulation capacity in vivo and colony formation in vitro. Ectopic HOXC6 expression also induced strong myeloid differentiation and expansion of granulocyte-macrophage progenitors/common myeloid progenitors (GMPs/CMPs) in vivo, resulting in myeloid malignancies with low penetrance (3 of 17 mice), likely in collaboration with Meis1 because of a provirus integration mapped to the 3' region in the malignant clone. We characterized the molecular basis of HOXC6-induced myeloid differentiation and malignant cell transformation with complementary DNA microarray analysis. Overexpression of HOXC6 induced a gene expression signature similar to several acute myeloid leukemia subtypes when compared with normal GMPs/CMPs. These results demonstrate that HOXC6 acts as a regulator in hematopoiesis and is involved in malignant transformation.


Subject(s)
Bone Marrow/pathology , Cell Differentiation/genetics , Cell Transformation, Neoplastic , Homeodomain Proteins/genetics , Animals , Hematopoietic Stem Cell Transplantation , Mice , Oligonucleotide Array Sequence Analysis
8.
Biol Chem ; 392(10): 887-95, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21812756

ABSTRACT

Genetic modification of human embryonic stem cells (hESCs) using biophysical DNA transfection methods are hampered by the very low single cell survival rate and cloning efficiency of hESCs. Lentiviral gene transfer strategies are widely used to genetically modify hESCs but limited transduction efficiencies in the presence of feeder or stroma cells present problems, particularly if vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped viral particles are applied. Here, we investigated whether the recently described semen derived enhancer of virus infection (SEVI) and alternative viral envelope proteins derived from either Gibbon ape leukaemia virus (GALV) or feline leukaemia virus (RD114) are applicable for transducing hESCs during co-culture with feeder or stroma cells. Our first set of experiments demonstrates that SEVI has no toxic effect on murine or hESCs and that exposure to SEVI does not interfere with the pluripotency-associated phenotype. Focusing on hESCs, we were able to further demonstrate that SEVI increases the transduction efficiencies of GALV and RD114 pseudotyped lentiviral vectors. More importantly, aiming at targeted differentiation of hESCs into functional somatic cell types, GALV pseudotyped lentiviral particles could efficiently and exclusively transduce hESCs grown in co-culture with OP9-GFP stroma cells (which were often used to induce differentiation into haematopoietic derivatives).


Subject(s)
Coculture Techniques , Embryonic Stem Cells/metabolism , Lentivirus/genetics , Leukemia Virus, Gibbon Ape/metabolism , Stromal Cells/metabolism , Transduction, Genetic/methods , Viral Envelope Proteins/metabolism , Animals , Cell Line , Coculture Techniques/methods , Embryonic Stem Cells/cytology , Genetic Vectors/genetics , Humans , Mice , Stromal Cells/cytology
9.
J Gene Med ; 12(2): 137-46, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20052742

ABSTRACT

BACKGROUND: An improvement of retroviral infection has been postulated using a naturally occurring fragment of the abundant semen marker prostatic acidic phosphatase. This peptide, termed semen-derived enhancer of virus infection (SEVI), promotes HIV attachment to the target cells. METHODS: In the present study, we examined whether SEVI would also enhance the infectivity of other viruses with different envelope proteins. We focused on retroviruses pseudotyped with envelopes that are commonly used for the genetic modification of cells, in particular, T cells and hematopoietic progenitor cells. Because the effect of SEVI is considered to be a result of its cationic properties, we compared SEVI with other cationic agents such as protamine sulfate and Polybrene. RESULTS: We found that SEVI increases the efficiency of gene transfer for lentiviral and gammaretroviral vector constructs pseudotyped with VSV-G, GALV, RD114 or foamy viral envelopes on hematopoietic and nonhematopoietic cell lines. On T cells, the transduction efficiency of GALV and RD114 pseudotyped vectors was significantly increased by SEVI. A significant increase of the gene transfer rate was also detected for foamy virally pseudotyped lentivirus on murine hematopoietic progenitor cells. No toxic effect of SEVI treatment was detected on any cell type tested, including human and murine hematopoietic stem/progenitor cells. When directly comparing the effect of SEVI with Polybrene or protamine sulfate, we show that the semen-derived protein is more efficient in increasing the gene transfer rate. CONCLUSIONS: SEVI is a promising agent for promoting and improving gene transfer and may also be useful for clinical gene therapy studies.


