Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2401035, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552161

ABSTRACT

Wearable epidermic electronics assembled from conductive hydrogels are attracting various research attention for their seamless integration with human body for conformally real-time health monitoring, clinical diagnostics and medical treatment, and human-interactive sensing. Nevertheless, it remains a tremendous challenge to simultaneously achieve conformally bioadhesive epidermic electronics with remarkable self-adhesiveness, reliable ultraviolet (UV) protection ability, and admirable sensing performance for high-fidelity epidermal electrophysiological signals monitoring, along with timely photothermal therapeutic performances after medical diagnostic sensing, as well as efficient antibacterial activity and reliable hemostatic effect for potential medical therapy. Herein, a conformally bioadhesive hydrogel-based epidermic sensor, featuring superior self-adhesiveness and excellent UV-protection performance, is developed by dexterously assembling conducting MXene nanosheets network with biological hydrogel polymer network for conformally stably attaching onto human skin for high-quality recording of various epidermal electrophysiological signals with high signal-to-noise ratios (SNR) and low interfacial impedance for intelligent medical diagnosis and smart human-machine interface. Moreover, a smart sign language gesture recognition platform based on collected electromyogram (EMG) signals is designed for hassle-free communication with hearing-impaired people with the help of advanced machine learning algorithms. Meanwhile, the bioadhesive MXene hydrogel possesses reliable antibacterial capability, excellent biocompatibility, and effective hemostasis properties for promising bacterial-infected wound bleeding.

2.
Nat Commun ; 15(1): 966, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302493

ABSTRACT

The tumor microenvironment is reprogrammed by cancer cells and participates in all stages of tumor progression. Neutral ceramidase is a key regulator of ceramide, the central intermediate in sphingolipid metabolism. The contribution of neutral ceramidase to the reprogramming of the tumor microenvironment is not well understood. Here, we find that deletion of neutral ceramidase in multiple breast cancer models in female mice accelerates tumor growth. Our result show that Ly6C+CD39+ tumor-infiltrating CD8 T cells are enriched in the tumor microenvironment and display an exhausted phenotype. Deletion of myeloid neutral ceramidase in vivo and in vitro induces exhaustion in tumor-infiltrating Ly6C+CD39+CD8+ T cells. Mechanistically, myeloid neutral ceramidase is required for the generation of lipid droplets and for the induction of lipolysis, which generate fatty acids for fatty-acid oxidation and orchestrate macrophage metabolism. Metabolite ceramide leads to reprogramming of macrophages toward immune suppressive TREM2+ tumor associated macrophages, which promote CD8 T cells exhaustion.


Subject(s)
Neoplasms , Neutral Ceramidase , Animals , Female , Mice , CD8-Positive T-Lymphocytes/metabolism , Ceramides/metabolism , Macrophages/metabolism , Metabolic Reprogramming , Neutral Ceramidase/metabolism , Tumor Microenvironment
3.
Front Immunol ; 14: 1178498, 2023.
Article in English | MEDLINE | ID: mdl-37457733

ABSTRACT

Chronic alcohol ingestion promotes acute lung injury and impairs immune function. However, the mechanisms involved are incompletely understood. Here, we show that alcohol feeding enhances bleomycin-induced lung fibrosis and inflammation via the regulation of type 2 innate immune responses, especially by group 2 innate lymphoid cells (ILC2s). Neuroimmune interactions have emerged as critical modulators of lung inflammation. We found alcohol consumption induced the accumulation of ILC2 and reduced the production of the neuropeptide calcitonin gene-related peptide (CGRP), primarily released from sensory nerves and pulmonary neuroendocrine cells (PNECs). CGRP potently suppressed alcohol-driven type 2 cytokine signals in vivo. Vagal ganglia TRPV1+ afferents mediated immunosuppression occurs through the release of CGRP. Inactivation of the TRPV1 receptor enhanced bleomycin-induced fibrosis. In addition, mice lacking the CGRP receptor had the increased lung inflammation and fibrosis and type 2 cytokine production as well as exaggerated responses to alcohol feeding. Together, these data indicate that alcohol consumption regulates the interaction of CGRP and ILC2, which is a critical contributor of lung inflammation and fibrosis.


