Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4177, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443112

ABSTRACT

Targeted protein degradation via "hijacking" of the ubiquitin-proteasome system using proteolysis targeting chimeras (PROTACs) has evolved into a novel therapeutic modality. The design of PROTACs is challenging; multiple steps involved in PROTAC-induced degradation make it difficult to establish coherent structure-activity relationships. Herein, we characterize PROTAC-mediated ternary complex formation and degradation by employing von Hippel-Lindau protein (VHL) recruiting PROTACs for two different target proteins, SMARCA2 and BRD4. Ternary-complex attributes and degradation activity parameters are evaluated by varying components of the PROTAC's architecture. Ternary complex binding affinity and cooperativity correlates well with degradation potency and initial rates of degradation. Additionally, we develop a ternary-complex structure modeling workflow to calculate the total buried surface area at the interface, which is in agreement with the measured ternary complex binding affinity. Our findings establish a predictive framework to guide the design of potent degraders.


Subject(s)
Nuclear Proteins , Ubiquitin-Protein Ligases , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Ubiquitination
2.
J Med Chem ; 63(1): 52-65, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31820981

ABSTRACT

KRASG12C has emerged as a promising target in the treatment of solid tumors. Covalent inhibitors targeting the mutant cysteine-12 residue have been shown to disrupt signaling by this long-"undruggable" target; however clinically viable inhibitors have yet to be identified. Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99) we identified in KRASG12C to identify inhibitors suitable for clinical development. Structure-based design efforts leading to the identification of a novel quinazolinone scaffold are described, along with optimization efforts that overcame a configurational stability issue arising from restricted rotation about an axially chiral biaryl bond. Biopharmaceutical optimization of the resulting leads culminated in the identification of AMG 510, a highly potent, selective, and well-tolerated KRASG12C inhibitor currently in phase I clinical trials (NCT03600883).


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Pyridines/therapeutic use , Pyrimidines/therapeutic use , Pyrimidinones/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Clinical Trials as Topic , Dogs , Drug Discovery , Humans , Isomerism , Madin Darby Canine Kidney Cells , Mice, Inbred BALB C , Mice, Nude , Mutation , Piperazines/chemistry , Piperazines/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/chemistry , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidinones/chemistry , Pyrimidinones/pharmacokinetics , Rats , Structure-Activity Relationship
3.
ACS Med Chem Lett ; 10(9): 1302-1308, 2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31531201

ABSTRACT

KRAS regulates many cellular processes including proliferation, survival, and differentiation. Point mutants of KRAS have long been known to be molecular drivers of cancer. KRAS p.G12C, which occurs in approximately 14% of lung adenocarcinomas, 3-5% of colorectal cancers, and low levels in other solid tumors, represents an attractive therapeutic target for covalent inhibitors. Herein, we disclose the discovery of a class of novel, potent, and selective covalent inhibitors of KRASG12C identified through a custom library synthesis and screening platform called Chemotype Evolution and structure-based design. Identification of a hidden surface groove bordered by H95/Y96/Q99 side chains was key to the optimization of this class of molecules. Best-in-series exemplars exhibit a rapid covalent reaction with cysteine 12 of GDP-KRASG12C with submicromolar inhibition of downstream signaling in a KRASG12C-specific manner.

4.
J Med Chem ; 62(3): 1523-1540, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30624936

ABSTRACT

Pim kinases are a family of constitutively active serine/threonine kinases that are partially redundant and regulate multiple pathways important for cell growth and survival. In human disease, high expression of the three Pim isoforms has been implicated in the progression of hematopoietic and solid tumor cancers, which suggests that Pim kinase inhibitors could provide patients with therapeutic benefit. Herein, we describe the structure-guided optimization of a series of quinazolinone-pyrrolodihydropyrrolone analogs leading to the identification of potent pan-Pim inhibitor 28 with improved potency, solubility, and drug-like properties. Compound 28 demonstrated on-target Pim activity in an in vivo pharmacodynamic assay with significant inhibition of BAD phosphorylation in KMS-12-BM multiple myeloma tumors for 16 h postdose. In a 2-week mouse xenograft model, daily dosing of compound 28 resulted in 33% tumor regression at 100 mg/kg.


