Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 14(1): 170, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555299

ABSTRACT

Chronic stress is a major risk factor for neuropsychiatric conditions such as depression. Adult hippocampal neurogenesis (AHN) has emerged as a promising target to counteract stress-related disorders given the ability of newborn neurons to facilitate endogenous plasticity. Recent data sheds light on the interaction between cannabinoids and neurotrophic factors underlying the regulation of AHN, with important effects on cognitive plasticity and emotional flexibility. Since physical exercise (PE) is known to enhance neurotrophic factor levels, we hypothesised that PE could engage with cannabinoids to influence AHN and that this would result in beneficial effects under stressful conditions. We therefore investigated the actions of modulating cannabinoid type 2 receptors (CB2R), which are devoid of psychotropic effects, in combination with PE in chronically stressed animals. We found that CB2R inhibition, but not CB2R activation, in combination with PE significantly ameliorated stress-evoked emotional changes and cognitive deficits. Importantly, this combined strategy critically shaped stress-induced changes in AHN dynamics, leading to a significant increase in the rates of cell proliferation and differentiation of newborn neurons, overall reduction in neuroinflammation, and increased hippocampal levels of BDNF. Together, these results show that CB2Rs are crucial regulators of the beneficial effects of PE in countering the effects of chronic stress. Our work emphasises the importance of understanding the mechanisms behind the actions of cannabinoids and PE and provides a framework for future therapeutic strategies to treat stress-related disorders that capitalise on lifestyle interventions complemented with endocannabinoid pharmacomodulation.


Subject(s)
Cannabinoids , Animals , Cannabinoids/pharmacology , Receptors, Cannabinoid , Exercise , Hippocampus , Neurogenesis/physiology , Antidepressive Agents/pharmacology
2.
Ocul Surf ; 22: 245-266, 2021 10.
Article in English | MEDLINE | ID: mdl-34520870

ABSTRACT

Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease.


Subject(s)
Aniridia , Corneal Diseases , Scleral Diseases , Cornea , Corneal Diseases/etiology , Humans , Stem Cells
3.
Behav Brain Res ; 403: 113134, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33476685

ABSTRACT

In a previous study we showed that Deep Brain Stimulation (DBS) of the rat dorsal subregion of the dorsal raphe (DRD), which sends serotonergic projections to forebrain areas, such as the ventral hippocampus, induces anxiolytic-like effects. The purpose of the present study was to investigate neurobiological alterations which might underline these behavioral effects. For that, we tested the influence of DBS upon the neuromodulatory action of serotonin on excitatory post-synaptic currents (EPSCs) in the ventral hippocampus. Male Wistar rats were submitted to high-frequency stimulation (100 µA, 100 Hz) of the DRD for 1 h during three consecutive days. On the third day, immediately after the DBS procedure, animals were euthanized. Slices of the ventral hippocampus were processed for whole cell patch clamp recordings of AMPA-receptor (AMPAR) mediated EPSCs in the CA1 area. As reported by others, we confirmed that in pre-weaning rats a high affinity 5-HT1A receptor agonist (8-OH-PIPAT, 0.5-5nM) inhibits EPSCs. However, in adult rats (non-operated or sham-operated), 8-OH-PIPAT (0.5-5 nM) increased EPSC amplitude, an effect blocked by the 5-HT1A antagonist WAY-100,635 (200 nM). Importantly, in adult rats exposed to DBS, the 5-HT1A agonist was devoid of effect. Taken together these results show that: 1) changes in 5-HT1A receptor-mediated hippocampal synaptic transmission occur with age; 2) these changes lead to a facilitatory effect of 5-HT1A receptors; 3) DBS blocks this serotonergic facilitatory action. These observations suggest that an alteration in serotonin modulation of limbic areas may underlie the psychotherapeutic effects of DBS.


Subject(s)
CA1 Region, Hippocampal/physiology , Deep Brain Stimulation , Dorsal Raphe Nucleus , Excitatory Postsynaptic Potentials/physiology , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, AMPA/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Synaptic Transmission/physiology , Age Factors , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Excitatory Postsynaptic Potentials/drug effects , Male , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1A/drug effects , Synaptic Transmission/drug effects
4.
Neuropeptides ; 46(6): 299-308, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23116540

ABSTRACT

Neuropeptide Y (NPY) has been implicated in the modulation of important features of neuronal physiology, including calcium homeostasis, neurotransmitter release and excitability. Moreover, NPY has been involved as an important modulator of hippocampal and thalamic circuits, receiving particular attention as an endogenous antiepileptic peptide and as a potential master regulator of feeding behavior. NPY not only inhibits excessive glutamate release (decreasing circuitry hyperexcitability) but also protects neurons from excitotoxic cell death. Furthermore, NPY has been involved in the modulation of the dynamics of dentate gyrus and subventricular zone neural stem cell niches. In both regions, NPY is part of the chemical resource of the neurogenic niche and acts through NPY Y1 receptors to promote neuronal differentiation. Interestingly, NPY is also considered a neuroimmune messenger. In this review, we highlight recent evidences concerning paracrine/autocrine actions of NPY involved in neuroprotection, neurogenesis and neuroinflammation. In summary, the three faces of NPY, discussed in the present review, may contribute to better understand the dynamics and cell fate decision in the brain parenchyma and in restricted areas of neurogenic niches, in health and disease.


Subject(s)
Brain Chemistry/physiology , Inflammation/physiopathology , Neurogenesis/physiology , Neuropeptide Y/physiology , Neuroprotective Agents , Animals , Cell Death/drug effects , Dentate Gyrus/growth & development , Dentate Gyrus/physiology , Hippocampus/physiology , Humans , Neuropeptide Y/pharmacology , Olfactory Mucosa/growth & development , Olfactory Mucosa/physiology , Retina/physiology
5.
Eur J Neurosci ; 27(8): 2089-102, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18412629

ABSTRACT

The neuroprotective effect of neuropeptide Y (NPY) receptor activation was investigated in organotypic mouse hippocampal slice cultures exposed to the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Exposure of 2-week-old slice cultures, derived from 7-day-old C57BL/6 mice, to 8 microm AMPA, for 24 h, induced degeneration of CA1 and CA3 pyramidal cells, as measured by cellular uptake of propidium iodide (PI). A significant neuroprotection, with a reduction of PI uptake in CA1 and CA3 pyramidal cell layers, was observed after incubation with a Y(2) receptor agonist [NPY(13-36), 300 nm]. This effect was sensitive to the presence of the selective Y(2) receptor antagonist (BIIE0246, 1 microm), but was not affected by addition of TrkB-Fc or by a neutralizing antibody against brain-derived neurotrophic factor (BDNF). Moreover, addition of a Y(1) receptor antagonist (BIBP3226, 1 microm) or a NPY-neutralizing antibody helped to disclose a neuroprotective role of endogenous NPY in CA1 region. Cultures exposed to 8 microm AMPA for 24 h, displayed, as measured by an enzyme-linked immunosorbent assay, a significant increase in BDNF. In such cultures there was an up-regulation of neuronal TrkB immunoreactivity, as well as the presence of BDNF-immunoreactive microglial cells at sites of injury. Thus, an increase of AMPA-receptor mediated neurodegeneration, in the mouse hippocampus, was prevented by neuroprotective pathways activated by NPY receptors (Y(1) and Y(2)), which can be affected by BDNF released by microglia and neurons.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Microglia/metabolism , Neurons/metabolism , Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/metabolism , Animals , Enzyme-Linked Immunosorbent Assay , Hippocampus/metabolism , Immunohistochemistry , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Receptors, AMPA/metabolism , Receptors, Neuropeptide Y/antagonists & inhibitors , Reverse Transcriptase Polymerase Chain Reaction
6.
Peptides ; 28(2): 288-94, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17212973

ABSTRACT

In the present work we investigated the neuroprotective role of neuropeptide Y (NPY) after an excitotoxic insult in rat organotypic hippocampal slice cultures. Exposure of 2 week-old rat hippocampal slice cultures to 12muM kainate (KA) for 24h induced neuronal death in dentate gyrus (DG) granular cell layer, CA1 and CA3 pyramidal cell layers, as quantified by cellular propidium iodide (PI) uptake. The activation of Y(1) or Y(2) receptors 30min after starting the exposure to the excitotoxic insult with kainate resulted in neuroprotection by reducing the PI uptake in DG, CA1 and CA3 cell layers. The use of Y(1) or Y(2) receptors antagonists, BIBP3226 (1muM) or BIIE0246 (1muM), resulted in the loss of the neuroprotection induced by the activation of Y(1) or Y(2) receptors, respectively, in all hippocampal subfields. Taken together these results suggest that activation of NPY Y(1) or Y(2) receptors activates neuroprotective pathways that are able to rescue neurons from excitotoxic cell death.


Subject(s)
Cell Death/drug effects , Hippocampus/drug effects , Kainic Acid/toxicity , Neurons/drug effects , Neuropeptide Y/pharmacology , Animals , Hippocampus/cytology , In Vitro Techniques , Rats , Rats, Wistar
7.
Neurochem Int ; 47(5): 309-16, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16005547

ABSTRACT

The subsynaptic distribution of kainate receptors is still a matter of much debate given its importance to understand the way they influence neuronal communication. Here, we show that, in synapses of the rat hippocampus, presynaptic kainate receptors are localized within the presynaptic active zone close to neurotransmitter release sites. The activation of these receptors with low concentrations of agonists induces the release of [(3)H]glutamate in the absence of a depolarizing stimulus. Furthermore, this modulation of [(3)H]glutamate release by kainate is more efficient when compared with a KCl-evoked depolarization that causes a more than two-fold increase in the intra-terminal calcium concentration but no apparent release of [(3)H]glutamate, suggesting a direct receptor-mediated process. Using a selective synaptic fractionation technique that allows for a highly efficient separation of presynaptic, postsynaptic and non-synaptic proteins we confirmed that, presynaptically, kainate receptors are mainly localized within the active zone of hippocampal synapses where they are expected to be in a privileged position to modulate synaptic phenomena.


Subject(s)
Hippocampus/metabolism , Receptors, Presynaptic/metabolism , Animals , Blotting, Western , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Signaling/physiology , Glutamic Acid/metabolism , Hippocampus/ultrastructure , Immunohistochemistry , Male , Nerve Tissue Proteins/metabolism , Rats , Rats, Wistar , Receptors, Kainic Acid/physiology , Synaptosomes/metabolism , Synaptosomes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...