Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 127(47): 10097-10107, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37976536

ABSTRACT

Single-electron transfer (SET) promotes a wide variety of interesting chemical transformations, but modeling of SET requires a careful treatment of electronic and solvent effects to give meaningful insight. Therefore, a combined constrained density functional theory and molecular mechanics (CDFT/MM) tool is introduced specifically for SET-initiated reactions. Mechanisms for two radical-polar crossover reactions involving the organic electron donors tetrakis(dimethylamino)ethylene (TDAE) and tetrathiafulvalene (TTF) were studied with the new tool. An unexpected tertiary radical intermediate within the TDAE system was identified, relationships between kinetics and substitution in the TTF system were explained, and the impact of the solvent environments on the TDAE and TTF reactions were examined. The results highlight the need for including solvent dynamics when quantifying SET kinetics and thermodynamics, as a free energy difference of >20 kcal/mol was observed. Overall, the new method informs mechanistic analysis of SET-initiated reactions and therefore is envisioned to be useful for studying reactions in the condensed phase.

2.
Proc Natl Acad Sci U S A ; 120(15): e2218248120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37014851

ABSTRACT

Controlling the selectivity of a reaction is critical for target-oriented synthesis. Accessing complementary selectivity profiles enables divergent synthetic strategies, but is challenging to achieve in biocatalytic reactions given enzymes' innate preferences of a single selectivity. Thus, it is critical to understand the structural features that control selectivity in biocatalytic reactions to achieve tunable selectivity. Here, we investigate the structural features that control the stereoselectivity in an oxidative dearomatization reaction that is key to making azaphilone natural products. Crystal structures of enantiocomplementary biocatalysts guided the development of multiple hypotheses centered on the structural features that control the stereochemical outcome of the reaction; however, in many cases, direct substitutions of active site residues in natural proteins led to inactive enzymes. Ancestral sequence reconstruction (ASR) and resurrection were employed as an alternative strategy to probe the impact of each residue on the stereochemical outcome of the dearomatization reaction. These studies suggest that two mechanisms are active in controlling the stereochemical outcome of the oxidative dearomatization reaction: one involving multiple active site residues in AzaH and the other dominated by a single Phe to Tyr switch in TropB and AfoD. Moreover, this study suggests that the flavin-dependent monooxygenases (FDMOs) adopt simple and flexible strategies to control stereoselectivity, which has led to stereocomplementary azaphilone natural products produced by fungi. This paradigm of combining ASR and resurrection with mutational and computational studies showcases sets of tools for understanding enzyme mechanisms and provides a solid foundation for future protein engineering efforts.


Subject(s)
Biological Products , Mixed Function Oxygenases , Mixed Function Oxygenases/metabolism , Oxidation-Reduction , Flavins/metabolism , Proteins/metabolism , Biocatalysis , Organic Chemicals , Biological Products/chemistry
3.
ACS Catal ; 11(9): 5873-5884, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34055457

ABSTRACT

Acid-base catalysis, which involves one or more proton transfer reactions, is a chemical mechanism commonly employed by many enzymes. The molecular basis for catalysis is often derived from structures determined at the optimal pH for enzyme activity. However, direct observation of protons from experimental structures is quite difficult; thus, a complete mechanistic description for most enzymes remains lacking. Dihydrofolate reductase (DHFR) exemplifies general acid-base catalysis, requiring hydride transfer and protonation of its substrate, DHF, to form the product, tetrahydrofolate (THF). Previous X-ray and neutron crystal structures coupled with theoretical calculations have proposed that solvent mediates the protonation step. However, visualization of a proton transfer has been elusive. Based on a 2.1 Å resolution neutron structure of a pseudo-Michaelis complex of E. coli DHFR determined at acidic pH, we report the direct observation of the catalytic proton and its parent solvent molecule. Comparison of X-ray and neutron structures elucidated at acidic and neutral pH reveals dampened dynamics at acidic pH, even for the regulatory Met20 loop. Guided by the structures and calculations, we propose a mechanism where dynamics are crucial for solvent entry and protonation of substrate. This mechanism invokes the release of a sole proton from a hydronium (H3O+) ion, its pathway through a narrow channel that sterically hinders the passage of water, and the ultimate protonation of DHF at the N5 atom.

