Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38168711

ABSTRACT

In recent times, pathogen genome sequencing has become increasingly used to investigate infectious disease outbreaks. When genomic data is sampled densely enough amongst infected individuals, it can help resolve who infected whom. However, transmission analysis cannot rely solely on a phylogeny of the genomes but must account for the within-host evolution of the pathogen, which blurs the relationship between phylogenetic and transmission trees. When only a single genome is sampled for each host, the uncertainty about who infected whom can be quite high. Consequently, transmission analysis based on multiple genomes of the same pathogen per host has a clear potential for delivering more precise results, even though it is more laborious to achieve. Here, we present a new methodology that can use any number of genomes sampled from a set of individuals to reconstruct their transmission network. Furthermore, we remove the need for the assumption of a complete transmission bottleneck. We use simulated data to show that our method becomes more accurate as more genomes per host are provided, and that it can infer key infectious disease parameters such as the size of the transmission bottleneck, within-host growth rate, basic reproduction number, and sampling fraction. We demonstrate the usefulness of our method in applications to real datasets from an outbreak of Pseudomonas aeruginosa amongst cystic fibrosis patients and a nosocomial outbreak of Klebsiella pneumoniae.


Subject(s)
Communicable Diseases , Humans , Phylogeny , Communicable Diseases/genetics , Communicable Diseases/epidemiology , Disease Outbreaks , Genomics , Chromosome Mapping , Disease Transmission, Infectious
2.
Sci Transl Med ; 15(701): eade3901, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37343082

ABSTRACT

Adenoviral-vectored vaccines are licensed for prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ebola virus, but, for bacterial proteins, expression in a eukaryotic cell may affect the antigen's localization and conformation or lead to unwanted glycosylation. Here, we investigated the potential use of an adenoviral-vectored vaccine platform for capsular group B meningococcus (MenB). Vector-based candidate vaccines expressing MenB antigen factor H binding protein (fHbp) were generated, and immunogenicity was assessed in mouse models, including the functional antibody response by serum bactericidal assay (SBA) using human complement. All adenovirus-based vaccine candidates induced high antigen-specific antibody and T cell responses. A single dose induced functional serum bactericidal responses with titers superior or equal to those induced by two doses of protein-based comparators, as well as longer persistence and a similar breadth. The fHbp transgene was further optimized for human use by incorporating a mutation abrogating binding to the human complement inhibitor factor H. The resulting vaccine candidate induced high and persistent SBA responses in transgenic mice expressing human factor H. The optimized transgene was inserted into the clinically relevant ChAdOx1 backbone, and this vaccine has now progressed to clinical development. The results of this preclinical vaccine development study underline the potential of vaccines based on genetic material to induce functional antibody responses against bacterial outer membrane proteins.


Subject(s)
COVID-19 , Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Neisseria meningitidis , Viral Vaccines , Humans , Mice , Animals , Complement Factor H , SARS-CoV-2 , Antigens, Bacterial , Bacterial Proteins/genetics , Meningococcal Infections/prevention & control , Carrier Proteins , Mice, Transgenic , Adenoviridae/genetics , Antibodies, Bacterial
3.
Cell Rep ; 42(4): 112344, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37018073

ABSTRACT

Pre-clinical studies of fragile X syndrome (FXS) have focused on neurons, with the role of glia remaining largely underexplored. We examined the astrocytic regulation of aberrant firing of FXS neurons derived from human pluripotent stem cells. Human FXS cortical neurons, co-cultured with human FXS astrocytes, fired frequent short-duration spontaneous bursts of action potentials compared with less frequent, longer-duration bursts of control neurons co-cultured with control astrocytes. Intriguingly, bursts fired by FXS neurons co-cultured with control astrocytes are indistinguishable from control neurons. Conversely, control neurons exhibit aberrant firing in the presence of FXS astrocytes. Thus, the astrocyte genotype determines the neuronal firing phenotype. Strikingly, astrocytic-conditioned medium, and not the physical presence of astrocytes, is capable of determining the firing phenotype. The mechanistic basis of this effect indicates that the astroglial-derived protein, S100ß, restores normal firing by reversing the suppression of a persistent sodium current in FXS neurons.


Subject(s)
Fragile X Syndrome , Humans , Fragile X Syndrome/genetics , Astrocytes/metabolism , Fragile X Mental Retardation Protein/metabolism , Neurons/metabolism , Coculture Techniques
4.
Sci Rep ; 13(1): 496, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627297

ABSTRACT

Understanding the genetic and environmental risk factors for serious bacterial infections in ageing populations remains incomplete. Utilising the UK Biobank (UKB), a prospective cohort study of 500,000 adults aged 40-69 years at recruitment (2006-2010), can help address this. Partial implementation of such a system helped groups around the world make rapid progress understanding risk factors for SARS-CoV-2 infection and COVID-19, with insights appearing as early as May 2020. In principle, such approaches could also to be used for bacterial isolations. Here we report feasibility testing of linking an England-wide dataset of microbial reporting to UKB participants, to enable characterisation of microbial infections within the UKB Cohort. These records pertain mainly to bacterial isolations; SARS-CoV-2 isolations were not included. Microbiological infections occurring in patients in England, as recorded in the Public Health England second generation surveillance system (SGSS), were linked to UKB participants using pseudonymised identifiers. By January 2015, ascertainment of laboratory reports from UKB participants by SGSS was estimated at 98%. 4.5% of English UKB participants had a positive microbiological isolate in 2015. Half of UKB isolates came from 12 laboratories, and 70% from 21 laboratories. Incidence rate ratios for microbial isolation, which is indicative of serious infection, from the UKB cohort relative to the comparably aged general population ranged from 0.6 to 1, compatible with the previously described healthy participant bias in UKB. Data on microbial isolations can be linked to UKB participants from January 2015 onwards. This linked data would offer new opportunities for research into the role of bacterial agents on health and disease in middle to-old age.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , SARS-CoV-2 , Laboratories , Biological Specimen Banks , Prospective Studies , England/epidemiology
5.
Epidemiol Infect ; 150: e201, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36328978

ABSTRACT

The objectives of this study were to define risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in University of Cambridge (UoC) students during a period of increased incidence in October and November 2020. The study design was a survey.Routine public health surveillance identified an increase in the numbers of UoC students with confirmed SARS-CoV-2 positivity in the 10 days after a national lockdown was announced in the UK on 5th November 2020. Cases were identified both through symptom-triggered testing and a universal asymptomatic testing programme. An online questionnaire was sent to all UoC students on 25 November to investigate risk factors for testing positive in the period after 30th October 2020. This asked about symptoms, SARS-CoV-2 test results, aspects of university life, and attendance at social events in the week prior to lockdown. Univariate and multivariable analyses were undertaken evaluating potential risk factors for SARS-CoV-2 positivity.Among 3980 students responding to the questionnaire, 99 (2.5%) reported testing SARS-CoV-2 positive in the period studied; 28 (28%) were asymptomatic. We found strong independent associations with SARS-CoV-2 positivity and attendance at two social settings in the City of Cambridge (adjusted odds ratio favouring disease 13.0 (95% CI 6.2-26.9) and 14.2 (95% CI 2.9-70)), with weaker evidence of association with three further social settings. By contrast, we did not observe strong independent associations between disease risk and accommodation type or attendance at a range of activities associated with the university curriculum.To conclude attendance at social settings can facilitate widespread SARS-CoV-2 transmission in university students. Constraint of transmission in higher education settings needs to emphasise risks outside university premises, as well as a COVID-safe environment within university premises.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cross-Sectional Studies , COVID-19/epidemiology , Communicable Disease Control , Risk Factors
6.
Microbiol Spectr ; 10(5): e0246822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36135374

