Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Eur J Pharm Biopharm ; 192: 112-125, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37797679

ABSTRACT

The encapsulation of HIV-unrelated T helper peptides into liposomal vaccines presenting trimers of the HIV-1 envelope glycoprotein (Env) on the surface (T helper liposomes) may recruit heterologous T cells to provide help for Env-specific B cells. This mechanism called intrastructural help can modulate the HIV-specific humoral immune response. In this study, we used cationic T helper liposomes to induce intrastructural help effects in a small animal model. The liposomes were functionalized with Env trimers by a tag-free approach designed to enable a simplified GMP production. The pre-fusion conformation of the conjugated Env trimers was verified by immunogold electron microscopy (EM) imaging and flow cytometry. The liposomes induced strong activation of Env-specific B cells in vitro. In comparison to previously established anionic liposomes, cationic T helper liposomes were superior in CD4+ T cell activation after uptake by dendritic cells. Moreover, the T helper liposomes were able to target Env-specific B cells in secondary lymphoid organs after intramuscular injection. We also observed efficient T helper cell activation and proliferation in co-cultures with Env-specific B cells in the presence of cationic T helper liposomes. Mouse immunization experiments with cationic T helper liposomes further revealed a modulation of the Env-specific IgG subtype distribution and enhancement of the longevity of antibody responses by ovalbumin- and Hepatitis B (HBV)-specific T cell help. Thus, clinical evaluation of the concept of intrastructural help seems warranted.


Subject(s)
HIV Infections , HIV-1 , Vaccines , Animals , Mice , Liposomes/chemistry , HIV Antibodies , env Gene Products, Human Immunodeficiency Virus/chemistry , Immunity, Humoral
2.
Front Immunol ; 14: 1180959, 2023.
Article in English | MEDLINE | ID: mdl-37283743

ABSTRACT

An effective HIV vaccine likely requires the elicitation of neutralizing antibodies (NAbs) against multiple HIV-1 clades. The recently developed cleavage-independent native flexibly linked (NFL) envelope (Env) trimers exhibit well-ordered conformation and elicit autologous tier 2 NAbs in multiple animal models. Here, we investigated whether the fusion of molecular adjuvant C3d to the Env trimers can improve B- cell germinal center (GC) formation and antibody responses. To generate Env-C3d trimers, we performed a glycine-serine- based (G4S) flexible peptide linker screening and identified a linker range that allowed native folding. A 30-60- amino- acid- long linker facilitates Env-to-C3d association and achieves the secretion of well-ordered trimers and the structural integrity and functional integrity of Env and C3d. The fusion of C3d did not dramatically affect the antigenicity of the Env trimers and enhanced the ability of the Env trimers to engage and activate B cells in vitro. In mice, the fusion of C3d enhanced germinal center formation, the magnitude of Env-specific binding antibodies, and the avidity of the antibodies in the presence of an adjuvant. The Sigma Adjuvant System (SAS) did not affect the trimer integrity in vitro but contributed to altered immunogenicity in vivo, resulting in increased tier 1 neutralization, likely by increased exposure of variable region 3 (V3). Taken together, the results indicate that the fusion of the molecular adjuvant, C3d, to the Env trimers improves antibody responses and could be useful for Env-based vaccines against HIV.


Subject(s)
HIV Seropositivity , HIV-1 , Animals , Mice , HIV Antibodies , Antibody Formation , env Gene Products, Human Immunodeficiency Virus , Antibodies, Neutralizing , Adjuvants, Immunologic
3.
Pharmaceutics ; 14(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35890282

ABSTRACT

Functionalization of experimental HIV-1 virus-like particle vaccines with heterologous T helper epitopes (T helper VLPs) can modulate the humoral immune response via intrastructural help (ISH). Current advances in the conjugation of native-like HIV-1 envelope trimers (Env) onto liposomes and encapsulation of peptide epitopes into these nanoparticles renders this GMP-scalable liposomal platform a feasible alternative to VLP-based vaccines. In this study, we designed and analyzed customizable Env-conjugated T helper liposomes. First, we passively encapsulated T helper peptides into a well-characterized liposome formulation displaying a dense array of Env trimers on the surface. We confirmed the closed pre-fusion state of the coupled Env trimers by immunogold staining with conformation-specific antibodies. These peptide-loaded Env-liposome conjugates efficiently activated Env-specific B cells, which further induced proliferation of CD4+ T cells by presentation of liposome-derived peptides on MHC-II molecules. The peptide encapsulation process was then quantitatively improved by an electrostatically driven approach using an overall anionic lipid formulation. We demonstrated that peptides delivered by liposomes were presented by DCs in secondary lymphoid organs after intramuscular immunization of mice. UFO (uncleaved prefusion optimized) Env trimers were covalently coupled to peptide-loaded anionic liposomes by His-tag/NTA(Ni) interactions and EDC/Sulfo-NHS crosslinking. EM imaging revealed a moderately dense array of well-folded Env trimers on the liposomal surface. The conformation was verified by liposomal surface FACS. Furthermore, anionic Env-coupled T helper liposomes effectively induced Env-specific B cell activation and proliferation in a comparable range to T helper VLPs. Taken together, we demonstrated that T helper VLPs can be substituted with customizable and GMP-scalable liposomal nanoparticles as a perspective for future preclinical and clinical HIV vaccine applications. The functional nanoparticle characterization assays shown in this study can be applied to other systems of synthetic nanoparticles delivering antigens derived from various pathogens.

4.
PLoS Pathog ; 17(9): e1009543, 2021 09.
Article in English | MEDLINE | ID: mdl-34559844

ABSTRACT

Understanding the molecular mechanisms by which antibodies target and neutralize the HIV-1 envelope glycoprotein (Env) is critical in guiding immunogen design and vaccine development aimed at eliciting cross-reactive neutralizing antibodies (NAbs). Here, we analyzed monoclonal antibodies (mAbs) isolated from non-human primates (NHPs) immunized with variants of a native flexibly linked (NFL) HIV-1 Env stabilized trimer derived from the tier 2 clade C 16055 strain. The antibodies displayed neutralizing activity against the autologous virus with potencies ranging from 0.005 to 3.68 µg/ml (IC50). Structural characterization using negative-stain EM and X-ray crystallography identified the variable region 2 (V2) of the 16055 NFL trimer to be the common epitope for these antibodies. The crystal structures revealed that the V2 segment adopts a ß-hairpin motif identical to that observed in the 16055 NFL crystal structure. These results depict how vaccine-induced antibodies derived from different clonal lineages penetrate through the glycan shield to recognize a hypervariable region within V2 (residues 184-186) that is unique to the 16055 strain. They also provide potential explanations for the potent autologous neutralization of these antibodies, confirming the immunodominance of this site and revealing that multiple angles of approach are permissible for affinity/avidity that results in potent neutralizing capacity. The structural analysis reveals that the most negatively charged paratope correlated with the potency of the mAbs. The atomic level information is of interest to both define the means of autologous neutralization elicited by different tier 2-based immunogens and facilitate trimer redesign to better target more conserved regions of V2 to potentially elicit cross-neutralizing HIV-1 antibodies.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Immunodominant Epitopes/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Monoclonal , Epitopes, B-Lymphocyte/immunology , Female , HIV Infections/immunology , HIV-1/immunology , Macaca mulatta
5.
Cell Rep ; 30(12): 3964-3971.e7, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32209459

ABSTRACT

Although intramuscular (i.m.) administration is the most commonly used route for licensed vaccines, subcutaneous (s.c.) delivery is being explored for several new vaccines under development. Here, we use rhesus macaques, physiologically relevant to humans, to identify the anatomical compartments and early immune processes engaged in the response to immunization via the two routes. Administration of fluorescently labeled HIV-1 envelope glycoprotein trimers displayed on liposomes enables visualization of targeted cells and tissues. Both s.c. and i.m. routes induce efficient immune cell infiltration, activation, and antigen uptake, functions that are tightly restricted to the skin and muscle, respectively. Antigen is also transported to different lymph nodes depending on route. However, these early differences do not translate into significant differences in the magnitude or quality of antigen-specific cellular and humoral responses over time. Thus, although some distinct immunological differences are noted, the choice of route may instead be motivated by clinical practicality.


Subject(s)
Adaptive Immunity , Antigens/immunology , Immunity, Innate , Vaccines/administration & dosage , Vaccines/immunology , Animals , B-Lymphocytes/immunology , Drug Administration Routes , Female , HIV-1/immunology , Humans , Immunization , Injections , Lymph Nodes/immunology , Macaca mulatta , Male , Muscles , Skin , T-Lymphocytes/immunology , env Gene Products, Human Immunodeficiency Virus/immunology
6.
J Exp Med ; 217(2)2020 02 03.
Article in English | MEDLINE | ID: mdl-31704807

ABSTRACT

Well-ordered HIV-1 envelope glycoprotein (Env) trimers are prioritized for clinical evaluation, and there is a need for an improved understanding about how elicited B cell responses evolve following immunization. To accomplish this, we prime-boosted rhesus macaques with clade C NFL trimers and identified 180 unique Ab lineages from ∼1,000 single-sorted Env-specific memory B cells. We traced all lineages in high-throughput heavy chain (HC) repertoire (Rep-seq) data generated from multiple immune compartments and time points and expressed several as monoclonal Abs (mAbs). Our results revealed broad dissemination and high levels of somatic hypermutation (SHM) of most lineages, including tier 2 virus neutralizing lineages, following boosting. SHM was highest in the Ab complementarity determining regions (CDRs) but also surprisingly high in the framework regions (FRs), especially FR3. Our results demonstrate the capacity of the immune system to affinity-mature large numbers of Env-specific B cell lineages simultaneously, supporting the use of regimens consisting of repeated boosts to improve each Ab, even those belonging to less expanded lineages.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , Vaccination , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Cells, Cultured , Complementarity Determining Regions/genetics , Female , HIV Antibodies/immunology , HIV Infections/virology , HIV-1/chemistry , High-Throughput Nucleotide Sequencing , Immunoglobulin Heavy Chains/genetics , Macaca mulatta , Reverse Transcriptase Polymerase Chain Reaction , Single-Cell Analysis , Somatic Hypermutation, Immunoglobulin
7.
Cell Rep ; 29(10): 3060-3072.e7, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31801073

ABSTRACT

Broadly HIV-1 neutralizing VRC01 class antibodies target the CD4-binding site of Env. They are derived from VH1-2∗02 antibody heavy chains paired with rare light chains expressing 5-amino acid-long CDRL3s. They have been isolated from infected subjects but have not yet been elicited by immunization. Env-derived immunogens capable of binding the germline forms of VRC01 B cell receptors on naive B cells have been designed and evaluated in knockin mice. However, the elicited antibodies cannot bypass glycans present on the conserved position N276 of Env, which restricts access to the CD4-binding site. Efforts to guide the appropriate maturation of these antibodies by sequential immunization have not yet been successful. Here, we report on a two-step immunization scheme that leads to the maturation of VRC01-like antibodies capable of accommodating the N276 glycan and displaying autologous tier 2 neutralizing activities. Our results are relevant to clinical trials aiming to elicit VRC01 antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , HIV-1/immunology , Animals , B-Lymphocytes/immunology , CD4 Antigens/immunology , Female , HIV Infections/immunology , Immunization/methods , Immunoglobulin Heavy Chains/immunology , Male , Mice , Polysaccharides/immunology , Receptors, Antigen, B-Cell/immunology , env Gene Products, Human Immunodeficiency Virus/immunology
8.
Immunity ; 51(5): 915-929.e7, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31732167

ABSTRACT

The elicitation of broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) trimer remains a major vaccine challenge. Most cross-conserved protein determinants are occluded by self-N-glycan shielding, limiting B cell recognition of the underlying polypeptide surface. The exceptions to the contiguous glycan shield include the conserved receptor CD4 binding site (CD4bs) and glycoprotein (gp)41 elements proximal to the furin cleavage site. Accordingly, we performed heterologous trimer-liposome prime:boosting in rabbits to drive B cells specific for cross-conserved sites. To preferentially expose the CD4bs to B cells, we eliminated proximal N-glycans while maintaining the native-like state of the cleavage-independent NFL trimers, followed by gradual N-glycan restoration coupled with heterologous boosting. This approach successfully elicited CD4bs-directed, cross-neutralizing Abs, including one targeting a unique glycan-protein epitope and a bNAb (87% breadth) directed to the gp120:gp41 interface, both resolved by high-resolution cryoelectron microscopy. This study provides proof-of-principle immunogenicity toward eliciting bNAbs by vaccination.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Liposomes , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4 Antigens/chemistry , CD4 Antigens/immunology , CD4 Antigens/metabolism , Complement C3/immunology , Complement C3/metabolism , Cross-Priming/immunology , Epitopes/immunology , Glycosylation , HIV Infections/virology , Humans , Immunoglobulin G/immunology , Models, Molecular , Neutralization Tests , Polysaccharides/immunology , Polysaccharides/metabolism , Protein Binding , Protein Conformation , Rabbits , env Gene Products, Human Immunodeficiency Virus/administration & dosage , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism
9.
Nanomaterials (Basel) ; 9(10)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569763

ABSTRACT

Incorporation of immunodominant T-helper epitopes of licensed vaccines into virus-like particles (VLP) allows to harness T-helper cells induced by the licensed vaccines to provide intrastructural help (ISH) for B-cell responses against the surface proteins of the VLPs. To explore whether ISH could also improve antibody responses to calcium phosphate (CaP) nanoparticle vaccines we loaded the nanoparticle core with a universal T-helper epitope of Tetanus toxoid (p30) and functionalized the surface of CaP nanoparticles with stabilized trimers of the HIV-1 envelope (Env) resulting in Env-CaP-p30 nanoparticles. In contrast to soluble Env trimers, Env containing CaP nanoparticles induced activation of naïve Env-specific B-cells in vitro. Mice previously vaccinated against Tetanus raised stronger humoral immune responses against Env after immunization with Env-CaP-p30 than mice not vaccinated against Tetanus. The enhancing effect of ISH on anti-Env antibody levels was not attended with increased Env-specific IFN-γ CD4 T-cell responses that otherwise may potentially influence the susceptibility to HIV-1 infection. Thus, CaP nanoparticles functionalized with stabilized HIV-1 Env trimers and heterologous T-helper epitopes are able to recruit heterologous T-helper cells induced by a licensed vaccine and improve anti-Env antibody responses by intrastructural help.

10.
Nat Immunol ; 20(8): 1059-1070, 2019 08.
Article in English | MEDLINE | ID: mdl-31308541

ABSTRACT

Dysfunction of virus-specific CD4+ T cells in chronic human infections is poorly understood. We performed genome-wide transcriptional analyses and functional assays of CD4+ T cells specific for human immunodeficiency virus (HIV) from HIV-infected people before and after initiation of antiretroviral therapy (ART). A follicular helper T cell (TFH cell)-like profile characterized HIV-specific CD4+ T cells in viremic infection. HIV-specific CD4+ T cells from people spontaneously controlling the virus (elite controllers) robustly expressed genes associated with the TH1, TH17 and TH22 subsets of helper T cells. Viral suppression by ART resulted in a distinct transcriptional landscape, with a reduction in the expression of genes associated with TFH cells, but persistently low expression of genes associated with TH1, TH17 and TH22 cells compared to the elite controller profile. Thus, altered differentiation is central to the impairment of HIV-specific CD4+ T cells and involves both gain of function and loss of function.


Subject(s)
Anti-HIV Agents/therapeutic use , Gene Expression/drug effects , HIV Infections/drug therapy , HIV Infections/immunology , Th1 Cells/pathology , Th17 Cells/pathology , Gene Expression Profiling , HIV Infections/virology , Humans , Receptors, CXCR5/metabolism , Th1 Cells/cytology , Th1 Cells/immunology , Th17 Cells/cytology , Th17 Cells/immunology , Viral Load/drug effects , Virus Replication/drug effects
11.
mBio ; 10(4)2019 07 23.
Article in English | MEDLINE | ID: mdl-31337716

ABSTRACT

The filoviruses are etiological agents of life-threatening hemorrhagic fever with high mortality rate and risk of potential outbreak. Among members of this family, the Ebola (EBOV), Sudan (SUDV), and Marburg (MARV) viruses are considered the most pathogenic for humans. The ebolavirus nucleoprotein (NP) is the most abundant protein in infected cells and is essential for viral transcription and replication; thus, it represents an attractive target for therapeutic intervention. Here, we present the structure of SUDV NP in complex with the amino-terminal portion of the phosphoprotein VP35 at 2.3 Å. This structure captures VP35 chaperoning SUDV NP in a monomeric and RNA-free state. This transient state has been proposed to be key to maintaining a pool of monomeric and RNA-free NPs prior to NP-NP polymerization and encapsidation of the viral RNA genome. This structure also reveals a newly visualized interaction between NP and VP35, a well-defined beta sheet that is not present in previous structures. Affinity binding assays demonstrate that this beta sheet is essential for maintaining the high-affinity interaction between VP35 and a hydrophobic pocket on SUDV NP, and electron microscopy indicates the importance of this binding interaction to the oligomeric state and assembly of NP in human cells. Complementary structure-directed mutagenesis identifies critical residues conserved across the filovirus family that could be targeted by broadly effective antivirals.IMPORTANCE Outbreaks of the filoviruses can be unpredictable in timing, location, and identity of the causative virus, with each of Ebola virus, Sudan virus, Bundibugyo virus, and Marburg virus reemerging in the last several years to cause human disease with 30 to 90% lethality. The 2014-2016 outbreak in particular, with nearly 30,000 patients, highlighted the ability of these viruses to emerge unexpectedly and spread rapidly. Two ebolavirus outbreaks have emerged this year, yet we still lack FDA-approved drugs with pan-filovirus activity to treat existing and emergent ebolaviruses. For all filoviruses, the interaction between the nucleoprotein and the phosphoprotein is essential for the virus life cycle and is a potential target for therapeutic intervention. In this report, we describe the crystal structure of the SUDV nucleoprotein with the interacting domain of the viral phosphoprotein, and we identify residues critical for high-affinity interaction and for control of the oligomeric state of the nucleoprotein. Structural comparison of this heterodimer with other members of the filovirus family allowed us to find conserved and essential atomic features that will facilitate understanding of the virus life cycle and the rational design of antivirals.


Subject(s)
Ebolavirus/drug effects , Filoviridae/drug effects , Nucleoproteins/chemistry , Viral Regulatory and Accessory Proteins/chemistry , Crystallography, X-Ray , Filoviridae/pathogenicity , Phosphoproteins/chemistry , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs
13.
Front Microbiol ; 10: 672, 2019.
Article in English | MEDLINE | ID: mdl-31065249

ABSTRACT

Here, we have established an antigen-specific single B cell sorting and monoclonal antibody (mAb) cloning platform for analyzing immunization- or viral infection-elicited antibody response at the clonal level in guinea pigs. We stained the peripheral blood mononuclear cells (PBMCs) from a guinea pig immunized with HIV-1 envelope glycoprotein trimer mimic (BG505 SOSIP), using anti-guinea pig IgG and IgM fluorochrome conjugates, along with fluorochrome-conjugated BG505 SOSIP trimer as antigen (Ag) probe to sort for Ag-specific IgGhi IgMlo B cells at single cell density. We then designed a set of guinea pig immunoglobulin (Ig) gene-specific primers to amplify cDNAs encoding B cell receptor variable regions [V(D)J segments] from the sorted Ag-specific B cells. B cell V(D)J sequences were verified by sequencing and annotated by IgBLAST, followed by cloning into Ig heavy- and light-chain expression vectors containing human IgG1 constant regions and co-transfection into 293F cells to reconstitute full-length antibodies in a guinea pig-human chimeric IgG1 format. Of 88 antigen-specific B cells isolated, we recovered 24 (27%) cells with native-paired heavy and light chains. Furthermore, 85% of the expressed recombinant mAbs bind positively to the antigen probe by enzyme-linked immunosorbent and/or BioLayer Interferometry assays, while five mAbs from four clonal lineages neutralize the HIV-1 tier 1 virus ZM109. In summary, by coupling Ag-specific single B cell sorting with gene-specific single cell RT-PCR, our method exhibits high efficiency and accuracy, which will facilitate future efforts in isolating mAbs and analyzing B cell responses to infections or immunizations in the guinea pig model.

14.
Cell Rep ; 27(2): 586-598.e6, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30970260

ABSTRACT

Despite recent progress in engineering native trimeric HIV-1 envelope glycoprotein (Env) mimics as vaccine candidates, Env trimers often induce vaccine-matched neutralizing antibody (NAb) responses. Understanding the specificities of autologous NAb responses and the underlying molecular mechanisms restricting the neutralization breadth is therefore informative to improve vaccine efficacy. Here, we delineate the response specificity by single B cell sorting and serum analysis of guinea pigs immunized with BG505 SOSIP.664 Env trimers. Our results reveal a prominent immune target containing both conserved and strain-specific residues in the C3/V4 region of Env in trimer-vaccinated animals. The defined NAb response shares a high degree of similarity with the early NAb response developed by a naturally infected infant from whom the HIV virus strain BG505 was isolated and later developed a broadly NAb response. Our study describes strain-specific responses and their possible evolution pathways, thereby highlighting the potential to broaden NAb responses by immunogen re-design.


Subject(s)
Epitopes/immunology , Glycoproteins/metabolism , HIV-1/immunology , Immunization/methods , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Guinea Pigs , Humans
15.
Immunity ; 50(1): 241-252.e6, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30552025

ABSTRACT

Passive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection after vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers. Repeat intrarectal challenge with homologous tier 2 SHIVBG505 led to rapid infection in unimmunized and low-titer animals. High-titer animals, however, demonstrated protection that was gradually lost as nAb titers waned over time. An autologous serum ID50 nAb titer of ∼1:500 afforded more than 90% protection from medium-dose SHIV infection. In contrast, antibody-dependent cellular cytotoxicity and T cell activity did not correlate with protection. Therefore, Env protein-based vaccination strategies can protect against hard-to-neutralize SHIV challenge in rhesus macaques by inducing tier 2 nAbs, provided appropriate neutralizing titers can be reached and maintained.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV/physiology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Humans , Macaca mulatta , Vaccination
16.
Nat Commun ; 9(1): 3693, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30209313

ABSTRACT

As the sole target of broadly neutralizing antibodies (bnAbs) to HIV, the envelope glycoprotein (Env) trimer is the focus of vaccination strategies designed to elicit protective bnAbs in humans. Because HIV Env is densely glycosylated with 75-90 N-glycans per trimer, most bnAbs use or accommodate them in their binding epitope, making the glycosylation of recombinant Env a key aspect of HIV vaccine design. Upon analysis of three HIV strains, we here find that site-specific glycosylation of Env from infectious virus closely matches Envs from corresponding recombinant membrane-bound trimers. However, viral Envs differ significantly from recombinant soluble, cleaved (SOSIP) Env trimers, strongly impacting antigenicity. These results provide a benchmark for virus Env glycosylation needed for the design of soluble Env trimers as part of an overall HIV vaccine strategy.


Subject(s)
HIV-1/immunology , Polysaccharides/immunology , Polysaccharides/metabolism , Antibodies, Neutralizing/immunology , Epitopes/immunology , HIV Antibodies/immunology , HIV-1/metabolism , HIV-1/pathogenicity , Humans , Protein Multimerization
17.
Front Immunol ; 9: 1631, 2018.
Article in English | MEDLINE | ID: mdl-30065725

ABSTRACT

Soluble HIV-1 envelope glycoprotein (Env) trimers are under active investigation as vaccine candidates in relevant pre-clinical models. Like SOSIPs, the cleavage-independent native flexibly linked (NFL) trimers are faithful mimics of the Env spike. Here, we analyzed multiple new designs to explore alternative modifications, informing tertiary interactions, while maintaining NFL trimer homogeneity and integrity. Accordingly, we performed a proline (P) substitution screen in the gp41 heptad repeat 1 region, identifying other trimer-enhancing Ps, including L555P. This P improved trimer integrity compared to I559P in selected properties. Next, we screened 15 structure-guided potential cysteine pairs in gp140 and found that A501C-L663C ("CC2") forms an inter-protomer disulfide bond that demonstrably increased NFL trimer thermostability. We combined these two approaches with trimer-derived substitutions, coupled with glycine substitutions at helix-to-coil transitions, developed by our group. To increase the exposure of the fusion peptide (FP) N-terminus, we engineered an enterokinase (EK) cleavage site upstream of the FP for controlled post-expression cleavage. In combination, the redesigns resulted in highly stable and homogeneous NFL mimics derived from different clades. Following recombinant EK cleavage, the NFL trimers retained covalent linkage, maintaining a native-like structure while displaying enhanced stability and favorable antigenic features. These trimers also displayed increased exposure of neutralizing epitopes in the FP and gp120/gp41 interface, while retaining other neutralizing epitopes and occluding non-neutralizing elements. This array of Env-structure-guided designs reveals additional interactive regions in the prefusion state of the HIV Env spike, affording the development of novel antigens and immunogens.

18.
J Virol ; 92(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-29976677

ABSTRACT

Protection against acquiring human immunodeficiency virus (HIV) infection may not require a vaccine in the conventional sense, because broadly neutralizing antibodies (bNAbs) alone prevent HIV infection in relevant animal challenge models. Additionally, bNAbs as therapeutics can effectively suppress HIV replication in infected humans and in animal models. Combinations of bNAbs are generally even more effective, and bNAb-derived multivalent antibody-like molecules also inhibit HIV replication both in vitro and in vivo To expand the available array of multispecific HIV inhibitors, we designed single-component molecules that incorporate two (bispecific) or three (trispecific) bNAbs that recognize HIV Env exclusively, a bispecific CrossMAb targeting two epitopes on the major HIV coreceptor, CCR5, and bi- and trispecifics that cross-target both Env and CCR5. These newly designed molecules displayed exceptional breadth, neutralizing 98 to 100% of a 109-virus panel, as well as additivity and potency compared to those of the individual parental control IgGs. The bispecific molecules, designed as tandem single-chain variable fragments (scFvs) (10E8fv-N6fv and m36.4-PRO 140fv), displayed median 50% inhibitory concentration (IC50s) of 0.0685 and 0.0131 µg/ml, respectively. A trispecific containing 10E8-PGT121-PGDM1400 Env-specific binding sites was equally potent (median IC50 of 0.0135 µg/ml), while a trispecific molecule targeting Env and CCR5 simultaneously (10E8Fab-PGDM1400fv-PRO 140fv) demonstrated even greater potency, with a median IC50 of 0.007 µg/ml. By design, some of these molecules lacked Fc-mediated effector function; therefore, we also constructed a trispecific prototype possessing reconstituted CH2-CH3 domains to restore Fc receptor binding capacity. The molecules developed here, along with those described previously, possess promise as prophylactic and therapeutic agents against HIV.IMPORTANCE Broadly neutralizing antibodies (bNAbs) prevent HIV infection in monkey challenge models and suppress HIV replication in infected humans. Combinations of bNAbs are more effective at suppression, and antibody-like molecules engineered to have two or three bNAb combining sites also inhibit HIV replication in monkeys and other animal models. To expand the available array of multispecific HIV inhibitors, we designed single-component molecules that incorporate two (bispecific) or three (trispecific) bNAb binding sites that recognize the HIV envelope glycoprotein (Env) or the HIV coreceptor (CCR5) or that cross-target both Env and CCR5. Several of the bi- and trispecific molecules neutralized most viruses in a diverse cross-clade panel, with greater breadth and potency than those of the individual parental bNAbs. The molecules described here provide additional options for preventing or suppressing HIV infection.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Receptors, CCR5/immunology , Virus Internalization , env Gene Products, Human Immunodeficiency Virus/immunology , Antibodies, Bispecific/biosynthesis , Antibodies, Bispecific/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Epitopes/chemistry , Epitopes/immunology , HIV Infections/therapy , Humans , Inhibitory Concentration 50 , Neutralization Tests , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/immunology
19.
Front Immunol ; 9: 1116, 2018.
Article in English | MEDLINE | ID: mdl-29881382

ABSTRACT

Native flexibly linked (NFL) HIV-1 envelope glycoprotein (Env) trimers are cleavage-independent and display a native-like, well-folded conformation that preferentially displays broadly neutralizing determinants. The NFL platform simplifies large-scale production of Env by eliminating the need to co-transfect the precursor-cleaving protease, furin that is required by the cleavage-dependent SOSIP trimers. Here, we report the development of a CHO-M cell line that expressed BG505 NFL trimers at a high level of homogeneity and yields of ~1.8 g/l. BG505 NFL trimers purified by single-step lectin-affinity chromatography displayed a native-like closed structure, efficient recognition by trimer-preferring bNAbs, no recognition by non-neutralizing CD4 binding site-directed and V3-directed antibodies, long-term stability, and proper N-glycan processing. Following negative-selection, formulation in ISCOMATRIX adjuvant and inoculation into rabbits, the trimers rapidly elicited potent autologous tier 2 neutralizing antibodies. These antibodies targeted the N-glycan "hole" naturally present on the BG505 Env proximal to residues at positions 230, 241, and 289. The BG505 NFL trimers that did not expose V3 in vitro, elicited low-to-no tier 1 virus neutralization in vivo, indicating that they remained intact during the immunization process, not exposing V3. In addition, BG505 NFL and BG505 SOSIP trimers expressed from 293F cells, when formulated in Adjuplex adjuvant, elicited equivalent BG505 tier 2 autologous neutralizing titers. These titers were lower in potency when compared to the titers elicited by CHO-M cell derived trimers. In addition, increased neutralization of tier 1 viruses was detected. Taken together, these data indicate that both adjuvant and cell-type expression can affect the elicitation of tier 2 and tier 1 neutralizing responses in vivo.


Subject(s)
Antibodies, Neutralizing/immunology , HIV-1/immunology , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , CHO Cells , Cell Line , Chromatography, Affinity , Chromatography, High Pressure Liquid , Cricetulus , Enzyme-Linked Immunosorbent Assay , Gene Expression , Glycosylation , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Humans , Immunization , Models, Molecular , Proteolysis , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/isolation & purification
20.
Nat Commun ; 9(1): 1956, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769533

ABSTRACT

Furin cleavage of the HIV envelope glycoprotein is an essential step for cell entry that enables formation of well-folded, native-like glycosylated trimers, releases constraints on the fusion peptide, and limits enzymatic processing of the N-glycan shield. Here, we show that a cleavage-independent, stabilized, soluble Env trimer mimic (BG505 NFL.664) exhibits a "closed-form", native-like, prefusion conformation akin to furin-cleaved Env trimers. The crystal structure of BG505 NFL.664 at 3.39 Å resolution with two potent bNAbs also identifies the full epitopes of PGV19 and PGT122 that target the receptor binding site and N332 supersite, respectively. Quantitative site-specific analysis of the glycan shield reveals that native-like glycan processing is maintained despite furin-independent maturation in the secretory pathway. Thus, cleavage-independent NFL Env trimers exhibit quaternary protein and carbohydrate structures similar to the native viral spike that further validate their potential as vaccine immunogen candidates.


Subject(s)
Glycoproteins/chemistry , Protein Multimerization , Protein Structure, Quaternary , env Gene Products, Human Immunodeficiency Virus/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Binding Sites , Crystallography, X-Ray , Epitopes/chemistry , Glycoproteins/metabolism , Glycosylation , HIV Antibodies/chemistry , HIV Antibodies/metabolism , HIV-1/immunology , HIV-1/metabolism , Humans , Models, Molecular , Protein Binding , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...