Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Evol Biol ; 15: 145, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26194954

ABSTRACT

BACKGROUND: Among the understudied fungi found in nature are those living in close association with social and solitary bees. The bee-specialist genera Bettsia, Ascosphaera and Eremascus are remarkable not only for their specialized niche but also for their simple fruiting bodies or ascocarps, which are morphologically anomalous in Pezizomycotina. Bettsia and Ascosphaera are characterized by a unicellular cyst-like cleistothecium known as a spore cyst, while Eremascus is characterized by completely naked asci, or asci not formed within a protective ascocarp. Before molecular phylogenetics the placement of these genera within Pezizomycotina remained tentative; morphological characters were misleading because they do not produce multicellular ascocarps, a defining character of Pezizomycotina. Because of their unique fruiting bodies, the close relationship of these bee-specialist fungi and their monophyly appeared certain. However, recent molecular studies have shown that Bettsia is not closely related to Ascosphaera. In this study, I isolated the very rare fungus Eremascus fertilis (Ascomycota, Pezizomycotina) from the bee bread of honey bees. These isolates represent the second report of E. fertilis both in nature and in the honey bee hive. To establish the systematic position of E. fertilis and Bettsia alvei, I performed phylogenetic analyses of nuclear ribosomal LSU + SSU DNA sequences from these species and 63 additional ascomycetes. RESULTS: The phylogenetic analyses revealed that Eremascus is not monophyletic. Eremascus albus is closely related to Ascosphaera in Eurotiomycetes while E. fertilis belongs in Myxotrichaceae, a putative member of Leotiomycetes. Bettsia is not closely related to Ascosphaera and like E. fertilis apparently belongs in Leotiomycetes. These results indicate that both the naked ascus and spore cyst evolved twice in the Pezizomycotina and in distantly related lineages. The new genus Skoua is described to accommodate E. fertilis. CONCLUSIONS: The naked ascus and spore cyst are both shown to have evolved convergently within the bee habitat. The convergent evolution of these unusual ascocarps is hypothesized to be adaptive for bee-mediated dispersal. Elucidating the dispersal strategies of these fungal symbionts contributes to our understanding of their interaction with bees and provides insight into the factors which potentially drive the evolution of reduced ascocarps in Pezizomycotina.


Subject(s)
Ascomycota/classification , Ascomycota/isolation & purification , Bees/physiology , Biological Evolution , Animals , Ascomycota/genetics , Ascomycota/physiology , Bees/microbiology , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Ecosystem , Phylogeny
2.
PLoS One ; 8(9): e73419, 2013.
Article in English | MEDLINE | ID: mdl-24086280

ABSTRACT

We studied the bee specialist fungus Ascosphaera in wild solitary bees to investigate the diversity of the genus in nature and the ecology of these fungi with their bee hosts. A new morphologically distinctive species was discovered which also has a unique nrITS sequence. This new species, here named Ascosphaera callicarpa, is common on the larval feces of the solitary bee Chelostoma florisomne which nests in the Phragmites reeds of thatched roofs in Europe. Because collections of Ascosphaera from wild bees are scarce and because little is known about the ecology and distribution of the majority of the species in the genus, a key to the species thus far reported for Europe is included.


Subject(s)
Ascomycota/isolation & purification , Bees/microbiology , Animals , Ascomycota/classification , Europe
3.
Mycologia ; 104(1): 108-14, 2012.
Article in English | MEDLINE | ID: mdl-21828215

ABSTRACT

Ascosphaera subglobosa (Eurotiomycetes: Onygenales) is newly described from the pollen provisions and nesting material of the solitary leaf-cutting bee Megachile rotundata in Canada and the western United States. This new species, related to A. atra and A. duoformis, is distinguished from other Ascosphaera species by its globose to subglobose ascospores, evanescent spore balls and unique nuclear ribosomal DNA sequences (ITS and LSU).


Subject(s)
Bees/microbiology , Onygenales/classification , Animals , Base Sequence , Canada , DNA, Ribosomal , Onygenales/genetics , Onygenales/isolation & purification , Onygenales/ultrastructure , Phylogeny , Spores, Fungal , United States
4.
Syst Biol ; 58(2): 224-39, 2009 Apr.
Article in English | MEDLINE | ID: mdl-20525580

ABSTRACT

We present a 6-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of Fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the Fungi are resolved for the first time. Based on the 6-gene phylogeny we conducted a phylogenetic informativeness analysis of all 6 genes and a series of ancestral character state reconstructions that focused on morphology of sporocarps, ascus dehiscence, and evolution of nutritional modes and ecologies. A gene-by-gene assessment of phylogenetic informativeness yielded higher levels of informativeness for protein genes (RPB1, RPB2, and TEF1) as compared with the ribosomal genes, which have been the standard bearer in fungal systematics. Our reconstruction of sporocarp characters is consistent with 2 origins for multicellular sexual reproductive structures in Ascomycota, once in the common ancestor of Pezizomycotina and once in the common ancestor of Neolectomycetes. This first report of dual origins of ascomycete sporocarps highlights the complicated nature of assessing homology of morphological traits across Fungi. Furthermore, ancestral reconstruction supports an open sporocarp with an exposed hymenium (apothecium) as the primitive morphology for Pezizomycotina with multiple derivations of the partially (perithecia) or completely enclosed (cleistothecia) sporocarps. Ascus dehiscence is most informative at the class level within Pezizomycotina with most superclass nodes reconstructed equivocally. Character-state reconstructions support a terrestrial, saprobic ecology as ancestral. In contrast to previous studies, these analyses support multiple origins of lichenization events with the loss of lichenization as less frequent and limited to terminal, closely related species.


Subject(s)
Ascomycota/genetics , Phylogeny , Ascomycota/classification , Ascomycota/cytology , Ecosystem , Genes, Fungal , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...