4.
ACS Omega ; 5(20): 11605-11617, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32478251

ABSTRACT

HIV-1 protease is indispensable for virus propagation and an important therapeutic target for antiviral inhibitors to treat AIDS. As such inhibitors are transition-state mimics, a detailed understanding of the enzyme mechanism is crucial for the development of better anti-HIV drugs. Here, we used room-temperature joint X-ray/neutron crystallography to directly visualize hydrogen atoms and map hydrogen bonding interactions in a protease complex with peptidomimetic inhibitor KVS-1 containing a reactive nonhydrolyzable ketomethylene isostere, which, upon reacting with the catalytic water molecule, is converted into a tetrahedral intermediate state, KVS-1TI. We unambiguously determined that the resulting tetrahedral intermediate is an oxyanion, rather than the gem-diol, and both catalytic aspartic acid residues are protonated. The oxyanion tetrahedral intermediate appears to be unstable, even though the negative charge on the oxyanion is delocalized through a strong n → π* hyperconjugative interaction into the nearby peptidic carbonyl group of the inhibitor. To better understand the influence of the ketomethylene isostere as a protease inhibitor, we have also examined the protease structure and binding affinity with keto-darunavir (keto-DRV), which similar to KVS-1 includes the ketomethylene isostere. We show that keto-DRV is a significantly less potent protease inhibitor than DRV. These findings shed light on the reaction mechanism of peptide hydrolysis catalyzed by HIV-1 protease and provide valuable insights into further improvements in the design of protease inhibitors.

5.
J Mol Graph Model ; 94: 107465, 2020 01.
Article in English | MEDLINE | ID: mdl-31670138

ABSTRACT

Myoglobin (Mb) binds oxygen with high affinity as a low spin singlet complex and thus functions as an oxygen storage protein. Yet, hybrid Density Functional Theory/Molecular Mechanical (DFT/MM) calculations of oxy-Mb models predict that the O2 bond is much less resistant to breaking in the presence of hydrogen sulfide (H2S) compared with water. Specifically, a hydrogen atom from H2S can be transferred to the distal oxygen atom through homolytic cleavage of the S-H bond to form the intermediate Compound (Cpd) 0 structure and a thiyl radical. In the presence of a neutral His64 (Nε protonation, His64-ε) and H2S, only a metastable Cpd 0 would be formed as the active site is devoid of any additional proton donor to fully break the O2 bond. In contrast, the calculations predict that the triplet state is significantly favored over the open shell singlet diradical state throughout the entire reaction coordinate in the presence of H2S and a positively charged His64. Furthermore, a positively charged His64 can readily donate a proton to Cpd 0 to fully break the O2 bond resulting in a configuration analogous to reported reaction models of a hemoglobin mutant bound to H2O2 with H2S present. Typically, exotic techniques are required to generate Cpd 0 but under the conditions just described the intermediate is readily detected in UV-Vis spectra at room temperature. The effect is observed as a 2 nm red shift of the Soret band from 414 nm to 416 nm (pH 5.0, His64-εδ) and from 416 nm to 418 nm (pH 6.6, His64-ε).


Subject(s)
Hydrogen Sulfide , Myoglobin , Catalytic Domain , Hydrogen Peroxide , Oxygen
6.
J Phys Chem B ; 123(38): 8065-8073, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31532200

ABSTRACT

Class A flavin-dependent hydroxylases (FdHs) catalyze the hydroxylation of organic compounds in a site- and stereoselective manner. In stark contrast, conventional synthetic routes require environmentally hazardous reagents and give modest yields. Thus, understanding the detailed mechanism of this class of enzymes is essential to their rational manipulation for applications in green chemistry and pharmaceutical production. Both electrophilic substitution and radical intermediate mechanisms have been proposed as interpretations of FdH hydroxylation rates and optical spectra. While radical mechanistic steps are often difficult to examine directly, modern quantum chemistry calculations combined with statistical mechanical approaches can yield detailed mechanistic models providing insights that can be used to differentiate reaction pathways. In the current work, we report quantum mechanical/molecular mechanical (QM/MM) calculations on the fungal TropB enzyme that shows an alternative reaction pathway in which hydroxylation through a hydroxyl radical-coupled electron-transfer mechanism is significantly favored over electrophilic substitution. Furthermore, QM/MM calculations on several modified flavins provide a more consistent interpretation of the experimental trends in the reaction rates seen experimentally for a related enzyme, para-hydroxybenzoate hydroxylase. These calculations should guide future enzyme and substrate design strategies and broaden the scope of biological spin chemistry.


Subject(s)
4-Hydroxybenzoate-3-Monooxygenase/metabolism , Hydroxyl Radical/chemistry , 4-Hydroxybenzoate-3-Monooxygenase/chemistry , Bacteria/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biocatalysis , Density Functional Theory , Electron Transport , Hydroxyl Radical/metabolism , Hydroxylation , Molecular Dynamics Simulation
7.
ACS Cent Sci ; 5(6): 1010-1016, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31263760

ABSTRACT

Biocatalysts have the potential to perform reactions with exceptional selectivity and high catalytic efficiency while utilizing safe and sustainable reagents. Despite these positive attributes, the utility of a biocatalyst can be limited by the breadth of substrates that can be accommodated in the active site in a reactive pose. Proven strategies exist for optimizing the performance of a biocatalyst toward unnatural substrates, including protein engineering; however, these methods can be time intensive and require specialized equipment that renders these approaches inaccessible to synthetic chemists. Strategies accessible to chemists for the expansion of a natural enzyme's substrate scope, while maintaining high levels of site- and stereoselectivity, remain elusive. Here, we employ a computationally guided substrate engineering strategy to expand the synthetic utility of a flavin-dependent monooxygenase. Specifically, experimental observations and computational modeling led to the identification of a critical interaction between the substrate and protein which is responsible for orienting the substrate in a pose productive for catalysis. The fundamental hypothesis for this positioning group strategy is supported by binding and kinetic assays as well as computational studies with a panel of compounds. Further, incorporation of this positioning group into substrates through a cleavable ester linkage transformed compounds not oxidized by the biocatalyst SorbC into substrates efficiently oxidatively dearomatized by the wild-type enzyme with the highest levels of site- and stereoselectivity known for this transformation.

8.
ACS Catal ; 9(4): 3633-3640, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-31346489

ABSTRACT

Biocatalytic reactions embody many features of ideal chemical transformations, including the potential for impeccable selectivity, high catalytic efficiency, mild reaction conditions and the use of environmentally benign reagents. These advantages have created a demand for biocatalysts that expand the portfolio of complexity-generating reactions available to synthetic chemists. However, the tradeoff that often exists between the substrate scope of a biocatalyst and its selectivity limits the application of enzymes in synthesis. We recently demonstrated that a flavin-dependent monooxygenase, TropB, maintains high levels of site- and stereoselectivity across a range of structurally diverse substrates. Herein, we disclose the structural basis for substrate binding in TropB, which performs a synthetically challenging asymmetric oxidative dearomatization reaction with exquisite site- and stereoselectivity across a range of phenol substrates, providing a foundation for future protein engineering and reaction development efforts. Our hypothesis for substrate binding is informed by a crystal structure of TropB and molecular dynamics simulations with the corresponding computational TropB model and is supported by experimental data. In contrast to canonical class A FAD-dependent monooxygenases in which substrates bind in a protonated form, our data indicate that the phenolate form of the substrate binds in the active site. Furthermore, the substrate position is controlled through twopoint binding of the phenolate oxygen to Arg206 and Tyr239, which are shown to have distinct and essential roles in catalysis. Arg206 is involved in the reduction of the flavin cofactor, suggesting a role in flavin dynamics. Further, QM/MM simulations reveal the interactions that govern the facial selectivity that leads to a highly enantioselective transformation. Thus, the structural origins of the high levels of site-and stereoselectivity observed in reactions of TropB across a range of substrates are elucidated, providing a foundation for future protein engineering and reaction development efforts.

9.
J Biol Chem ; 294(27): 10607-10618, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31138650

ABSTRACT

Exposure to organophosphorus compounds (OPs) may be fatal if untreated, and a clear and present danger posed by nerve agent OPs has become palpable in recent years. OPs inactivate acetylcholinesterase (AChE) by covalently modifying its catalytic serine. Inhibited AChE cannot hydrolyze the neurotransmitter acetylcholine leading to its build-up at the cholinergic synapses and creating an acute cholinergic crisis. Current antidotes, including oxime reactivators that attack the OP-AChE conjugate to free the active enzyme, are inefficient. Better reactivators are sought, but their design is hampered by a conformationally rigid portrait of AChE extracted exclusively from 100K X-ray crystallography and scarcity of structural knowledge on human AChE (hAChE). Here, we present room temperature X-ray structures of native and VX-phosphonylated hAChE with an imidazole-based oxime reactivator, RS-170B. We discovered that inhibition with VX triggers substantial conformational changes in bound RS-170B from a "nonproductive" pose (the reactive aldoxime group points away from the VX-bound serine) in the reactivator-only complex to a "semi-productive" orientation in the VX-modified complex. This observation, supported by concurrent molecular simulations, suggested that the narrow active-site gorge of hAChE may be significantly more dynamic than previously thought, allowing RS-170B to reorient inside the gorge. Furthermore, we found that small molecules can bind in the choline-binding site hindering approach to the phosphorous of VX-bound serine. Our results provide structural and mechanistic perspectives on the reactivation of OP-inhibited hAChE and demonstrate that structural studies at physiologically relevant temperatures can deliver previously overlooked insights applicable for designing next-generation antidotes.


Subject(s)
Acetylcholinesterase/chemistry , Organothiophosphorus Compounds/chemistry , Oximes/chemistry , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Binding Sites , Catalytic Domain , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Crystallography, X-Ray , Density Functional Theory , Humans , Molecular Dynamics Simulation , Organothiophosphorus Compounds/metabolism , Oximes/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Temperature
10.
J Phys Chem B ; 122(19): 4947-4955, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29689164

ABSTRACT

Since the 1863 discovery of a new green hemoglobin derivative called "sulfhemoglobin", the nature of the characteristic 618 nm absorption band has been the subject of several hypotheses. The experimental spectra are a function of the observation time and interplay between two major sulfheme isomer concentrations (a three- and five-membered ring adduct), with the latter being the dominant isomer at longer times. Thus, time-dependent density functional theory (TDDFT) was used to calculate the sulfheme excited states and visualize the highest occupied molecular orbitals (HOMOs) and lowest unoccupied MOs (LUMOs) of both isomers in order to interpret the transitions between them. These two isomers have distinguishable a1u and a2u HOMO energies. Formation of the three-membered ring SA isomeric structure decreases the energy of the HOMO a1u and a2u orbitals compared to the unmodified heme due to the electron-withdrawing, sulfur-containing, three-membered ring. Conversely, formation of the SC isomeric structure decreases the energy of the HOMO a1u and a2u orbitals due to the electron-withdrawing, sulfur-containing, five-membered ring. The calculations reveal that the absorption spectrum within the 700 nm region arises from a mixture of MOs but can be characterized as π to π* transitions, while the 600 nm region is characterized by π to dπ (d yz, d xz) transitions having components of a deoxy-like derivative.


Subject(s)
Heme/analogs & derivatives , Hemoglobins/chemistry , Methionine/chemistry , Heme/chemistry , Hemoglobins/genetics , Hemoglobins/metabolism , Isomerism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Quantum Theory , Spectrophotometry
11.
Acta Crystallogr D Struct Biol ; 74(Pt 12): 1129-1168, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30605130

ABSTRACT

The scattering of neutrons can be used to provide information on the structure and dynamics of biological systems on multiple length and time scales. Pursuant to a National Science Foundation-funded workshop in February 2018, recent developments in this field are reviewed here, as well as future prospects that can be expected given recent advances in sources, instrumentation and computational power and methods. Crystallography, solution scattering, dynamics, membranes, labeling and imaging are examined. For the extraction of maximum information, the incorporation of judicious specific deuterium labeling, the integration of several types of experiment, and interpretation using high-performance computer simulation models are often found to be particularly powerful.


Subject(s)
Neutron Diffraction/methods , Proteins/chemistry , Animals , Crystallography/methods , Deuterium/analysis , Deuterium Exchange Measurement/methods , Humans , Models, Molecular , Neutrons
12.
J Phys Chem B ; 121(15): 3285-3296, 2017 04 20.
Article in English | MEDLINE | ID: mdl-27668669

ABSTRACT

Widespread antibiotic resistance, particularly when mediated by broad-spectrum ß-lactamases, has major implications for public health. Substitutions in the active site often allow broad-spectrum enzymes to accommodate diverse types of ß-lactams. Substitutions observed outside the active site are thought to compensate for the loss of thermal stability. The OXA-1 clade of class D ß-lactamases contains a pair of conserved cysteines located outside the active site that forms a disulfide bond in the periplasm. Here, the effect of the distal disulfide bond on the structure and dynamics of OXA-1 was investigated via 4 µs molecular dynamics simulations. The results reveal that the disulfide promotes the preorganized orientation of the catalytic residues and affects the conformation of the functionally important Ω loop. Furthermore, principal component analysis reveals differences in the global dynamics between the oxidized and reduced forms, especially in the motions involving the Ω loop. A dynamical network analysis indicates that, in the oxidized form, in addition to its role in ligand binding, the KTG family motif is a central hub of the global dynamics. As activity of OXA-1 has been measured only in the reduced form, we suggest that accurate assessment of its functional profile would require oxidative conditions mimicking periplasm.


Subject(s)
Disulfides/metabolism , Molecular Dynamics Simulation , beta-Lactamases/metabolism , Biocatalysis , Disulfides/chemistry , Principal Component Analysis , Substrate Specificity , beta-Lactamases/chemistry
13.
Antimicrob Agents Chemother ; 60(10): 6155-64, 2016 10.
Article in English | MEDLINE | ID: mdl-27480863

ABSTRACT

The threat posed by the chromosomally encoded class D ß-lactamase of Acinetobacter baumannii (OXA-51/66) has been unclear, in part because of its relatively low affinity and turnover rate for carbapenems. Several hundred clinical variants of OXA-51/66 have been reported, many with substitutions of active-site residues. We determined the kinetic properties of OXA-66 and five clinical variants with respect to a wide variety of ß-lactam substrates. The five variants displayed enhanced activity against carbapenems and in some cases against penicillins, late-generation cephalosporins, and the monobactam aztreonam. Molecular dynamics simulations show that in OXA-66, P130 inhibits the side-chain rotation of I129 and thereby prevents doripenem binding because of steric clash. A single amino acid substitution at this position (P130Q) in the variant OXA-109 greatly enhances the mobility of both I129 and a key active-site tryptophan (W222), thereby facilitating carbapenem binding. This expansion of substrate specificity represents a very worrisome development for the efficacy of ß-lactams against this troublesome pathogen.


Subject(s)
Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Carbapenems/pharmacology , beta-Lactamases/metabolism , Acinetobacter baumannii/isolation & purification , Amino Acid Substitution , Carbapenems/metabolism , Catalytic Domain , Humans , Hydrolysis , Molecular Dynamics Simulation , Protein Conformation , Substrate Specificity , beta-Lactam Resistance , beta-Lactamases/chemistry , beta-Lactamases/genetics
14.
J Phys Chem B ; 120(30): 7319-31, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27357070

ABSTRACT

Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H2S to enter the solvent-excluded active site through a hydrophobic channel to ultimately form a hydrogen bond with H2O2 bound to Fe(III). Proton transfer from H2O2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H2S to the Fe(III)-H2O2 complex, results in homolytic cleavage of the O-O and S-H bonds to form a reactive thiyl radical (HS(•)), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS(•) to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer NB-Fe(III) bonds compared with other pyrrole nitrogen-Fe(III) bonds, which would lead to decreased oxygen binding. Overall, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H2S on cell signaling and reactivity.


Subject(s)
Heme/analogs & derivatives , Heme/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Sulfide/chemistry , Animals , Bivalvia/metabolism , Catalytic Domain , Hemoglobins/chemistry , Hemoglobins/genetics , Hemoglobins/metabolism , Hydrogen Bonding , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protoporphyrins/chemistry , Protoporphyrins/metabolism , Quantum Theory
15.
Angew Chem Int Ed Engl ; 55(16): 4924-7, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-26958828

ABSTRACT

Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.


Subject(s)
Crystallography/methods , HIV Protease/metabolism , Static Electricity , Catalytic Domain , HIV Protease/chemistry , Protons , Quantum Theory , Substrate Specificity
16.
Plant Physiol Biochem ; 96: 1-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26209752

ABSTRACT

The triterpene squalene is a key metabolic intermediate for sterols, hopanoids and various other triterpenoids. The biosynthesis of squalene is catalyzed by squalene synthase (SQS), which converts two molecules of farnesyl diphosphate to squalene. In this study, a lycophyte Selaginella moellendorffii was found to emit squalene as a volatile compound under a number of conditions that mimic biotic stresses. Searching the genome sequence of S. moellendorffii led to the identification of a putative squalene synthase gene. It was designated as SmSQS. SmSQS is homologous to known squalene synthases from other plants and animals at both the amino acid level and structural level. Recombinant SmSQS expressed in Escherichia coli catalyzed the formation of squalene using farnesyl diphosphate as substrate. The expression of SmSQS was significantly induced by the same set of stress factors that induced the emission of volatile squalene from S. moellendorffii plants. Taken together, these results support that SmSQS is responsible for the biosynthesis of volatile squalene and volatile squalene may have a role in the defense of S. moellendorffii plants against biotic stresses.


Subject(s)
Selaginellaceae/metabolism , Squalene/metabolism , Volatile Organic Compounds/metabolism , Amino Acid Sequence , Biocatalysis , Escherichia coli/genetics , Farnesyl-Diphosphate Farnesyltransferase/chemistry , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Models, Molecular , Molecular Sequence Data , Selaginellaceae/genetics , Sequence Homology, Amino Acid
17.
Biochemistry ; 54(10): 1976-87, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25710192

ABSTRACT

The carbapenem-hydrolyzing class D ß-lactamases OXA-23 and OXA-24/40 have emerged worldwide as causative agents for ß-lactam antibiotic resistance in Acinetobacter species. Many variants of these enzymes have appeared clinically, including OXA-160 and OXA-225, which both contain a P → S substitution at homologous positions in the OXA-24/40 and OXA-23 backgrounds, respectively. We purified OXA-160 and OXA-225 and used steady-state kinetic analysis to compare the substrate profiles of these variants to their parental enzymes, OXA-24/40 and OXA-23. OXA-160 and OXA-225 possess greatly enhanced hydrolytic activities against aztreonam, ceftazidime, cefotaxime, and ceftriaxone when compared to OXA-24/40 and OXA-23. These enhanced activities are the result of much lower Km values, suggesting that the P → S substitution enhances the binding affinity of these drugs. We have determined the structures of the acylated forms of OXA-160 (with ceftazidime and aztreonam) and OXA-225 (ceftazidime). These structures show that the R1 oxyimino side-chain of these drugs occupies a space near the ß5-ß6 loop and the omega loop of the enzymes. The P → S substitution found in OXA-160 and OXA-225 results in a deviation of the ß5-ß6 loop, relieving the steric clash with the R1 side-chain carboxypropyl group of aztreonam and ceftazidime. These results reveal worrying trends in the enhancement of substrate spectrum of class D ß-lactamases but may also provide a map for ß-lactam improvement.


Subject(s)
Acinetobacter baumannii/enzymology , Aztreonam/chemistry , Bacterial Proteins/chemistry , Cephalosporins/chemistry , beta-Lactamases/chemistry , Hydrolysis , Kinetics , Protein Structure, Secondary
18.
Structure ; 22(9): 1287-1300, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25132082

ABSTRACT

D-xylose isomerase (XI) is capable of sugar isomerization and slow conversion of some monosaccharides into their C2-epimers. We present X-ray and neutron crystallographic studies to locate H and D atoms during the respective isomerization and epimerization of L-arabinose to L-ribulose and L-ribose, respectively. Neutron structures in complex with cyclic and linear L-arabinose have demonstrated that the mechanism of ring-opening is the same as for the reaction with D-xylose. Structural evidence and QM/MM calculations show that in the reactive Michaelis complex L-arabinose is distorted to the high-energy (5)S1 conformation; this may explain the apparent high KM for this sugar. MD-FEP simulations indicate that amino acid substitutions in a hydrophobic pocket near C5 of L-arabinose can enhance sugar binding. L-ribulose and L-ribose were found in furanose forms when bound to XI. We propose that these complexes containing Ni(2+) cofactors are Michaelis-like and the isomerization between these two sugars proceeds via a cis-ene-diol mechanism.


Subject(s)
Aldose-Ketose Isomerases/chemistry , Arabinose/chemistry , Bacterial Proteins/chemistry , Biocatalysis , Cadmium/chemistry , Crystallography, X-Ray , Magnesium/chemistry , Molecular Dynamics Simulation , Protein Binding , Stereoisomerism , Streptomyces/enzymology , Thermodynamics
19.
J Phys Chem B ; 118(17): 4479-89, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24720808

ABSTRACT

Organophosphorus (OP) nerve agents such as (S)-sarin are among the most highly toxic compounds that have been synthesized. Engineering enzymes that catalyze the hydrolysis of nerve agents ("bioscavengers") is an emerging prophylactic approach to diminish their toxic effects. Although its native function is not known, diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris catalyzes the hydrolysis of OP compounds. Here, we investigate the mechanisms of diisopropylfluorophosphate (DFP) and (S)-sarin hydrolysis by DFPase with quantum mechanical/molecular mechanical umbrella sampling simulations. We find that the mechanism for hydrolysis of DFP involves nucleophilic attack by Asp229 on phosphorus to form a pentavalent intermediate. P-F bond dissociation then yields a phosphoacyl enzyme intermediate in the rate-limiting step. The simulations suggest that a water molecule, coordinated to the catalytic Ca(2+), donates a proton to Asp121 and then attacks the tetrahedral phosphoacyl intermediate to liberate the diisopropylphosphate product. In contrast, the calculated free energy barrier for hydrolysis of (S)-sarin by the same mechanism is highly unfavorable, primarily because of the instability of the pentavalent phosphoenzyme species. Instead, simulations suggest that hydrolysis of (S)-sarin proceeds by a mechanism in which Asp229 could activate an intervening water molecule for nucleophilic attack on the substrate. These findings may lead to improved strategies for engineering DFPase and related six-bladed ß-propeller folds for more efficient degradation of OP compounds.


Subject(s)
Chemical Warfare Agents/metabolism , Isoflurophate/metabolism , Phosphoric Triester Hydrolases/metabolism , Protein Engineering , Sarin/metabolism , Animals , Hydrolysis , Loligo/enzymology , Models, Molecular , Phosphoric Triester Hydrolases/chemistry , Phosphoric Triester Hydrolases/genetics , Protein Conformation , Thermodynamics
20.
Chem Res Toxicol ; 27(1): 99-110, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24443939

ABSTRACT

The inactivation of acetylcholinesterase (AChE) by organophosphorus agent (OP) compounds is a serious problem regardless of how the individual was exposed. The reactivation of OP-inactivated AChE is dependent on the OP conjugate, and commonly a specific oxime is better at reactivating a specific OP conjugate than several diverse OP conjugates. The presented research explores the physicochemical properties needed for the reactivation of OP-inactivated AChE. Four different OPs, cyclosarin, sarin, tabun, and VX, were analyzed using the same set of oxime reactivators. A trial descriptor pool of semiempirical, traditional, and molecular interaction field descriptors was used to construct an ensemble of QSAR models for each OP-conjugate pair. Based on the molecular information and the cross-validation ability, individual QSAR models were selected to be part of an OP-conjugate consensus model. The OP-conjugate specific models provide important insight into the physicochemical properties required to reactivate the OP conjugates of interest. The reactivation of AChE inactivated with either cyclosarin or tabun requires the oxime therapeutic to possess an overall polar-positive surface area. Oxime therapeutics for the reactivation of sarin-inactivated AChE are conformationally dependent while oxime reverse therapeutics for VX require a compact region with a highly hydrophilic region and two positively charged pyridine rings.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Organophosphates/pharmacology , Oximes/pharmacology , Animals , Chemistry, Physical , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Organophosphates/antagonists & inhibitors , Organophosphates/chemistry , Organophosphorus Compounds/antagonists & inhibitors , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Organothiophosphorus Compounds/antagonists & inhibitors , Organothiophosphorus Compounds/chemistry , Organothiophosphorus Compounds/pharmacology , Oximes/chemistry , Rats , Reproducibility of Results , Sarin/antagonists & inhibitors , Sarin/chemistry , Sarin/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL