Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1173519, 2023.
Article in English | MEDLINE | ID: mdl-37266429

ABSTRACT

The discovery of gasdermin D (GSDMD) as the terminal executioner of pyroptosis provided a large piece of the cell death puzzle, whilst simultaneously and firmly putting the gasdermin family into the limelight. In its purest form, GSDMD provides a connection between the innate alarm systems to an explosive, inflammatory form of cell death to jolt the local environment into immunological action. However, the gasdermin field has moved rapidly and significantly since the original seminal work and novel functions and mechanisms have been recently uncovered, particularly in response to infection. Gasdermins regulate and are regulated by mechanisms such as autophagy, metabolism and NETosis in fighting pathogen and protecting host. Importantly, activators and interactors of the other gasdermins, not just GSDMD, have been recently elucidated and have opened new avenues for gasdermin-based discovery. Key to this is the development of potent and specific tool molecules, so far a challenge for the field. Here we will cover some of these recently discovered areas in relation to bacterial infection before providing an overview of the pharmacological landscape and the challenges associated with targeting gasdermins.


Subject(s)
Bacteriology , Gasdermins , Intracellular Signaling Peptides and Proteins , Pyroptosis , Cell Death
2.
bioRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37205371

ABSTRACT

NLR family, apoptosis inhibitory proteins (NAIPs) detect bacterial flagellin and structurally related components of bacterial type III secretion systems (T3SS), and recruit NLR family, CARD domain containing protein 4 (NLRC4) and caspase-1 into an inflammasome complex that induces pyroptosis. NAIP/NLRC4 inflammasome assembly is initiated by the binding of a single NAIP to its cognate ligand, but a subset of bacterial flagellins or T3SS structural proteins are thought to evade NAIP/NLRC4 inflammasome sensing by not binding to their cognate NAIPs. Unlike other inflammasome components such as NLRP3, AIM2, or some NAIPs, NLRC4 is constitutively present in resting macrophages, and not thought to be regulated by inflammatory signals. Here, we demonstrate that Toll-like receptor (TLR) stimulation upregulates NLRC4 transcription and protein expression in murine macrophages, which licenses NAIP detection of evasive ligands. TLR-induced NLRC4 upregulation and NAIP detection of evasive ligands required p38 MAPK signaling. In contrast, TLR priming in human macrophages did not upregulate NLRC4 expression, and human macrophages remained unable to detect NAIP-evasive ligands even following priming. Critically, ectopic expression of either murine or human NLRC4 was sufficient to induce pyroptosis in response to immunoevasive NAIP ligands, indicating that increased levels of NLRC4 enable the NAIP/NLRC4 inflammasome to detect these normally evasive ligands. Altogether, our data reveal that TLR priming tunes the threshold for NAIP/NLRC4 inflammasome activation and enables inflammasome responses against immunoevasive or suboptimal NAIP ligands.

3.
Cell Host Microbe ; 31(4): 554-570.e7, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36996818

ABSTRACT

Disruptions to the intestinal microbiome during weaning lead to negative effects on host immune function. However, the critical host-microbe interactions during weaning that are required for immune system development remain poorly understood. We find that restricting microbiome maturation during weaning stunts immune system development and increases susceptibility to enteric infection. We developed a gnotobiotic mouse model of the early-life microbiome Pediatric Community (PedsCom). These mice develop fewer peripheral regulatory T cells and less IgA, hallmarks of microbiota-driven immune system development. Furthermore, adult PedsCom mice retain high susceptibility to Salmonella infection, which is characteristic of young mice and children. Altogether, our work illustrates how the post-weaning transition in microbiome composition contributes to normal immune maturation and protection from infection. Accurate modeling of the pre-weaning microbiome provides a window into the microbial requirements for healthy development and suggests an opportunity to design microbial interventions at weaning to improve immune development in human infants.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Infant , Adult , Animals , Humans , Mice , Child , Germ-Free Life , Weaning , Immune System
4.
PLoS Pathog ; 17(10): e1009967, 2021 10.
Article in English | MEDLINE | ID: mdl-34648590