Subject(s)
Gene Transfer Techniques , Peptide Fragments/pharmacology , Protein Tyrosine Phosphatases/pharmacology , Retroviridae/genetics , Acid Phosphatase , Animals , Antigens, CD34/metabolism , Cations , Cell Adhesion/drug effects , Cell Death/drug effects , Flow Cytometry , HeLa Cells , Hematopoietic System/cytology , Hematopoietic System/drug effects , Humans , Male , Mice , NIH 3T3 Cells , Peptide Fragments/chemistry , Protein Tyrosine Phosphatases/chemistry , Retroviridae/drug effects , Transduction, Genetic , Viral Envelope Proteins/metabolism
10.
Nucleic Acids Res ; 37(19): 6414-28, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19720733

ABSTRACT

Topoisomerase I is essential for DNA metabolism in nuclei and mitochondria. In yeast, a single topoisomerase I gene provides for both organelles. In vertebrates, topoisomerase I is divided into nuclear and mitochondrial paralogs (Top1 and Top1mt). To assess the meaning of this gene duplication, we targeted Top1 to mitochondria or Top1mt to nuclei. Overexpression in the fitting organelle served as control. Targeting of Top1 to mitochondria blocked transcription and depleted mitochondrial DNA. This was also seen with catalytically inactive Top1 mutants, but not with Top1mt overexpressed in mitochondria. Targeting of Top1mt to the nucleus revealed that it was much less able to interact with mitotic chromosomes than Top1 overexpressed in the nucleus. Similar experiments with Top1/Top1mt hybrids assigned these functional differences to structural divergences in the DNA-binding core domains. We propose that adaptation of this domain to different chromatin environments in nuclei and mitochondria has driven evolutional development and conservation of organelle-restricted topoisomerase I paralogs in vertebrates.


Subject(s)
DNA Topoisomerases, Type I/metabolism , DNA, Mitochondrial/metabolism , Adaptation, Physiological , Cell Line , Cell Nucleus/enzymology , Chromosomes/enzymology , DNA/chemistry , DNA/metabolism , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/genetics , Gene Duplication , Humans , Mitochondria/enzymology , Phenotype , Protein Structure, Tertiary , Transcription, Genetic
12.
Proc Natl Acad Sci U S A ; 104(21): 8851-6, 2007 May 22.
Article in English | MEDLINE | ID: mdl-17502624

ABSTRACT

UVB radiation-induced signaling in mammalian cells involves two major pathways: one that is initiated through the generation of DNA photoproducts in the nucleus and a second one that occurs independently of DNA damage and is characterized by cell surface receptor activation. The chromophore for the latter one has been unknown. Here, we report that the UVB response involves tryptophan as a chromophore. We show that through the intracellular generation of photoproducts, such as the arylhydrocarbon receptor (AhR) ligand 6-formylindolo[3,2-b]carbazole, signaling events are initiated, which are transferred to the nucleus and the cell membrane via activation of the cytoplasmatic AhR. Specifically, AhR activation by UVB leads to (i) transcriptional induction of cytochrome P450 1A1 and (ii) EGF receptor internalization with activation of the EGF receptor downstream target ERK1/2 and subsequent induction of cyclooxygenase-2. The role of the AhR in the UVB stress response was confirmed in vivo by studies employing AhR KO mice.


Subject(s)
Cytoplasm/metabolism , Cytoplasm/radiation effects , Receptors, Aryl Hydrocarbon/metabolism , Ultraviolet Rays , Active Transport, Cell Nucleus , Animals , Basic Helix-Loop-Helix Transcription Factors , Carbazoles/chemistry , Carbazoles/metabolism , Cell Line , Cell Nucleus/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , ErbB Receptors/metabolism , Gene Expression Regulation , Humans , Indoles/chemistry , Indoles/metabolism , Mice , Mice, Knockout , Molecular Structure , Proto-Oncogene Proteins pp60(c-src)/metabolism , Receptors, Aryl Hydrocarbon/deficiency , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction/radiation effects , Transcription, Genetic/genetics , Tryptophan/metabolism
13.
Nat Struct Mol Biol ; 14(6): 564-7, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17460694

ABSTRACT

Activation of the Fanconi anemia (FA) DNA damage-response pathway results in the monoubiquitination of FANCD2, which is regulated by the nuclear FA core ubiquitin ligase complex. A FANCD2 protein sequence-based homology search facilitated the discovery of FANCI, a second monoubiquitinated component of the FA pathway. Biallelic mutations in the gene coding for this protein were found in cells from four FA patients, including an FA-I reference cell line.


Subject(s)
DNA Repair/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia/genetics , Amino Acid Sequence , Base Sequence , Blotting, Western , Computational Biology , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , HeLa Cells , Humans , Immunoprecipitation , Microscopy, Fluorescence , Molecular Sequence Data , Mutation/genetics , Sequence Analysis, DNA , Ubiquitination
14.
Nat Genet ; 39(2): 162-4, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17200671

ABSTRACT

PALB2 was recently identified as a nuclear binding partner of BRCA2. Biallelic BRCA2 mutations cause Fanconi anemia subtype FA-D1 and predispose to childhood malignancies. We identified pathogenic mutations in PALB2 (also known as FANCN) in seven families affected with Fanconi anemia and cancer in early childhood, demonstrating that biallelic PALB2 mutations cause a new subtype of Fanconi anemia, FA-N, and, similar to biallelic BRCA2 mutations, confer a high risk of childhood cancer.


Subject(s)
Breast Neoplasms/genetics , Fanconi Anemia/genetics , Genetic Predisposition to Disease , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics , Alleles , Child, Preschool , Fanconi Anemia Complementation Group N Protein , Fanconi Anemia Complementation Group Proteins/genetics , Humans , Infant , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...