Subject(s)
Pneumonia , Pulmonary Fibrosis , Mice , Animals , Calcitonin Gene-Related Peptide , Immunity, Innate , Lymphocytes , Mice, Knockout , Cytokines , Fibrosis , Bleomycin , Ethanol/adverse effects
4.
Materials (Basel) ; 16(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37445128

ABSTRACT

In order to increase the content of mineral admixtures in cement, this study proposes a method for preparing a high-volume mineral admixture cementitious material (HMAC) using superfine cement as a reverse filling material. Firstly, superfine cement is prepared through mechanical grinding. Then, the activity of mineral admixtures (such as slag and fly ash) is enhanced by mechanical grinding, sulfate activation, and alkali activation methods. Meanwhile, the evolution of HMCM from microstructure to macroscopic mechanical behavior is studied by combining a laser particle size analyzer and a scanning electron microscope. Furthermore, the reverse filling mechanism of superfine cement on mineral admixtures under different activation conditions is proposed. Results show that superfine cement can largely improve the utilization rate of cement clinker and the compressive strength of cementitious materials. In the condition that the compressive strength is not lower than that of the control group (without mineral admixture), the content of mineral admixture can be increased to 50%, 70%, and 90% after mechanical grinding, sulfate activation, and alkali activation, respectively. Analysis indicates that the reverse filling effect of superfine cement is the main reason for improving the density of the HMCM.

5.
ChemMedChem ; 18(16): e202300131, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37226330

ABSTRACT

Efficacy of clinical chemotherapeutic agents depends not only on direct cytostatic and cytotoxic effects but also involves in eliciting (re)activation of tumour immune effects. One way to provoke long-lasting antitumour immunity is coined as immunogenic cell death (ICD), exploiting the host immune system against tumour cells as a "second hit". Although metal-based antitumour complexes hold promise as potential chemotherapeutic agents, ruthenium (Ru)-based ICD inducers remain sparse. Herein, we report a half-sandwich complex Ru(II) bearing aryl-bis(imino) acenaphthene chelating ligand with ICD inducing properties for melanoma in vitro and in vivo. Complex Ru(II) displays strong anti-proliferative potency and potential cell migration inhibition against melanoma cell lines. Importantly, complex Ru(II) drives the multiple biochemical hallmarks of ICD in melanoma cells, i. e., the elevated expression of calreticulin (CRT), high mobility group box 1 (HMGB1), Hsp70 and secretion of ATP, followed by the decreased expression of phosphorylation of Stat3. In vivo the inhibition of tumour growth in prophylactic tumour vaccination model further confirms that mice with complex Ru(II)-treated dying cells lead to activate adaptive immune responses and anti-tumour immunity by the activation of ICD in melanoma cells. Mechanisms of action studies show that complex Ru(II)-induced ICD could be associated with mitochondrial damage, ER stress and impairment of metabolic status in melanoma cells. We believe that the half-sandwich complex Ru(II) as an ICD inducer in this work will help to design new half-sandwich Ru-based organometallic complexes with immunomodulatory response in melanoma treatments.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Melanoma , Ruthenium , Animals , Mice , Ruthenium/pharmacology , Ruthenium/chemistry , Immunogenic Cell Death , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Melanoma/drug therapy , Cell Line, Tumor
6.
Materials (Basel) ; 16(10)2023 May 14.
Article in English | MEDLINE | ID: mdl-37241355

ABSTRACT

S2--enriched alkali-activator (SEAA) was prepared by modifying the alkali activator through Na2S. The effects of S2--enriched alkali-activated slag (SEAAS) on the solidification performance of Pb and Cd in MSWI fly ash were investigated using SEAAS as the solidification material for MSWI fly ash. Combined with microscopic analysis through scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), the effects of SEAAS on the micro-morphology and molecular composition of MSWI fly ash were studied. The solidification mechanism of Pb and Cd in S2--enriched alkali-activated MSWI fly ash was discussed in detail. The results showed that the solidification performance for Pb and Cd in MSWI fly ash induced by SEAAS was significantly enhanced first and then improved gradually with the increase in dosage of ground granulated blast-furnace slag (GGBS). Under a low GGBS dosage of 25%, SEAAS could eliminate the problem of severely exceeding permitted Pb and Cd in MSWI fly ash, which compensated for the deficiency of alkali-activated slag (AAS) in terms of solidifying Cd in MSWI fly ash. The highly alkaline environment provided by SEAA promoted the massive dissolution of S2- in the solvent, which endowed the SEAAS with a stronger ability to capture Cd. Pb and Cd in MSWI fly ash were efficiently solidified by SEAAS under the synergistic effects of sulfide precipitation and chemical bonding of polymerization products.