ABSTRACT

Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1ß release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Macrophages/metabolism , Nerve Growth Factors/metabolism , Yersinia Infections/pathology , Animals , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Knockout , Pyroptosis/physiology , Yersinia Infections/metabolism
5.
Proc Natl Acad Sci U S A ; 116(24): 11926-11935, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31147458

ABSTRACT

Caspase-8 is a key integrator of cell survival and cell death decisions during infection and inflammation. Following engagement of tumor necrosis factor superfamily receptors or certain Toll-like receptors (TLRs), caspase-8 initiates cell-extrinsic apoptosis while inhibiting RIPK3-dependent programmed necrosis. In addition, caspase-8 has an important, albeit less well understood, role in cell-intrinsic inflammatory gene expression. Macrophages lacking caspase-8 or the adaptor FADD have defective inflammatory cytokine expression and inflammasome priming in response to bacterial infection or TLR stimulation. How caspase-8 regulates cytokine gene expression, and whether caspase-8-mediated gene regulation has a physiological role during infection, remain poorly defined. Here we demonstrate that both caspase-8 enzymatic activity and scaffolding functions contribute to inflammatory cytokine gene expression. Caspase-8 enzymatic activity was necessary for maximal expression of Il1b and Il12b, but caspase-8 deficient cells exhibited a further decrease in expression of these genes. Furthermore, the ability of TLR stimuli to induce optimal IκB kinase phosphorylation and nuclear translocation of the nuclear factor kappa light chain enhancer of activated B cells family member c-Rel required caspase activity. Interestingly, overexpression of c-Rel was sufficient to restore expression of IL-12 and IL-1ß in caspase-8-deficient cells. Moreover, Ripk3-/-Casp8-/- mice were unable to control infection by the intracellular parasite Toxoplasma gondii, which corresponded to defects in monocyte recruitment to the peritoneal cavity, and exogenous IL-12 restored monocyte recruitment and protection of caspase-8-deficient mice during acute toxoplasmosis. These findings provide insight into how caspase-8 controls inflammatory gene expression and identify a critical role for caspase-8 in host defense against eukaryotic pathogens.


Subject(s)
Caspase 8/metabolism , Cytokines/metabolism , Inflammation/metabolism , Proto-Oncogene Proteins c-rel/metabolism , Toxoplasma/pathogenicity , Toxoplasmosis/metabolism , Animals , Apoptosis/physiology , Cell Line , Inflammasomes/metabolism , Interleukin-12/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Signal Transduction/physiology
6.
Nat Commun ; 10(1): 1729, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988283

ABSTRACT

RIPK1 regulates cell death and inflammation through kinase-dependent and -independent mechanisms. As a scaffold, RIPK1 inhibits caspase-8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase, RIPK1 paradoxically induces these cell death modalities. The molecular switch between RIPK1 pro-survival and pro-death functions remains poorly understood. We identify phosphorylation of RIPK1 on Ser25 by IKKs as a key mechanism directly inhibiting RIPK1 kinase activity and preventing TNF-mediated RIPK1-dependent cell death. Mimicking Ser25 phosphorylation (S > D mutation) protects cells and mice from the cytotoxic effect of TNF in conditions of IKK inhibition. In line with their roles in IKK activation, TNF-induced Ser25 phosphorylation of RIPK1 is defective in TAK1- or SHARPIN-deficient cells and restoring phosphorylation protects these cells from TNF-induced death. Importantly, mimicking Ser25 phosphorylation compromises the in vivo cell death-dependent immune control of Yersinia infection, a physiological model of TAK1/IKK inhibition, and rescues the cell death-induced multi-organ inflammatory phenotype of the SHARPIN-deficient mice.


