Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Infection ; 51(1): 231-238, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36195695

ABSTRACT

PURPOSE: Following the emergency use authorization of BNT162b2 by the Food and Drug administration (FDA) in early December 2020, mRNA- and vector-based vaccines became an important means of reducing the spread and mortality of the COVID-19 pandemic. The European Medicines Agency labelled immune thrombocytopenia (ITP) as a rare adverse reaction of unknown frequency after vector-, but not mRNA-vaccination. Here, we report on the long-term outcome of 6 patients who were diagnosed with de-novo, vaccine-associated ITP (VA-ITP), and on the outcome of subsequent SARS-CoV-2 re-vaccinations. METHODS: Patients were included after presenting to our emergency department. Therapy was applied according to ITP guidelines. Follow-up data were obtained from outpatient departments. Both mRNA- or vector-based vaccines were each used in 3 cases, respectively. RESULTS: In all patients, the onset of symptoms occurred after the 1st dose of vaccine was applied. 5 patients required treatment, 3 of them 2nd line therapy. All patients showed a complete response eventually. After up to 359 days of follow-up, 2 patients were still under 2nd line therapy with thrombopoietin receptor agonists. 5 patients have been re-vaccinated with up to 3 consecutive doses of SARS-CoV-2 vaccines, 4 of them showing stable platelet counts hereafter. CONCLUSION: Thrombocytopenia after COVID-19 vaccination should trigger a diagnostic workup to exclude vaccine-induced immune thrombotic thrombocytopenia (VITT) and, if confirmed, VA-ITP should be treated according to current ITP guidelines. Re-vaccination of patients seems feasible under close monitoring of blood counts and using a vaccine that differs from the one triggering the initial episode of VA-ITP.


Subject(s)
COVID-19 , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/etiology , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , Pandemics , COVID-19/prevention & control , SARS-CoV-2 , Vaccination/adverse effects , RNA, Messenger
2.
Clin Epigenetics ; 13(1): 1, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407852

ABSTRACT

BACKGROUND: Chronic myelomonocytic leukemia (CMML) is an aggressive hematopoietic malignancy that arises from hematopoietic stem and progenitor cells (HSPCs). Patients with CMML are frequently treated with epigenetic therapeutic approaches, in particular the hypomethylating agents (HMAs), azacitidine (Aza) and decitabine (Dec). Although HMAs are believed to mediate their efficacy via re-expression of hypermethylated tumor suppressors, knowledge about relevant HMA targets is scarce. As silencing of tumor-suppressive micro-RNAs (miRs) by promoter hypermethylation is a crucial step in malignant transformation, we asked for a role of miRs in HMA efficacy in CMML. RESULTS: Initially, we performed genome-wide miR-expression profiling in a KrasG12D-induced CMML mouse model. Selected candidates with prominently decreased expression were validated by qPCR in CMML mice and human CMML patients. These experiments revealed the consistent decrease in miR-125a, a miR with previously described tumor-suppressive function in myeloid neoplasias. Furthermore, we show that miR-125a downregulation is caused by hypermethylation of its upstream region and can be reversed by HMA treatment. By employing both lentiviral and CRISPR/Cas9-based miR-125a modification, we demonstrate that HMA-induced miR-125a upregulation indeed contributes to mediating the anti-leukemic effects of these drugs. These data were validated in a clinical context, as miR-125a expression increased after HMA treatment in CMML patients, a phenomenon that was particularly pronounced in cases showing clinical response to these drugs. CONCLUSIONS: Taken together, we report decreased expression of miR-125a in CMML and delineate its relevance as mediator of HMA efficacy within this neoplasia.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Azacitidine/therapeutic use , DNA Methylation/drug effects , Decitabine/therapeutic use , Gene Expression Regulation/drug effects , Leukemia, Myelomonocytic, Chronic/drug therapy , Leukemia, Myelomonocytic, Chronic/genetics , RNA, Messenger , Animals , Disease Models, Animal , Genome-Wide Association Study , Humans , Mice
3.
Cancers (Basel) ; 12(2)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093419

ABSTRACT

Resistance to chemotherapy is one of the primary obstacles in acute myeloid leukemia (AML) therapy. Micro-RNA-23a (miR-23a) is frequently deregulated in AML and has been linked to chemoresistance in solid cancers. We, therefore, studied its role in chemoresistance to cytarabine (AraC), which forms the backbone of all cytostatic AML treatments. Initially, we assessed AraC sensitivity in three AML cell lines following miR-23a overexpression/knockdown using MTT-cell viability and soft-agar colony-formation assays. Overexpression of miR-23a decreased the sensitivity to AraC, whereas its knockdown had the opposite effect. Analysis of clinical data revealed that high miR-23a expression correlated with relapsed/refractory (R/R) AML disease stages, the leukemic stem cell compartment, as well as with inferior overall survival (OS) and event-free survival (EFS) in AraC-treated patients. Mechanistically, we demonstrate that miR-23a targets and downregulates topoisomerase-2-beta (TOP2B), and that TOP2B knockdown mediates AraC chemoresistance as well. Likewise, low TOP2B expression also correlated with R/R-AML disease stages and inferior EFS/OS. In conclusion, we show that increased expression of miR-23a mediates chemoresistance to AraC in AML and that it correlates with an inferior outcome in AraC-treated AML patients. We further demonstrate that miR-23a causes the downregulation of TOP2B, which is likely to mediate its effects on AraC sensitivity.

5.
PLoS One ; 14(2): e0211703, 2019.
Article in English | MEDLINE | ID: mdl-30707717

ABSTRACT

Alcohol binge drinking is a dangerous drinking habit, associated with neurological problems and inflammation. The impact of a single alcohol binge on innate immunity, gut barrier and gut microbiome was studied. In this cohort study 15 healthy volunteers received 2 ml vodka 40% v/v ethanol/kg body weight. Neutrophil function was studied by flow cytometry; markers of gut permeability and inflammation (lactulose/mannitol/sucrose test, zonulin, calprotectin, diamino-oxidase) were studied with NMR spectroscopy and enzyme-linked immunosorbent assay in urine, stool and serum respectively. Bacterial products in serum were quantified using different reporter cell lines. Gut microbiome composition was studied by 16S rDNA sequencing and bioinformatics analysis. After a single alcohol binge, neutrophils were transiently primed and the response to E.coli stimulation with reactive oxygen species (ROS) production was transiently increased, on the other hand the percentage of neutrophils that did not perform phagocytosis increased. No changes in gut permeability, inflammatory biomarker, bacterial translocation and microbiome composition could be detected up to 4 hours after a single alcohol binge or on the next day. A single alcohol binge in young, healthy volunteers transiently impacts on neutrophil function. Although the exact biological consequence of this finding is not clear yet, we believe that this strengthens the importance to avoid any alcohol binge drinking, even in young, otherwise healthy persons.


Subject(s)
Binge Drinking/complications , Binge Drinking/immunology , Neutrophils/drug effects , Adult , Cohort Studies , Ethanol/metabolism , Feces/microbiology , Gastric Mucosa/drug effects , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Healthy Volunteers , Humans , Inflammation/complications , RNA, Ribosomal, 16S/analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...