7.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432333

ABSTRACT

This study focuses on overcoming the agglomeration issue of nano-SiO2 powder in cement, facilitating the strengthening mechanism of cement-based materials. A nano-SiO2 precursor solution (NSPS) was added to cement-based materials to replace nano-SiO2 powder. The influencing laws of the alkalinity and dosage of the NSPS on the mechanical properties of cement were investigated. Further, the strengthening mechanism of the mechanical properties of cement-based materials after internal nano-SiO2 production was analysed. The results show that (1) when the alkalinity of the precursor solution is a weak acid (pH = 6), the compressive strength of cement-based materials after internal nano-SiO2 production is 25%~36% higher than that of pure cement-based materials and 16%~22% higher than that of cement-based materials with silica fume; (2) when the solid content of SiO2 in the current displacement solution is about 0.16% of the cement mass, the compressive strength of the prepared cement-based material is the highest. With the continuous increase in the solid content of SiO2 in the precursor solution, the compressive strength of cement-based materials after internal nano-SiO2 production decreases but is always greater than the compressive strength of the cement-based material mixed with nano-SiO2 micro powder. According to a microstructural analysis, nano-SiO2 particles that precipitate from the precursor solution can facilitate the hydration process of cement and enrich the gel products formed on the cement particle surface. In addition, new network structures among cement particles are formed, and precipitated nano-SiO2 particles fill in the spaces among these cement particles as crystal nuclei to connect the cement particles more tightly and compact the cement-based materials. This reinforces the mechanical properties of cement-based materials.

8.
Materials (Basel) ; 15(20)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36295275

ABSTRACT

The issues associated with the fabrication of nano-silica (NS) mineral powder, such as high cost and agglomeration, can be effectively mitigated by using a precursor solution of NS as the external mixture of cement-based materials. Based on the liquid-phase preparation of NS mineral powder, its preparation technology was thoroughly investigated herein. The precursor solution of NS was synthesized using acid media (HCL, HNO3, HBO3, HCOOH, CH3COOH)-the acetic acid concentration was 1~15%-and siliceous materials. (The concentration of sodium silicate was 20~38%). In addition, the pH value (pH4~pH8) of the precursor solution was measured using a pH detector. The indexes of NS, such as precipitation time, morphology, and distribution, were observed to formulate a preparation technique for the precursor solution of NS that possessed the best results for the precipitation of nanoparticles. From the acquired results, it was demonstrated that acetic acid solution (concentration ≤ 3%) and sodium silicate solution (concentration ≤ 25%) were mixed into a solution with pH = 6, which was the optimum mixing ratio for the precursor solution of NS. The prepared precursor solution of NS was also added to the Ca(OH)2 saturated solution, and the precursor solution became active from a stable state. Then, NS particles were precipitated in an alkaline solution and reacted with Ca(OH)2 to form calcium silicate gel, which made the solution increasingly turbid and generated many visible and uniformed flocculating substances. With time, gels were continuously produced, which then turn white. Similarly, NS particles can be precipitated when the precursor solution is added to cement paste, which reacts with the Ca(OH)2 to generate CSH gel and improve the compactness of the cement paste.

9.
Oncoimmunology ; 11(1): 2114740, 2022.
Article in English | MEDLINE | ID: mdl-36016697

ABSTRACT

ATP synthase inhibitory factor 1 (ATPIF1) is a mitochondrial protein with an activity in inhibition of F1Fo-ATP synthase. ATPIF1 activity remains unknown in the control of immune activity of T cells. In this study, we identified ATPIF1 activity in the induction of CD8+ T cell function in tumor models through genetic approaches. ATPIF1 gene inactivation impaired the immune activities of CD8+ T cells leading to quick tumor growth (B16 melanoma and Lewis lung cancer) in ATPIF1-KO mice. The KO T cells exhibited a reduced activity in proliferation and IFN-γ secretion with metabolic reprogramming of increased glycolysis and decreased oxidative phosphorylation (OXPHOS) after activation. T cell exhaustion was increased in the tumor infiltrating leukocytes (TILs) of KO mice as revealed by the single-cell RNA sequencing (scRNA-seq) and confirmed by flow cytometry. In contrast, ATPIF1 overexpression in T cells increased expression of IFN-γ and Granzyme B, subset of central memory T cells in CAR-T cells, and survival rate of NALM-6 tumor-bearing mice. These data demonstrate that ATPIF1 deficiency led to tumor immune deficiency through induction of T cell exhaustion. ATPIF1 overexpression enhanced the T cell tumor immunity. Therefore, ATPIF1 is a potential molecular target in the modulation of antitumor immunity of CD8+ T cells in cancer immunotherapy. Induction of ATPIF1 activity may promote CAR-T activity in cancer therapy.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma, Experimental , Adenosine Triphosphate , Animals , Immunotherapy , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Mice , Single-Cell Analysis
10.
Oncogene ; 41(21): 2958-2972, 2022 05.
Article in English | MEDLINE | ID: mdl-35440714

ABSTRACT

The H3K4 demethylase KDM5B is overexpressed in multiple cancer types, and elevated expression levels of KDM5B is associated with decreased survival. However, the underlying mechanistic contribution of dysregulated expression of KDM5B and H3K4 demethylation in cancer is poorly understood. Our results show that loss of KDM5B in multiple types of cancer cells leads to increased proliferation and elevated expression of cancer stem cell markers. In addition, we observed enhanced tumor formation following KDM5B depletion in a subset of representative cancer cell lines. Our findings also support a role for KDM5B in regulating epigenetic plasticity, where loss of KDM5B in cancer cells with elevated KDM5B expression leads to alterations in activity of chromatin states, which facilitate activation or repression of alternative transcriptional programs. In addition, we define KDM5B-centric epigenetic and transcriptional patterns that support cancer cell plasticity, where KDM5B depleted cancer cells exhibit altered epigenetic and transcriptional profiles resembling a more primitive cellular state. This study also provides a resource for evaluating associations between alterations in epigenetic patterning upon depletion of KDM5B and gene expression in a diverse set of cancer cells.


Subject(s)
Jumonji Domain-Containing Histone Demethylases , Neoplasms , Cell Line, Tumor , Epigenesis, Genetic , Epigenomics , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Neoplasms/pathology , Nuclear Proteins/genetics , Repressor Proteins/genetics
11.
Materials (Basel) ; 14(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921393

ABSTRACT

Setting time and mechanical properties are key metrics needed to assess the properties of municipal solid waste incineration (MSWI) bottom ash alkali-activated samples. This study investigated the solidification law, polymerization, and strength development mechanism in response to NaOH and liquid sodium silicate addition. Scanning electron microscopy and X-ray diffraction were used to identify the formation rules of polymerization products and the mechanism of the underlying polymerization reaction under different excitation conditions. The results identify a strongly alkaline environment as the key factor for the dissolution of active substances as well as for the formation of polymerization products. The self-condensation reaction of liquid sodium silicate in the supersaturated state (caused by the loss of free water) is the major reason for the rapid coagulation of alkali-activated samples. The combination of both NaOH and liquid sodium silicate achieves the optimal effect, because they play a compatible coupling role.

12.
Eur J Med Chem ; 207: 112763, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32882612

ABSTRACT

Herein a new series of organometallic half-sandwich Ru(Ⅱ) complexes bearing aryl-BIAN chelating ligands with various electron-withdrawing and electron-donating substituents have been developed as theranostic agents. All the complexes display much higher anti-proliferative potency than the clinical chemotherapeutic drug cisplatin towards seven cancer cell lines. The anti-proliferative efficacy of these complexes is correlated to their electron-withdrawing ability. Interestingly, complex Ru1 also potently suppresses cancer cell migration in vitro and effectively inhibit tumor growth in vivo in a CT26 colon cancer mouse xenograft model. Mechanisms of action studies display that Ru1 can favorably accumulate in lysosome and exerts anti-cancer potency by inducing a series of events related to lysosomal dysfunction in CT26 cells. Interestingly, inhibition of lysosomal enzymes leads to suppression of cytotoxicity and apoptosis induced by Ru1. Our results elucidate that complex Ru1 can elicit cytotoxicity through lysosome-mediated apoptosis in vitro and suppress tumor growth in vivo.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Lysosomes/metabolism , Ruthenium/chemistry , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Lysosomes/drug effects , Male , Mice , Xenograft Model Antitumor Assays
13.
ACS Omega ; 4(12): 15240-15248, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31552370

ABSTRACT

Two rhodamine-modified half-sandwich Ir(III) complexes with the general formula [(Cpx)Ir(CN) Cl] were synthesized and characterized, where Cpx is 1-biphenyl-2,3,4,5-tetramethylcyclopentadienyl (Cpxbiph). Both complexes showed potent anticancer activity against A549, HeLa, and HepG2 cancer cells and normal cells, and altered ligands had an effect on proliferation resistance. The complex enters cells through energy dependence, and because of the different ligands, not only could it affect the anticancer ability of the complex but also could affect the degree of complex lysosome targeting, lysosomal damage, and further prove the antiproliferative mechanism of the complex. Excitingly, antimetastatic experiments demonstrated that complex 1 has the ability to block the migration of cancer cells. Furthermore, although the complex did not show a stronger ability to interfere with the coenzyme NAD+/NADH pair by transfer hydrogenation, the intracellular reactive oxygen species (ROS) content has shown a marked increase. NF-κB activity is increased by ROS regulation, and the role of ROS-NF-κB signaling pathway further induces apoptosis. Moreover, cell flow experiments also demonstrated that complex 1 blocked the cell cycle in S phase, but the complex did not cause significant changes in the mitochondrial membrane potential.

14.
Eur J Med Chem ; 181: 111599, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31408807

ABSTRACT

In this work, five naphthalimide-modified half-sandwich iridium and ruthenium complexes ([(η5-Cpx)Ir(NˆN)Cl]PF6, [(η6-p-cym)Ru(NˆN)Cl]PF6) have been presented. The anticancer activities of the complexes against various cancer cell lines were investigated, among them, complexes 2 and 4 showed better anticancer activity than cisplatin, and their anticancer activity is better than complex 5 without fluorophore. In addition, a series of biological tests of complex 2 were performed using flow cytometry, the results indicated that the complex could induce cell death in a variety of ways. By changing of the ligands, the complexes exhibited different photophysical properties, and the mechanism of action of the complexes entering the cell and inducing apoptosis are different. Moreover, complex 2 successfully targeted mitochondria, while complex 4 targeted lysosomes, causing mitochondrial damage and lysosomal damage to induce apoptosis. Excitingly, complex 2 has good antimetastatic ability to cancer cells. Furthermore, complexes 2 and 4 did not have a significant effect on the NADH binding reaction, but they had a moderate binding ability to BSA.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Iridium/pharmacology , Naphthalimides/pharmacology , Ruthenium/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Humans , Iridium/chemistry , Lysosomes/drug effects , Lysosomes/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/pathology , Naphthalimides/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Ruthenium/chemistry
15.
J Inorg Biochem ; 197: 110703, 2019 08.
Article in English | MEDLINE | ID: mdl-31077890

ABSTRACT

A range of phosphorescent Ir(III) complexes containing four diverse P^P-chelating ligands of the type [Ir(ppy)2(L)][PF6], (ppy = 2­phenylpyridine) where L is 1,2­bis(diphenylphosphino)benzene (L1), 1,2­bis(diphenylphosphino)ethane (L2), 1,2­bis(diphenylphosphino)propane(L3) and 1,8­bis(diphenylphosphino)naphthalene (L4) were synthesized respectively. The iridium complexes possessed excellent antiproliferative properties, which was a substantial improvement over cisplatin, especially complex Ir1. Generally, the order of in vitro antiproliferative activity of the complexes is Ir1 > Ir2 = Ir3 > Ir4 > CDDP (Cisplatin). Two X-ray crystal structures were determined. The best complex, Ir1, was chosen to further study the mechanism of action. The self-luminescence of complex Ir1 was also successfully used to elucidate the subcellular localization. Complex Ir1 was specifically targeted to lysosomes in A549 cancer cells. This targeting caused lysosomal damage and the induction of ROS (reactive oxygen species) production in cancer cells. Flow cytometry studies confirmed that this complex induced apoptosis, especially late apoptosis. Our results suggested that changes in the mitochondrial membrane potential were responsible for apoptosis. The chemistry and biological studies showed that this class of metal complexes is worthy of further exploration to design novel anticancer drugs.


Subject(s)
Antineoplastic Agents , Fluorescent Dyes , Iridium/chemistry , Lysosomes/metabolism , Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coordination Complexes , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Humans , Lysosomes/pathology , Neoplasms/metabolism , Neoplasms/pathology
16.
Aging (Albany NY) ; 11(9): 2898-2910, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31085805

ABSTRACT

Noncoding RNAs are known to be importantly involved in a variety physiological and pathophysiolgical processes. Their role in the pathogenesis of hypertrophic scars remains unclear, however. After preliminary screening of the microRNA (miRNA) gene expression profiles, we explored the role of miR-495 in the development of hypertrophic scar by comparing expression of miR-495 and focal adhesion kinase (FAK) between hypertrophic scar and normal skin tissue. We also used 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and annexin V-fluorescein isothiocyanate/propidium iodide assays to assess the effect of miR-495 on the proliferation and apoptosis in human hypertrophic scar fibroblasts. Western blotting and real-time polymerase chain reaction were used to evaluate expression of miR-495, FAK, and related proteins in the FAK pathway. Our findings show that miR-495 inhibits FAK and its downstream mediators in vitro and vivo, and suggest that miR-495 may be a useful therapeutic target for the treatment of hypertrophic scar.


Subject(s)
Cicatrix, Hypertrophic/metabolism , Fibroblasts/physiology , MicroRNAs/metabolism , Cicatrix, Hypertrophic/genetics , Humans , MicroRNAs/genetics , Transcriptome
17.
Biomed Res Int ; 2019: 8214923, 2019.
Article in English | MEDLINE | ID: mdl-30956986

ABSTRACT

The aim of this study was to detect abnormally expressed microRNA (miRNA) in keloids and to study their functions. The differential expression of miRNAs in keloids and normal tissue was detected by gene microarray. MiRNA expression was verified by real-time PCR. A luciferase reporter gene assay, western blot, and real-time PCR were used to detect the effect of miR-194-3p on RUNX2. An MTT assay and a transwell assay were used to detect the effect of miR-194-3p in both primary cultured fibroblasts and HKF cells. Related proteins were analysed by western blot and real-time PCR. The expression of miR-194-3p was lower in keloids, and MiR-194-3p was shown to target RUNX2 directly. MiR-194-3p inhibited the proliferation and migration of fibroblasts through the inhibition of CDK4 and MMP2. MiR-194-3p and RUNX2 may become new targets for the prevention and treatment of keloids.


Subject(s)
Cell Movement , Cell Proliferation , Core Binding Factor Alpha 1 Subunit/biosynthesis , Fibroblasts/metabolism , Gene Expression Regulation , Keloid/metabolism , MicroRNAs/biosynthesis , Cell Line , Core Binding Factor Alpha 1 Subunit/genetics , Female , Fibroblasts/pathology , Humans , Keloid/genetics , Keloid/pathology , Male , MicroRNAs/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
18.
Cancer Lett ; 447: 75-85, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30673591

ABSTRACT

Herein we present half-sandwich IrIII complexes [(η5-Cpxbiph)Ir(OˆC)Cl] containing OˆC(NHC)-chelating ligand as anticancer and antimetastasis agents. All the complexes displayed high potency in vitro against a wide range of cancer cells. In addition, Ir2 significantly curb tumor growth in a colon cancer mouse xenograft model in vivo. Further mechanism of action studies indicate that Ir2-initiated apoptosis occurs through ROS-mediated cross-talk between mitochondria and lysosomes.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Iridium/pharmacology , Lysosomes/drug effects , Methane/analogs & derivatives , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Coordination Complexes/pharmacology , Female , HCT116 Cells , HT29 Cells , HeLa Cells , Hep G2 Cells , Humans , Ligands , Lysosomes/metabolism , Methane/pharmacology , Mice , Mice, Inbred BALB C , Mitochondria/metabolism
19.
J Inorg Biochem ; 191: 1-7, 2019 02.
Article in English | MEDLINE | ID: mdl-30445339

ABSTRACT

We herein report the synthesis, characterization, catalytic ability in converting coenzyme NADH to NAD+ and anticancer activity of half-sandwich iridium(III) complexes, [(η5-Cpxbiph)Ir(C^N)Cl]PF6-, where Cpxbiph = tetramethyl(biphenyl)cyclopentadienyl, C^N = varying imine-N-heterocyclic carbene ligands. The molecular structure of [(η5-Cpxbiph)Ir(L6)Cl]PF6 (complex Ir6), exhibiting the familiar "piano-stool" geometry, has been authenticated by X-ray crystallography. The anticancer activities of these complexes can be governed via substituent effects of three tunable domains and the ligand substituted variants offer an effective chelate ligand set that distinguishes anticancer activity and catalytic ability. Notably, complex Ir6 displays the greatest cytotoxic activities (IC50 = 0.85 µM), whose anticancer activity is more approximately 25-fold higher than that of cisplatin. The initial cell death mechanistic insight displays that this group of iridium(III) complexes exerts anticancer effects via cell cycle arrest, apoptosis induction and loss of the mitochondrial membrane potential. In addition, the confocal microscopy imaging shows that the complex Ir6 can damage lysosome. Overall, preliminary structure-activity relationships study and understanding of the cell death mechanism perhaps provide a rational strategy for enhancing anticancer activity of this family of complexes.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chelating Agents/chemistry , Iridium/chemistry , Organic Chemicals/chemistry , A549 Cells , Apoptosis/drug effects , Cell Cycle/drug effects , Humans , Inhibitory Concentration 50 , Ligands , Lysosomes/drug effects , Membrane Potential, Mitochondrial/drug effects , NAD/chemistry , Structure-Activity Relationship
20.
Eur J Med Chem ; 163: 830-839, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30579123

ABSTRACT

A range of fluorine and naphthyridine-based half-sandwich iridium (III) and ruthenium (II) complexes were synthesized. The iridium complexes possessed excellent antiproliferative properties, a substantial improvement over cisplatin, especially the best 1C containing the fluorine atom and 2C containing the naphthyridine. On the contrary, the ruthenium complexes displayed much less antiproliferative activity. Two X-ray crystal structures were determined. The cytotoxicity of the complexes can be changed flexible by regulating the metal center and the ancillary ligands. The best complex 1C was chose to study further on the mechanism of action. The chemical reactivity such as hydrolysis, reaction with nucleobases, glutathione and catalytic conversion of NADH to NAD+, were investigated. Complex 1C can react with 9-ethylguanine (9-EtG) and catalyze oxidation of NADH. In addition, the self-luminescence of the complex 1C was also successfully used in confocal microscopy images for elucidating the subcellular localization. Complex 1C specifically targeted to lysosomes in A549 cancer cells and caused lysosomal damages and promote cathepsin B released. Flow cytometry studies confirmed that the biological effects of this type of complexes induced apoptosis, especially late apoptosis. Our results suggested that changes in the mitochondria membrane potential were responsible for apoptosis. The chemistry and biological studies has showed that this class of metal complexes are worthy of further exploration for the design of novel anticancer drugs.


Subject(s)
Coordination Complexes/therapeutic use , Fluorine/therapeutic use , Iridium/therapeutic use , Naphthyridines/therapeutic use , Ruthenium/therapeutic use , A549 Cells , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Crystallography, X-Ray , Diagnostic Imaging/methods , Fluorine/chemistry , Humans , Iridium/chemistry , Lysosomes/metabolism , Membrane Potential, Mitochondrial/drug effects , Naphthyridines/chemistry , Ruthenium/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...