Subject(s)
Apoptosis , Models, Immunological , Receptor-Interacting Protein Serine-Threonine Kinases/physiology , Animals , Caspase 8/genetics , Caspase 8/metabolism , Caspase 8/physiology , Cell Line , I-kappa B Kinase/metabolism , I-kappa B Kinase/physiology , Immunity/physiology , Mice , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Serine/chemistry , Serine/metabolism , Yersinia , Yersinia Infections/immunology
7.
J Immunol ; 200(10): 3626-3634, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29654208

ABSTRACT

The cytokine IFN-γ has well-established antibacterial properties against the bacterium Salmonella enterica in phagocytes, but less is known about the effects of IFN-γ on Salmonella-infected nonphagocytic cells, such as intestinal epithelial cells (IECs) and fibroblasts. In this article, we show that exposing human and murine IECs and fibroblasts to IFN-γ following infection with Salmonella triggers a novel form of cell death that is neither pyroptosis nor any of the major known forms of programmed cell death. Cell death required IFN-γ-signaling via STAT1-IRF1-mediated induction of guanylate binding proteins and the presence of live Salmonella in the cytosol. In vivo, ablating IFN-γ signaling selectively in murine IECs led to higher bacterial burden in colon contents and increased inflammation in the intestine of infected mice. Together, these results demonstrate that IFN-γ signaling triggers release of Salmonella from the Salmonella-containing vacuole into the cytosol of infected nonphagocytic cells, resulting in a form of nonpyroptotic cell death that prevents bacterial spread in the gut.


Subject(s)
Cell Death/immunology , Interferon-gamma/immunology , Phagocytes/immunology , Pyroptosis/immunology , Salmonella Infections/immunology , Salmonella enterica/immunology , 3T3 Cells , Animals , Cell Line , Cytosol/immunology , Cytosol/microbiology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Fibroblasts/immunology , Fibroblasts/microbiology , Humans , Inflammation/immunology , Inflammation/microbiology , Interferon Regulatory Factor-1/immunology , Intestines/immunology , Intestines/microbiology , Mice , Phagocytes/microbiology , STAT1 Transcription Factor/immunology , Salmonella Infections/microbiology
8.
PLoS Pathog ; 13(12): e1006785, 2017 12.
Article in English | MEDLINE | ID: mdl-29253868

ABSTRACT

Bacterial pathogens that compromise phagosomal membranes stimulate inflammasome assembly in the cytosol, but the molecular mechanisms by which membrane dynamics regulate inflammasome activity are poorly characterized. We show that in murine dendritic cells (DCs), the endosomal adaptor protein AP-3 -which optimizes toll-like receptor signaling from phagosomes-sustains inflammasome activation by particulate stimuli. AP-3 independently regulates inflammasome positioning and autophagy induction, together resulting in delayed inflammasome inactivation by autophagy in response to Salmonella Typhimurium (STm) and other particulate stimuli specifically in DCs. AP-3-deficient DCs, but not macrophages, hyposecrete IL-1ß and IL-18 in response to particulate stimuli in vitro, but caspase-1 and IL-1ß levels are restored by silencing autophagy. Concomitantly, AP-3-deficient mice exhibit higher mortality and produce less IL-1ß, IL-18, and IL-17 than controls upon oral STm infection. Our data identify a novel link between phagocytosis, inflammasome activity and autophagy in DCs, potentially explaining impaired antibacterial immunity in AP-3-deficient patients.


Subject(s)
Adaptor Protein Complex 3/deficiency , Dendritic Cells/immunology , Dendritic Cells/microbiology , Inflammasomes/immunology , Adaptive Immunity , Adaptor Protein Complex 3/genetics , Adaptor Protein Complex 3/immunology , Animals , Autophagy/immunology , Dendritic Cells/pathology , Female , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Interleukin-17/biosynthesis , Interleukin-18/biosynthesis , Interleukin-1beta/biosynthesis , Interleukin-1beta/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Proteins/genetics , NLR Proteins/immunology , Phagocytosis , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Transcriptional Activation
9.
J Exp Med ; 214(11): 3171-3182, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-28855241