Subject(s)
Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrroles/therapeutic use , Quinazolinones/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Female , Humans , Mice, SCID , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Quinazolinones/chemical synthesis , Quinazolinones/pharmacokinetics , Structure-Activity Relationship , Swine , Xenograft Model Antitumor Assays
5.
J Med Chem ; 62(2): 445-447, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30575392

ABSTRACT

MDM2 is a key oncogenic protein that serves as a negative regulator of the tumor suppressor p53. While a number of inhibitors of the MDM2-p53 interaction have progressed to clinical testing as treatments for a variety of hematologic and solid tumor cancers, the results thus far have been mixed, with perhaps the strongest responses observed in relapsed/refractory acute myeloid leukemia (AML). In an effort to improve the efficacy for this class of compounds, researchers have turned to targeted degradation of MDM2. IMiD-based MDM2 PROTAC 8, which potently reduces MDM2 protein levels through targeted degradation, exhibits enhanced efficacy in the RS4;11 xenograft model relative to a nondegrading MDM2-p53 inhibitor MI-1061.


Subject(s)
Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Indoles/chemistry , Indoles/pharmacology , Indoles/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins c-mdm2/metabolism , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/therapeutic use , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
6.
J Med Chem ; 61(2): 453-461, 2018 01 25.
Article in English | MEDLINE | ID: mdl-28378579

ABSTRACT

Proteolysis targeting chimeras (PROTACs) are bispecific molecules containing a target protein binder and an ubiquitin ligase binder connected by a linker. By recruiting an ubiquitin ligase to a target protein, PROTACs promote ubiquitination and proteasomal degradation of the target protein. The generation of effective PROTACs depends on the nature of the protein/ligase ligand pair, linkage site, linker length, and linker composition, all of which have been difficult to address in a systematic way. Herein, we describe a "click chemistry" approach for the synthesis of PROTACs. We demonstrate the utility of this approach with the bromodomain and extraterminal domain-4 (BRD4) ligand JQ-1 (3) and ligase binders targeting cereblon (CRBN) and Von Hippel-Lindau (VHL) proteins. An AlphaScreen proximity assay was used to determine the ability of PROTACs to form the ternary ligase-PROTAC-target protein complex and a MSD assay to measure cellular degradation of the target protein promoted by PROTACs.


Subject(s)
Click Chemistry , Drug Evaluation, Preclinical , Nuclear Proteins , Proteolysis , Transcription Factors , Humans , Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Click Chemistry/methods , Drug Evaluation, Preclinical/methods , Ligands , Nuclear Proteins/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Peptides/pharmacology , Proteolysis/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Transcription Factors/metabolism , Ubiquitin-Protein Ligases , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
7.
J Am Chem Soc ; 139(35): 12153-12156, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28841018

ABSTRACT

The Curtius rearrangement is a classic, powerful method for converting carboxylic acids into protected amines, but its widespread use is impeded by safety issues (the need to handle azides). We have developed an alternative to the Curtius rearrangement that employs a copper catalyst in combination with blue-LED irradiation to achieve the decarboxylative coupling of aliphatic carboxylic acid derivatives (specifically, readily available N-hydroxyphthalimide esters) to afford protected amines under mild conditions. This C-N bond-forming process is compatible with a wide array of functional groups, including an alcohol, aldehyde, epoxide, indole, nitroalkane, and sulfide. Control reactions and mechanistic studies are consistent with the hypothesis that copper species are engaged in both the photochemistry and the key bond-forming step, which occurs through out-of-cage coupling of an alkyl radical.


Subject(s)
Amines/chemistry , Carboxylic Acids/chemistry , Copper/chemistry , Light , Catalysis
8.
Bioorg Med Chem Lett ; 26(22): 5580-5590, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27769621

ABSTRACT

High levels of Pim expression have been implicated in several hematopoietic and solid tumor cancers, suggesting that inhibition of Pim signaling could provide patients with therapeutic benefit. Herein, we describe our progress towards this goal using a screening hit (rac-1) as a starting point. Modification of the indazole ring resulted in the discovery of a series of imidazopyridazine-based Pim inhibitors exemplified by compound 22m, which was found to be a subnanomolar inhibitor of the Pim-1 and Pim-2 isoforms (IC50 values of 0.024nM and 0.095nM, respectively) and to potently inhibit the phosphorylation of BAD in a cell line that expresses high levels of all Pim isoforms, KMS-12-BM (IC50=28nM). Profiling of Pim-1 and Pim-2 expression levels in a panel of multiple myeloma cell lines and correlation of these data with the potency of compound 22m in a proliferation assay suggests that Pim-2 inhibition would be advantageous for this indication.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyridazines/chemistry , Pyridazines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Models, Molecular , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Structure-Activity Relationship
9.
J Med Chem ; 59(13): 6407-30, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27285051