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine coverage remains incomplete, being only 15% in low-income countries. Rapid point-of-care tests predicting SARS-CoV-2 infection susceptibility in the unvaccinated may assist in risk management and vaccine prioritization. We conducted a prospective cohort study in 2,826 participants working in hospitals and Fire and Police services in England, UK, during the pandemic (ISRCTN5660922). Plasma taken at recruitment in June 2020 was tested using four lateral flow immunoassay (LFIA) devices and two laboratory immunoassays detecting antibodies against SARS-CoV-2 (UK Rapid Test Consortium's AbC-19 rapid test, OrientGene COVID IgG/IgM rapid test cassette, SureScreen COVID-19 rapid test cassette, and Biomerica COVID-19 IgG/IgM rapid test; Roche N and Euroimmun S laboratory assays). We monitored participants for microbiologically confirmed SARS-CoV-2 infection for 200 days. We estimated associations between test results at baseline and subsequent infection, using Poisson regression models adjusted for baseline demographic risk factors for SARS-CoV-2 exposure. Positive IgG results on each of the four LFIAs were associated with lower rates of subsequent infection with adjusted incidence rate ratios (aIRRs) of 0.00 (95% confidence interval, 0.00 to 0.01), 0.03 (0.02 to 0.05), 0.07 (0.05 to 0.10), and 0.09 (0.07 to 0.12), respectively. The protective association was strongest for AbC-19 and SureScreen. The aIRR for the laboratory Roche N antibody assay at the manufacturer-recommended threshold was similar to those of the two best performing LFIAs at 0.03 (0.01 to 0.10). Lateral flow devices measuring SARS-CoV-2 IgG predicted disease risk in unvaccinated individuals over a 200-day follow-up. The association of some LFIAs with subsequent infection was similar to laboratory immunoassays. IMPORTANCE Previous research has demonstrated an association between the detection of antibodies to SARS-CoV-2 following natural infection and protection from subsequent symptomatic SARS-CoV-2 infection. Lateral flow immunoassays (LFIAs) detecting anti-SARS-CoV-2 IgG are a cheap, readily deployed technology that has been used on a large scale in population screening programs, yet no studies have investigated whether LFIA results are associated with subsequent SARS-CoV-2 infection. In a prospective cohort study of 2,826 United Kingdom key workers, we found positivity in lateral flow test results had a strong negative association with subsequent SARS-CoV-2 infection within 200 days in an unvaccinated population. Positivity on more-specific but less-sensitive tests was associated with a markedly decreased rate of disease; protection associated with testing positive using more sensitive devices detecting lower levels of anti-SARS-CoV-2 IgG was more modest. Lateral flow tests with high specificity may have a role in estimation of SARS-CoV-2 disease risk in unvaccinated populations.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Prospective Studies , Sensitivity and Specificity , Antibodies, Viral , Immunoassay/methods , Immunoglobulin G , Immunoglobulin M
7.
Mol Autism ; 13(1): 34, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35850732

ABSTRACT

BACKGROUND: Mutations in the postsynaptic transmembrane protein neuroligin-3 are highly correlative with autism spectrum disorders (ASDs) and intellectual disabilities (IDs). Fear learning is well studied in models of these disorders, however differences in fear response behaviours are often overlooked. We aim to examine fear behaviour and its cellular underpinnings in a rat model of ASD/ID lacking Nlgn3. METHODS: This study uses a range of behavioural tests to understand differences in fear response behaviour in Nlgn3-/y rats. Following this, we examined the physiological underpinnings of this in neurons of the periaqueductal grey (PAG), a midbrain area involved in flight-or-freeze responses. We used whole-cell patch-clamp recordings from ex vivo PAG slices, in addition to in vivo local-field potential recordings and electrical stimulation of the PAG in wildtype and Nlgn3-/y rats. We analysed behavioural data with two- and three-way ANOVAS and electrophysiological data with generalised linear mixed modelling (GLMM). RESULTS: We observed that, unlike the wildtype, Nlgn3-/y rats are more likely to response with flight rather than freezing in threatening situations. Electrophysiological findings were in agreement with these behavioural outcomes. We found in ex vivo slices from Nlgn3-/y rats that neurons in dorsal PAG (dPAG) showed intrinsic hyperexcitability compared to wildtype. Similarly, stimulating dPAG in vivo revealed that lower magnitudes sufficed to evoke flight behaviour in Nlgn3-/y than wildtype rats, indicating the functional impact of the increased cellular excitability. LIMITATIONS: Our findings do not examine what specific cell type in the PAG is likely responsible for these phenotypes. Furthermore, we have focussed on phenotypes in young adult animals, whilst the human condition associated with NLGN3 mutations appears during the first few years of life. CONCLUSIONS: We describe altered fear responses in Nlgn3-/y rats and provide evidence that this is the result of a circuit bias that predisposes flight over freeze responses. Additionally, we demonstrate the first link between PAG dysfunction and ASD/ID. This study provides new insight into potential pathophysiologies leading to anxiety disorders and changes to fear responses in individuals with ASD.


Subject(s)
Autistic Disorder , Animals , Autistic Disorder/metabolism , Fear/physiology , Freezing , Humans , Neurons/physiology , Periaqueductal Gray/metabolism , Rats
8.
Microb Genom ; 8(6)2022 06.
Article in English | MEDLINE | ID: mdl-35771206

ABSTRACT

There is a need to identify microbial sequences that may form part of transmission chains, or that may represent importations across national boundaries, amidst large numbers of SARS-CoV-2 and other bacterial or viral sequences. Reference-based compression is a sequence analysis technique that allows both a compact storage of sequence data and comparisons between sequences. Published implementations of the approach are being challenged by the large sample collections now being generated. Our aim was to develop a fast software detecting highly similar sequences in large collections of microbial genomes, including millions of SARS-CoV-2 genomes. To do so, we developed Catwalk, a tool that bypasses bottlenecks in the generation, comparison and in-memory storage of microbial genomes generated by reference mapping. It is a compiled solution, coded in Nim to increase performance. It can be accessed via command line, rest api or web server interfaces. We tested Catwalk using both SARS-CoV-2 and Mycobacterium tuberculosis genomes generated by prospective public-health sequencing programmes. Pairwise sequence comparisons, using clinically relevant similarity cut-offs, took about 0.39 and 0.66 µs, respectively; in 1 s, between 1 and 2 million sequences can be searched. Catwalk operates about 1700 times faster than, and uses about 8 % of the RAM of, a Python reference-based compression and comparison tool in current use for outbreak detection. Catwalk can rapidly identify close relatives of a SARS-CoV-2 or M. tuberculosis genome amidst millions of samples.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Databases, Nucleic Acid , Humans , Mycobacterium tuberculosis/genetics , Prospective Studies , SARS-CoV-2/genetics , Software
9.
Sci Rep ; 12(1): 7808, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35552463

ABSTRACT

Bacille Calmette-Guérin (BCG), the only currently licenced tuberculosis vaccine, may exert beneficial non-specific effects (NSE) in reducing infant mortality. We conducted a randomised controlled clinical study in healthy UK adults to evaluate potential NSE using functional in-vitro growth inhibition assays (GIAs) as a surrogate of protection from four bacteria implicated in infant mortality. Volunteers were randomised to receive BCG intradermally (n = 27) or to be unvaccinated (n = 8) and were followed up for 84 days; laboratory staff were blinded until completion of the final visit. Using GIAs based on peripheral blood mononuclear cells, we observed a significant reduction in the growth of the Gram-negative bacteria Escherichia coli and Klebsiella pneumonia following BCG vaccination, but no effect for the Gram-positive bacteria Staphylococcus aureus and Streptococcus agalactiae. There was a modest association between S. aureus nasal carriage and growth of S. aureus in the GIA. Our findings support a causal link between BCG vaccination and improved ability to control growth of heterologous bacteria. Unbiased assays such as GIAs are potentially useful tools for the assessment of non-specific as well as specific effects of TB vaccines. This study was funded by the Bill and Melinda Gates Foundation and registered with ClinicalTrials.gov (NCT02380508, 05/03/2015; completed).


Subject(s)
BCG Vaccine , Tuberculosis Vaccines , Adult , Humans , Infant , Leukocytes, Mononuclear , Staphylococcus aureus , Vaccination
10.
J Infect ; 85(1): 31-39, 2022 07.
Article in English | MEDLINE | ID: mdl-35595102

ABSTRACT

BACKGROUND: The prevalence, association with disease status, and public health impact of infection with mixtures of M. tuberculosis strains is unclear, in part due to limitations of existing methods for detecting mixed infections. METHODS: We developed an algorithm to identify mixtures of M. tuberculosis strains using next generation sequencing data, assessing performance using simulated sequences. We identified mixed M. tuberculosis strains when there was at least one mixed nucleotide position, and where both the mixture's components were present in similar isolates from other individuals, compatible with transmission of the component strains. We determined risk factors for mixed infection among isolations of M. tuberculosis in England using logistic regression. We used survival analyses to assess the association between mixed infection and putative transmission. FINDINGS: 6,560 isolations of TB were successfully sequenced in England 2016-2018. Of 3,691 (56%) specimens for which similar sequences had been isolated from at least two other individuals, 341 (9.2%) were mixed. Mixed infection was more common in lineages other than Lineage 4. Among the 1,823 individuals with pulmonary infection with Lineage 4 M. tuberculosis, mixed infection was associated with significantly increased risk of subsequent isolation of closely related organisms from a different individual (HR 1.43, 95% CI 1.05,1.94), indicative of transmission. INTERPRETATION: Mixtures of transmissible strains occur in at least 5% of tuberculosis infections in England; when present in pulmonary disease, such mixtures are associated with an increased risk of tuberculosis transmission. FUNDING: Public Health England; NIHR Health Protection Research Units; European Union.


Subject(s)
Coinfection , Mycobacterium tuberculosis , Tuberculosis , High-Throughput Nucleotide Sequencing , Humans , Mycobacterium tuberculosis/genetics , Prospective Studies , Tuberculosis/diagnosis
11.
Lancet Reg Health Eur ; 17: 100361, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35345560

ABSTRACT

Background: Over 10-years of whole-genome sequencing (WGS) of Mycobacterium tuberculosis in Birmingham presents an opportunity to explore epidemiological trends and risk factors for transmission in new detail. Methods: Between 1st January 2009 and 15th June 2019, we obtained the first WGS isolate from every patient resident in a postcode district covered by Birmingham's centralised tuberculosis service. Data on patients' sex, country of birth, social risk-factors, anatomical locus of disease, and strain lineage were collected. Poisson harmonic regression was used to assess seasonal variation in case load and a mixed-effects multivariable Cox proportionate hazards model was used to assess risk factors for a future case arising in clusters defined by a 5 single nucleotide polymorphism (SNP) threshold, and by 12 SNPs in a sensitivity analysis. Findings: 511/1653 (31%) patients were genomically clustered with another. A seasonal variation in diagnoses was observed, peaking in spring, but only among clustered cases. Risk-factors for a future clustered case included UK-birth (aHR=2·03 (95%CI 1·35-3·04), p < 0·001), infectious (pulmonary/laryngeal/miliary) tuberculosis (aHR=3·08 (95%CI 1·98-4·78), p < 0·001), and M. tuberculosis lineage 3 (aHR=1·91 (95%CI 1·03-3·56), p = 0·041) and 4 (aHR=2·27 (95%CI 1·21-4·26), p = 0·011), vs. lineage 1. Similar results pertained to 12 SNP clusters, for which social risk-factors were also significant (aHR 1·72 (95%CI 1·02-2·93), p = 0·044). There was marked heterogeneity in transmission patterns between postcode districts. Interpretation: There is seasonal variation in the diagnosis of genomically clustered, but not non-clustered, cases. Risk factors for clustering include UK-birth, infectious forms of tuberculosis, and infection with lineage 3 or 4. Funding: Wellcome Trust, MRC, UKHSA.

12.
J Infect ; 84(5): 658-667, 2022 05.
Article in English | MEDLINE | ID: mdl-35245584

ABSTRACT

OBJECTIVE: Adenoviral vectored vaccines, with the appropriate gene insert, induce cellular and antibody responses against viruses, parasites and intracellular pathogens such as Mycobacterium tuberculosis. Here we explored their capacity to induce functional antibody responses to meningococcal transmembrane outer membrane proteins. METHODS: Vectors expressing porin A and ferric enterobactin receptor A antigens were generated, and their immunogenicity assessed in mice using binding and bactericidal assays. RESULTS: The viral vectors expressed the bacterial proteins in an in vitro cell-infection assay and, after immunisation of mice, induced higher titres (>105 end-point titre) and longer lasting (>32 weeks) transgene-specific antibody responses in vivo than did outer membrane vesicles containing the same antigens. However, bactericidal antibodies, which are the primary surrogate of protection against meningococcus, were undetectable, despite different designs to support the presentation of the protective B-cell epitopes. CONCLUSION: These results demonstrate that, while the transmembrane bacterial proteins expressed by the viral vector induced strong and persistent antigen-specific antibodies, this platform failed to induce bactericidal antibodies. The results suggest that conformation or post-translational modifications of bacterial outer membrane antigens produced in eukaryote cells might not result in presentation of the necessary epitopes for induction of functional antibodies.


Subject(s)
Meningococcal Vaccines , Neisseria meningitidis , Animals , Antibodies, Bacterial , Antibody Formation , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins , Bacterial Vaccines , Humans , Mice , Neisseria meningitidis/genetics
14.
Syst Biol ; 71(5): 1073-1087, 2022 08 10.
Article in English | MEDLINE | ID: mdl-34893904

ABSTRACT

Microbial population genetics models often assume that all lineages are constrained by the same population size dynamics over time. However, many neutral and selective events can invalidate this assumption and can contribute to the clonal expansion of a specific lineage relative to the rest of the population. Such differential phylodynamic properties between lineages result in asymmetries and imbalances in phylogenetic trees that are sometimes described informally but which are difficult to analyze formally. To this end, we developed a model of how clonal expansions occur and affect the branching patterns of a phylogeny. We show how the parameters of this model can be inferred from a given dated phylogeny using Bayesian statistics, which allows us to assess the probability that one or more clonal expansion events occurred. For each putative clonal expansion event, we estimate its date of emergence and subsequent phylodynamic trajectory, including its long-term evolutionary potential which is important to determine how much effort should be placed on specific control measures. We demonstrate the applicability of our methodology on simulated and real data sets. Inference under our clonal expansion model can reveal important features in the evolution and epidemiology of infectious disease pathogens. [Clonal expansion; genomic epidemiology; microbial population genomics; phylodynamics.].


Subject(s)
Genetics, Population , Genomics , Bayes Theorem , Phylogeny , Probability
15.
J Infect ; 84(3): 311-320, 2022 03.
Article in English | MEDLINE | ID: mdl-34963640

ABSTRACT

OBJECTIVES: Initiatives to curb hospital antibiotic use might be associated with harm from under-treatment. We examined the extent to which variation in hospital antibiotic prescribing is associated with mortality risk in acute/general medicine inpatients. METHODS: This ecological analysis examined Hospital Episode Statistics from 36,124,372 acute/general medicine admissions (≥16y) to 135 acute hospitals in England, 01/April/2010-31/March/2017. Random-effects meta-regression was used to investigate whether heterogeneity in adjusted 30-day mortality was associated with hospital-level antibiotic use, measured in defined-daily-doses (DDD)/1,000 bed-days. Models also considered DDDs/1,000 admissions and DDDs for narrow-spectrum/broad-spectrum antibiotics, parenteral/oral, and local interpretations of World Health Organization Access, Watch, and Reserve antibiotics. RESULTS: Hospital-level antibiotic DDDs/1,000 bed-days varied 15-fold with comparable variation in broad-spectrum, parenteral, and Reserve antibiotic use. After extensive adjusting for hospital case-mix, the probability of 30-day mortality changed -0.010% (95% CI: -0.064,+0.044) for each increase of 500 hospital-level antibiotic DDDs/1,000 bed-days. Analyses of other metrics of antibiotic use showed no consistent association with mortality risk. CONCLUSIONS: We found no evidence that wide variation in hospital antibiotic use is associated with adjusted mortality risk in acute/general medicine inpatients. Using low-prescribing hospitals as benchmarks could help drive safe and substantial reductions in antibiotic consumption of up-to one-third in this population.


Subject(s)
Anti-Bacterial Agents , Hospitals , England/epidemiology , Humans
16.
J Physiol ; 599(24): 5417-5449, 2021 12.
Article in English | MEDLINE | ID: mdl-34748643

ABSTRACT

Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Some survivors develop a severe, acute or delayed myasthenic syndrome. In animal models, similar myasthenia has been associated with increasing plasma concentration of one insecticide solvent metabolite, cyclohexanol. We investigated possible mechanisms using voltage and current recordings from mouse neuromuscular junctions (NMJs) and transfected human cell lines. Cyclohexanol (10-25 mM) reduced endplate potential (EPP) amplitudes by 10-40% and enhanced depression during repetitive (2-20 Hz) stimulation by up to 60%. EPP decay was prolonged more than twofold. Miniature EPPs were attenuated by more than 50%. Cyclohexanol inhibited whole-cell currents recorded from CN21 cells expressing human postjunctional acetylcholine receptors (hnAChR) with an IC50 of 3.74 mM. Cyclohexanol (10-20 mM) also caused prolonged episodes of reduced-current, multi-channel bursting in outside-out patch recordings from hnAChRs expressed in transfected HEK293T cells, reducing charge transfer by more than 50%. Molecular modelling indicated cyclohexanol binding (-6 kcal/mol) to a previously identified alcohol binding site on nicotinic AChR α-subunits. Cyclohexanol also increased quantal content of evoked transmitter release by ∼50%. In perineurial recordings, cyclohexanol selectively inhibited presynaptic K+ currents. Modelling indicated cyclohexanol binding (-3.8 kcal/mol) to voltage-sensitive K+ channels at the same site as tetraethylammonium (TEA). TEA (10 mM) blocked K+ channels more effectively than cyclohexanol but EPPs were more prolonged in 20 mM cyclohexanol. The results explain the pattern of neuromuscular dysfunction following ingestion of organophosphorus insecticides containing cyclohexanol precursors and suggest that cyclohexanol may facilitate investigation of mechanisms regulating synaptic strength at NMJs. KEY POINTS: Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Survivors may develop a severe myasthenic syndrome or paralysis, associated with increased plasma levels of cyclohexanol, an insecticide solvent metabolite. Analysis of synaptic transmission at neuromuscular junctions in isolated mouse skeletal muscle, using isometric tension recording and microelectrode recording of endplate voltages and currents, showed that cyclohexanol reduced postsynaptic sensitivity to acetylcholine neurotransmitter (reduced quantal size) while simultaneously enhancing evoked transmitter release (increased quantal content). Patch recording from transfected cell lines, together with molecular modelling, indicated that cyclohexanol causes selective, allosteric antagonism of postsynaptic nicotinic acetylcholine receptors and block of presynaptic K+ -channel function. The data provide insight into the cellular and molecular mechanisms of neuromuscular weakness following intentional ingestion of agricultural organophosphorus insecticides. Our findings also extend understanding of the effects of alcohols on synaptic transmission and homeostatic synaptic function.


Subject(s)
Cyclohexanols , Neuromuscular Junction , Animals , HEK293 Cells , Humans , Mice , Motor Endplate , Receptors, Cholinergic , Synaptic Transmission
17.
Cell Rep ; 37(2): 109805, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34644573

ABSTRACT

Fragile X syndrome (FXS), a commonly inherited form of autism and intellectual disability, is associated with emotional symptoms that implicate dysfunction of the amygdala. However, current understanding of the pathogenesis of the disease is based primarily on studies in the hippocampus and neocortex, where FXS defects have been corrected by inhibiting group I metabotropic glutamate receptors (mGluRs). Here, we observe that activation, rather than inhibition, of mGluRs in the basolateral amygdala reverses impairments in a rat model of FXS. FXS rats exhibit deficient recall of auditory conditioned fear, which is accompanied by a range of in vitro and in vivo deficits in synaptic transmission and plasticity. We find presynaptic mGluR5 in the amygdala, activation of which reverses deficient synaptic transmission and plasticity, thereby restoring normal fear learning in FXS rats. This highlights the importance of modifying the prevailing mGluR-based framework for therapeutic strategies to include circuit-specific differences in FXS pathophysiology.


Subject(s)
Basolateral Nuclear Complex/physiopathology , Behavior, Animal , Fear , Fragile X Syndrome/physiopathology , Mental Recall , Neuronal Plasticity , Synaptic Transmission , Animals , Basolateral Nuclear Complex/metabolism , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/psychology , Male , Rats, Sprague-Dawley , Rats, Transgenic , Receptor, Metabotropic Glutamate 5/metabolism
18.
Neuropharmacology ; 198: 108743, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34363811

ABSTRACT

In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.


Subject(s)
Excitatory Amino Acids/physiology , Neurotransmitter Agents/physiology , Receptors, Glutamate/physiology , Animals , Excitatory Amino Acids/pharmacology , Humans , Receptors, Glutamate/drug effects , Synapses/physiology
19.
eNeuro ; 8(4)2021.
Article in English | MEDLINE | ID: mdl-34326063

ABSTRACT

The ability of neurons to produce behaviorally relevant activity in the absence of pathology relies on the fine balance of synaptic inhibition to excitation. In the hippocampal CA1 microcircuit, this balance is maintained by a diverse population of inhibitory interneurons that receive largely similar glutamatergic afferents as their target pyramidal cells, with EPSCs generated by both AMPA receptors (AMPARs) and NMDA receptors (NMDARs). In this study, we take advantage of a recently generated GluN2A-null rat model to assess the contribution of GluN2A subunits to glutamatergic synaptic currents in three subclasses of interneuron found in the CA1 region of the hippocampus. For both parvalbumin-positive and somatostatin-positive interneurons, the GluN2A subunit is expressed at glutamatergic synapses and contributes to the EPSC. In contrast, in cholecystokinin (CCK)-positive interneurons, the contribution of GluN2A to the EPSC is negligible. Furthermore, synaptic potentiation at glutamatergic synapses on CCK-positive interneurons does not require the activation of GluN2A-containing NMDARs but does rely on the activation of NMDARs containing GluN2B and GluN2D subunits.


Subject(s)
Interneurons , Receptors, N-Methyl-D-Aspartate , Animals , Hippocampus/metabolism , Interneurons/metabolism , Rats , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism
20.
EBioMedicine ; 68: 103414, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34098341

ABSTRACT

BACKGROUND: SARS-CoV-2 antibody tests are used for population surveillance and might have a future role in individual risk assessment. Lateral flow immunoassays (LFIAs) can deliver results rapidly and at scale, but have widely varying accuracy. METHODS: In a laboratory setting, we performed head-to-head comparisons of four LFIAs: the Rapid Test Consortium's AbC-19TM Rapid Test, OrientGene COVID IgG/IgM Rapid Test Cassette, SureScreen COVID-19 Rapid Test Cassette, and Biomerica COVID-19 IgG/IgM Rapid Test. We analysed blood samples from 2,847 key workers and 1,995 pre-pandemic blood donors with all four devices. FINDINGS: We observed a clear trade-off between sensitivity and specificity: the IgG band of the SureScreen device and the AbC-19TM device had higher specificities but OrientGene and Biomerica higher sensitivities. Based on analysis of pre-pandemic samples, SureScreen IgG band had the highest specificity (98.9%, 95% confidence interval 98.3 to 99.3%), which translated to the highest positive predictive value across any pre-test probability: for example, 95.1% (95% uncertainty interval 92.6, 96.8%) at 20% pre-test probability. All four devices showed higher sensitivity at higher antibody concentrations ("spectrum effects"), but the extent of this varied by device. INTERPRETATION: The estimates of sensitivity and specificity can be used to adjust for test error rates when using these devices to estimate the prevalence of antibody. If tests were used to determine whether an individual has SARS-CoV-2 antibodies, in an example scenario in which 20% of individuals have antibodies we estimate around 5% of positive results on the most specific device would be false positives. FUNDING: Public Health England.


Subject(s)
Antibodies, Viral/analysis , COVID-19/diagnosis , SARS-CoV-2/immunology , COVID-19/immunology , Early Diagnosis , Humans , Immunoassay , Pandemics , Population Surveillance , Prospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...