ABSTRACT

Many pathogens deliver virulence factors or effectors into host cells in order to evade host defenses and establish infection. Although such effector proteins disrupt critical cellular signaling pathways, they also trigger specific antipathogen responses, a process termed "effector-triggered immunity." The Gram-negative bacterial pathogen Yersinia inactivates critical proteins of the NF-κB and MAPK signaling cascade, thereby blocking inflammatory cytokine production but also inducing apoptosis. Yersinia-induced apoptosis requires the kinase activity of receptor-interacting protein kinase 1 (RIPK1), a key regulator of cell death, NF-κB, and MAPK signaling. Through the targeted disruption of RIPK1 kinase activity, which selectively disrupts RIPK1-dependent cell death, we now reveal that Yersinia-induced apoptosis is critical for host survival, containment of bacteria in granulomas, and control of bacterial burdens in vivo. We demonstrate that this apoptotic response provides a cell-extrinsic signal that promotes optimal innate immune cytokine production and antibacterial defense, demonstrating a novel role for RIPK1 kinase-induced apoptosis in mediating effector-triggered immunity to circumvent pathogen inhibition of immune signaling.


Subject(s)
Apoptosis/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis/immunology , Animals , Apoptosis/genetics , Cytokines/immunology , Cytokines/metabolism , Disease Resistance/genetics , Disease Resistance/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Knockout , Models, Immunological , NF-kappa B/immunology , NF-kappa B/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Survival Analysis , Yersinia pseudotuberculosis/physiology , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/microbiology
10.
PLoS Pathog ; 12(10): e1005910, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27737018

ABSTRACT

Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense.


Subject(s)
Caspase 8/immunology , Cytokines/biosynthesis , Immunity, Innate/immunology , Signal Transduction/immunology , Yersinia Infections/immunology , Animals , Apoptosis , Caspase 8/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gene Expression Regulation/immunology , Gene Knockdown Techniques , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Toll-Like Receptors/immunology
11.
mBio ; 6(1): e02095-14, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25691590

ABSTRACT

UNLABELLED: Type III secretion systems (T3SS) translocate effector proteins into target cells in order to disrupt or modulate host cell signaling pathways and establish replicative niches. However, recognition of T3SS activity by cytosolic pattern recognition receptors (PRRs) of the nucleotide-binding domain leucine rich repeat (NLR) family, either through detection of translocated products or membrane disruption, induces assembly of multiprotein complexes known as inflammasomes. Macrophages infected with Yersinia pseudotuberculosis strains lacking all known effectors or lacking the translocation regulator YopK induce rapid activation of both the canonical NLRP3 and noncanonical caspase-11 inflammasomes. While this inflammasome activation requires a functional T3SS, the precise signal that triggers inflammasome activation in response to Yersinia T3SS activity remains unclear. Effectorless strains of Yersinia as well as ΔyopK strains translocate elevated levels of T3SS substrates into infected cells. To dissect the contribution of pore formation and translocation to inflammasome activation, we took advantage of variants of YopD and LcrH that separate these functions of the T3SS. Notably, YopD variants that abrogated translocation but not pore-forming activity failed to induce inflammasome activation. Furthermore, analysis of individual infected cells revealed that inflammasome activation at the single-cell level correlated with translocated levels of YopB and YopD themselves. Intriguingly, LcrH mutants that are fully competent for effector translocation but produce and translocate lower levels of YopB and YopD also fail to trigger inflammasome activation. Our findings therefore suggest that hypertranslocation of YopD and YopB is linked to inflammasome activation in response to the Yersinia T3SS. IMPORTANCE: The innate immune response is critical to effective clearance of pathogens. Recognition of conserved virulence structures and activities by innate immune receptors such as NLRs constitute one of the first steps in mounting the innate immune response. However, pathogens such as Yersinia actively evade or subvert components of host defense, such as inflammasomes. The T3SS-secreted protein YopK is an essential virulence factor that limits translocation of other Yops, thereby limiting T3SS-induced inflammasome activation. However, what triggers inflammasome activation in cells infected by YopK-deficient Yersinia is not clear. Our findings indicate that hypertranslocation of pore complex proteins promotes inflammasome activation and that YopK prevents inflammasome activation by the T3SS by limiting translocation of YopD and YopB themselves.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Inflammasomes/metabolism , Type III Secretion Systems/metabolism , Yersinia/physiology , Animals , Cell Line , Cell Survival , Epithelial Cells/microbiology , Epithelial Cells/physiology , Humans , Macrophages/microbiology , Macrophages/physiology , Mice , Protein Transport
12.
Infect Immun ; 83(2): 693-701, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25422268

ABSTRACT

Amyloids are proteins with cross-ß-sheet structure that contribute to pathology and inflammation in complex human diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes, and secondary amyloidosis. Bacteria also produce amyloids as a component of their extracellular matrix during biofilm formation. Recently, several human amyloids were shown to activate the NLRP3 inflammasome, leading to the activation of caspase 1 and production of interleukin 1ß (IL-1ß). In this study, we investigated the activation of the NLRP3 inflammasome by bacterial amyloids using curli fibers, produced by Salmonella enterica serovar Typhimurium and Escherichia coli. Here, we show that curli fibers activate the NLRP3 inflammasome, leading to the production of IL-1ß via caspase 1 activation. Investigation of the underlying mechanism revealed that activation of Toll-like receptor 2 (TLR2) by curli fibers is critical in the generation of IL-1ß. Interestingly, activation of the NLRP3 inflammasome by curli fibers or by amyloid ß of Alzheimer's disease does not cause cell death in macrophages. Overall, these data identify a cross talk between TLR2 and NLRP3 in response to the bacterial amyloid curli and generation of IL-1ß as a product of this interaction.


Subject(s)
Amyloid/immunology , Bacterial Proteins/immunology , Carrier Proteins/immunology , Interleukin-1beta/biosynthesis , Toll-Like Receptor 2/immunology , Amyloid beta-Peptides/immunology , Animals , Bone Marrow Cells , Caspase 1/biosynthesis , Cells, Cultured , Escherichia coli/metabolism , Inflammasomes/immunology , Macrophages , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Salmonella typhimurium/metabolism
13.
Proc Natl Acad Sci U S A ; 111(20): 7385-90, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24799700

ABSTRACT

Toll-like receptor signaling and subsequent activation of NF-κB- and MAPK-dependent genes during infection play an important role in antimicrobial host defense. The YopJ protein of pathogenic Yersinia species inhibits NF-κB and MAPK signaling, resulting in blockade of NF-κB-dependent cytokine production and target cell death. Nevertheless, Yersinia infection induces inflammatory responses in vivo. Moreover, increasing the extent of YopJ-dependent cytotoxicity induced by Yersinia pestis and Yersinia pseudotuberculosis paradoxically leads to decreased virulence in vivo, suggesting that cell death promotes anti-Yersinia host defense. However, the specific pathways responsible for YopJ-induced cell death and how this cell death mediates immune defense against Yersinia remain poorly defined. YopJ activity induces processing of multiple caspases, including caspase-1, independently of inflammasome components or the adaptor protein ASC. Unexpectedly, caspase-1 activation in response to the activity of YopJ required caspase-8, receptor-interacting serine/threonine kinase 1 (RIPK1), and Fas-associated death domain (FADD), but not RIPK3. Furthermore, whereas RIPK3 deficiency did not affect YopJ-induced cell death or caspase-1 activation, deficiency of both RIPK3 and caspase-8 or FADD completely abrogated Yersinia-induced cell death and caspase-1 activation. Mice lacking RIPK3 and caspase-8 in their hematopoietic compartment showed extreme susceptibility to Yersinia and were deficient in monocyte and neutrophil-derived production of proinflammatory cytokines. Our data demonstrate for the first time to our knowledge that RIPK1, FADD, and caspase-8 are required for YopJ-induced cell death and caspase-1 activation and suggest that caspase-8-mediated cell death overrides blockade of immune signaling by YopJ to promote anti-Yersinia immune defense.


Subject(s)
Caspase 1/metabolism , Caspase 8/metabolism , Immunity, Innate , MAP Kinase Signaling System , NF-kappa B/metabolism , Animals , Apoptosis , Bacterial Proteins/genetics , Enzyme Activation , Fas-Associated Death Domain Protein/metabolism , Gene Expression Regulation, Enzymologic , Mice , Mice, Transgenic , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Yersinia Infections/microbiology , Yersinia pseudotuberculosis
14.
J Exp Med ; 211(4): 653-68, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24638169

ABSTRACT

Microbial infection triggers assembly of inflammasome complexes that promote caspase-1-dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflammasome activation through NLRC4, whereas NLRP3 is required for inflammasome activation in response to multiple stimuli, including microbial infection, tissue damage, and metabolic dysregulation, through mechanisms that remain poorly understood. During systemic infection, Salmonella avoids NLRC4 inflammasome activation by down-regulating flagellin expression. Macrophages exhibit delayed NLRP3 inflammasome activation after Salmonella infection, suggesting that Salmonella may evade or prevent the rapid activation of the NLRP3 inflammasome. We therefore screened a Salmonella Typhimurium transposon library to identify bacterial factors that limit NLRP3 inflammasome activation. Surprisingly, absence of the Salmonella TCA enzyme aconitase induced rapid NLRP3 inflammasome activation. This inflammasome activation correlated with elevated levels of bacterial citrate, and required mitochondrial reactive oxygen species and bacterial citrate synthase. Importantly, Salmonella lacking aconitase displayed NLRP3- and caspase-1/11-dependent attenuation of virulence, and induced elevated serum IL-18 in wild-type mice. Together, our data link Salmonella genes controlling oxidative metabolism to inflammasome activation and suggest that NLRP3 inflammasome evasion promotes systemic Salmonella virulence.


Subject(s)
Carrier Proteins/metabolism , Immune Evasion/immunology , Inflammasomes/metabolism , Salmonella typhimurium/metabolism , Aconitate Hydratase/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Bacterial Secretion Systems , Calcium-Binding Proteins/metabolism , Citrate (si)-Synthase/metabolism , Citric Acid Cycle , Genes, Bacterial/genetics , Immunity , Isocitrate Dehydrogenase/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mutation/genetics , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/enzymology , Salmonella typhimurium/genetics , Salmonella typhimurium/immunology
15.
Nature ; 504(7478): 153-7, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24185009

ABSTRACT

The development and severity of inflammatory bowel diseases and other chronic inflammatory conditions can be influenced by host genetic and environmental factors, including signals derived from commensal bacteria. However, the mechanisms that integrate these diverse cues remain undefined. Here we demonstrate that mice with an intestinal epithelial cell (IEC)-specific deletion of the epigenome-modifying enzyme histone deacetylase 3 (HDAC3(ΔIEC) mice) exhibited extensive dysregulation of IEC-intrinsic gene expression, including decreased basal expression of genes associated with antimicrobial defence. Critically, conventionally housed HDAC3(ΔIEC) mice demonstrated loss of Paneth cells, impaired IEC function and alterations in the composition of intestinal commensal bacteria. In addition, HDAC3(ΔIEC) mice showed significantly increased susceptibility to intestinal damage and inflammation, indicating that epithelial expression of HDAC3 has a central role in maintaining intestinal homeostasis. Re-derivation of HDAC3(ΔIEC) mice into germ-free conditions revealed that dysregulated IEC gene expression, Paneth cell homeostasis and intestinal barrier function were largely restored in the absence of commensal bacteria. Although the specific mechanisms through which IEC-intrinsic HDAC3 expression regulates these complex phenotypes remain to be determined, these data indicate that HDAC3 is a critical factor that integrates commensal-bacteria-derived signals to calibrate epithelial cell responses required to establish normal host-commensal relationships and maintain intestinal homeostasis.


Subject(s)
Gene Expression Regulation , Histone Deacetylases/metabolism , Homeostasis , Intestinal Mucosa/enzymology , Intestines/microbiology , Symbiosis , Adult , Animals , Bacteria/genetics , Colitis, Ulcerative/enzymology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/microbiology , Crohn Disease/enzymology , Crohn Disease/genetics , Crohn Disease/microbiology , Female , Gene Deletion , Gene Expression Profiling , Histone Deacetylases/genetics , Humans , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL , Paneth Cells/cytology , Paneth Cells/metabolism , RNA, Ribosomal, 16S/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...