ABSTRACT

The high expression of proviral insertion site of Moloney murine leukemia virus kinases (Pim-1, -2, and -3) in cancers, particularly the hematopoietic malignancies, is believed to play a role in promoting cell survival and proliferation while suppressing apoptosis. The three isoforms of Pim protein appear largely redundant in their oncogenic functions. Thus, a pan-Pim kinase inhibitor is highly desirable. However, cell active pan-Pim inhibitors have proven difficult to develop because Pim-2 has a low Km for ATP and therefore requires a very potent inhibitor to effectively block the kinase activity at cellular ATP concentrations. Herein, we report a series of quinazolinone-pyrrolopyrrolones as potent and selective pan-Pim inhibitors. In particular, compound 17 is orally efficacious in a mouse xenograft model (KMS-12 BM) of multiple myeloma, with 93% tumor growth inhibition at 50 mg/kg QD upon oral dosing.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrroles/pharmacology , Quinazolinones/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrroles/administration & dosage , Pyrroles/chemistry , Quinazolinones/administration & dosage , Quinazolinones/chemistry , Structure-Activity Relationship , Xenograft Model Antitumor Assays
10.
ACS Med Chem Lett ; 7(4): 408-12, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27096050

ABSTRACT

The identification of Pim-1/2 kinase overexpression in B-cell malignancies suggests that Pim kinase inhibitors will have utility in the treatment of lymphoma, leukemia, and multiple myeloma. Starting from a moderately potent quinoxaline-dihydropyrrolopiperidinone lead, we recognized the potential for macrocyclization and developed a series of 13-membered macrocycles. The structure-activity relationships of the macrocyclic linker were systematically explored, leading to the identification of 9c as a potent, subnanomolar inhibitor of Pim-1 and -2. This molecule also potently inhibited Pim kinase activity in KMS-12-BM, a multiple myeloma cell line with relatively high endogenous levels of Pim-1/2, both in vitro (pBAD IC50 = 25 nM) and in vivo (pBAD EC50 = 30 nM, unbound), and a 100 mg/kg daily dose was found to completely arrest the growth of KMS-12-BM xenografts in mice.

11.
ACS Med Chem Lett ; 6(9): 987-92, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26396685

ABSTRACT

In nonsmall cell lung cancer (NSCLC), the threonine(790)-methionine(790) (T790M) point mutation of EGFR kinase is one of the leading causes of acquired resistance to the first generation tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. Herein, we describe the optimization of a series of 7-oxopyrido[2,3-d]pyrimidinyl-derived irreversible inhibitors of EGFR kinase. This led to the discovery of compound 24 which potently inhibits gefitinib-resistant EGFR(L858R,T790M) with 100-fold selectivity over wild-type EGFR. Compound 24 displays strong antiproliferative activity against the H1975 nonsmall cell lung cancer cell line, the first line mutant HCC827 cell line, and promising antitumor activity in an EGFR(L858R,T790M) driven H1975 xenograft model sparing the side effects associated with the inhibition of wild-type EGFR.

13.
Bioorg Med Chem Lett ; 25(4): 847-55, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25599837

ABSTRACT

High levels of Pim expression have been implicated in several hematopoietic and solid tumor cancers. These findings suggest that inhibition of Pim signaling by a small molecule Pim-1,2 inhibitor could provide patients with therapeutic benefit. Herein, we describe our progress towards this goal starting from the highly Pim-selective indole-thiadiazole compound (1), which was derived from a nonselective hit identified in a high throughput screening campaign. Optimization of this compound's potency and its pharmacokinetic properties resulted in the discovery of compound 29. Cyclopropane 29 was found to exhibit excellent enzymatic potency on the Pim-1 and Pim-2 isoforms (Ki values of 0.55nM and 0.28nM, respectively), and found to inhibit the phosphorylation of BAD in the Pim-overexpressing KMS-12 cell line (IC50=150nM). This compound had moderate clearance and bioavailability in rat (CL=2.42L/kg/h; %F=24) and exhibited a dose-dependent inhibition of p-BAD in KMS-12 tumor pharmacodynamic (PD) model with an EC50 value of 6.74µM (18µg/mL) when dosed at 10, 30, 100 and 200mg/kg po in mice.


Subject(s)
Oxadiazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Crystallography, X-Ray , Drug Discovery , Molecular Structure , Oxadiazoles/chemistry
14.
Bioorg Med Chem Lett ; 24(24): 5630-5634, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25466188

ABSTRACT

Replacement of the piperazine sulfonamide portion of the PI3Kα inhibitor AMG 511 (1) with a range of aliphatic alcohols led to the identification of a truncated gem-dimethylbenzylic alcohol analog, 2-(5-(4-amino-6-methyl-1,3,5-triazin-2-yl)-6-((5-fluoro-6-methoxypyridin-3-yl)amino)pyridin-3-yl)propan-2-ol (7). This compound possessed good in vitro efficacy and pharmacokinetic parameters and demonstrated an EC50 of 239 ng/mL in a mouse liver pharmacodynamic model measuring the inhibition of hepatocyte growth factor (HGF)-induced Akt Ser473 phosphorylation in CD1 nude mice 6 h post-oral dosing.


Subject(s)
Alcohols/chemistry , Phosphoinositide-3 Kinase Inhibitors , Piperazines/chemistry , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Sulfonamides/chemistry , Triazines/chemical synthesis , Animals , Female , Half-Life , Liver/metabolism , Male , Mice , Mice, Nude , Molecular Conformation , Phosphatidylinositol 3-Kinases/metabolism , Piperazine , Piperazines/metabolism , Piperazines/pharmacokinetics , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyridines/metabolism , Pyridines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Triazines/metabolism , Triazines/pharmacokinetics
15.
J Org Chem ; 79(7): 3260-6, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24635141

ABSTRACT

An aldol-like cyclocondensation has been used to prepare heterocyclic-fused pyridin-2-ones from aminoaldehydes and ketones upon treatment with a lithium enolate of ethyl acetate or α-substituted acetates. These motifs are present in a large number of biologically active natural products and synthetic compounds and can be accessed using mild reaction conditions using readily available starting materials. This methodology allows access to pyrimidinopyridin-2-ones, pyrazolopyridin-2-ones, and pyridopyridazine diones with varying substitution patterns.


Subject(s)
Carboxylic Acids/chemistry , Ketones/chemistry , Pyridones/chemical synthesis , Catalysis , Esters , Molecular Structure , Pyridones/chemistry
16.
J Med Chem ; 55(17): 7796-816, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22897589

ABSTRACT

The phosphoinositide 3-kinase family catalyzes the phosphorylation of phosphatidylinositol-4,5-diphosphate to phosphatidylinositol-3,4,5-triphosphate, a secondary messenger which plays a critical role in important cellular functions such as metabolism, cell growth, and cell survival. Our efforts to identify potent, efficacious, and orally available phosphatidylinositol 3-kinase (PI3K) inhibitors as potential cancer therapeutics have resulted in the discovery of 4-(2-((6-methoxypyridin-3-yl)amino)-5-((4-(methylsulfonyl)piperazin-1-yl)methyl)pyridin-3-yl)-6-methyl-1,3,5-triazin-2-amine (1). In this paper, we describe the optimization of compound 1, which led to the design and synthesis of pyridyltriazine 31, a potent pan inhibitor of class I PI3Ks with a superior pharmacokinetic profile. Compound 31 was shown to potently block the targeted PI3K pathway in a mouse liver pharmacodynamic model and inhibit tumor growth in a U87 malignant glioma glioblastoma xenograft model. On the basis of its excellent in vivo efficacy and pharmacokinetic profile, compound 31 was selected for further evaluation as a clinical candidate and was designated AMG 511.


Subject(s)
Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Triazines/pharmacology , Crystallography, X-Ray , Models, Molecular , Protein Kinase Inhibitors/chemistry
17.
Bioorg Med Chem Lett ; 22(17): 5714-20, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22832322

ABSTRACT

Phosphoinositide 3-kinase (PI3K) is an important target in oncology due to the deregulation of the PI3K/Akt signaling pathway in a wide variety of tumors. A series of 4-amino-6-methyl-1,3,5-triazine sulfonamides were synthesized and evaluated as inhibitors of PI3K. The synthesis, in vitro biological activities, pharmacokinetic and in vivo pharmacodynamic profiling of these compounds are described. The most promising compound from this investigation (compound 3j) was found to be a pan class I PI3K inhibitor with a moderate (>10-fold) selectivity over the mammalian target of rapamycin (mTOR) in the enzyme assay. In a U87 MG cellular assay measuring phosphorylation of Akt, compound 3j displayed low double digit nanomolar IC(50) and exhibited good oral bioavailability in rats (F(oral)=63%). Compound 3j also showed a dose dependent reduction in the phosphorylation of Akt in a U87 tumor pharmacodynamic model with a plasma EC(50)=193 nM (91 ng/mL).


Subject(s)
Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Female , Humans , Mice , Molecular Docking Simulation , Neoplasms/enzymology , Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction/drug effects , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Triazines/chemistry , Triazines/pharmacokinetics , Triazines/pharmacology , Triazines/therapeutic use
18.
J Med Chem ; 55(11): 5188-219, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22548365

ABSTRACT

A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Piperazines/chemical synthesis , Pyridines/chemical synthesis , Sulfonamides/chemical synthesis , Triazines/chemical synthesis , Animals , Biological Availability , Class I Phosphatidylinositol 3-Kinases/physiology , Crystallography, X-Ray , Drug Design , Female , Humans , Indazoles/chemical synthesis , Indazoles/pharmacokinetics , Indazoles/pharmacology , Mice , Mice, Nude , Microsomes, Liver/metabolism , Models, Molecular , Piperazines/pharmacokinetics , Piperazines/pharmacology , Proto-Oncogene Proteins c-akt/physiology , Purines/chemical synthesis , Purines/pharmacokinetics , Purines/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Signal Transduction , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Sulfones/chemical synthesis , Sulfones/pharmacokinetics , Sulfones/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triazines/pharmacokinetics , Triazines/pharmacology , Xenograft Model Antitumor Assays
19.
Bioorg Med Chem Lett ; 22(2): 1226-9, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22196117

ABSTRACT

Structure-activity relationship (SAR) investigations of a novel class of triazolopyridazinone p38α mitogen activated protein kinase (MAPK) inhibitors are disclosed. From these studies, increased in vitro potency was observed for 2,6-disubstituted phenyl moieties and N-ethyl triazolopyridazinone cores due to key contacts with Leu108, Ala157 and Val38. Further investigation led to the identification of three compounds, 3g, 3j and 3m that are highly potent inhibitors of LPS-induced MAPKAP kinase 2 (MK2) phosphorylation in 50% human whole blood (hWB), and possess desirable in vivo pharmacokinetic and kinase selectivity profiles.


Subject(s)
Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyridazines/pharmacology , Triazoles/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Mitogen-Activated Protein Kinase 14/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridazines/chemical synthesis , Pyridazines/chemistry , Stereoisomerism , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
20.
J Med Chem ; 53(17): 6398-411, 2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20712346

ABSTRACT

The p38 mitogen-activated protein kinase (MAPK) plays an important role in the production of proinflammatory cytokines, making it an attractive target for the treatment of various inflammatory diseases. A series of pyridazinopyridinone compounds were designed as novel p38 kinase inhibitors. A structure-activity investigation identified several compounds possessing excellent potency in both enzyme and human whole blood assays. Among them, compound 31 exhibited good pharmacokinetic properties and showed excellent selectivity against other related kinases. In addition, 31 demonstrated efficacy in a collagen-induced arthritis disease model in rats.


Subject(s)
Antirheumatic Agents/chemical synthesis , Pyridazines/chemical synthesis , Pyridones/chemical synthesis , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Activating Transcription Factor 2/metabolism , Animals , Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/pharmacology , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Binding Sites , Collagen , Female , Humans , Interleukin-8/biosynthesis , Interleukin-8/blood , Lipopolysaccharides/pharmacology , Male , Models, Molecular , Phosphorylation , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Pyridones/pharmacokinetics , Pyridones/pharmacology , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL