Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746305

ABSTRACT

Zika virus (ZIKV) infections cause microcephaly in new-borns and Guillain-Barre syndrome in adults raising a significant global public health concern, yet no vaccines or antiviral drugs have been developed to prevent or treat ZIKV infections. The viral protease NS3 and its co-factor NS2B are essential for the cleavage of the Zika polyprotein precursor into individual structural and non-structural proteins and is therefore an attractive drug target. Generation of a robust crystal system of co-expressed NS2B-NS3 protease has enabled us to perform a crystallographic fragment screening campaign with 1076 fragments. 48 binders with diverse chemical scaffolds were identified in the active site of the protease, with another 6 fragment hits observed in a potential allosteric binding site. Our work provides potential starting points for the development of potent NS2B-NS3 protease inhibitors. Furthermore, we have structurally characterized a potential allosteric binding pocket, identifying opportunities for allosteric inhibitor development.

2.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746446

ABSTRACT

Enteroviruses are the causative agents of paediatric hand-foot-and-mouth disease, and a target for pandemic preparedness due to the risk of higher order complications in a large-scale outbreak. The 2A protease of these viruses is responsible for the self-cleavage of the poly protein, allowing for correct folding and assembly of capsid proteins in the final stages of viral replication. These 2A proteases are highly conserved between Enterovirus species, such as Enterovirus A71 and Coxsackievirus A16 . Inhibition of the 2A protease deranges capsid folding and assembly, preventing formation of mature virions in host cells and making the protease a valuable target for antiviral activity. Herein, we describe a crystallographic fragment screening campaign that identified 75 fragments which bind to the 2A protease including 38 unique compounds shown to bind within the active site. These fragments reveal a path for the development of non-peptidomimetic inhibitors of the 2A protease with broad-spectrum anti-enteroviral activity.

3.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746241

ABSTRACT

The Zika virus (ZIKV), discovered in Africa in 1947, swiftly spread across continents, causing significant concern due to its recent association with microcephaly in newborns and Guillain-Barré syndrome in adults. Despite a decrease in prevalence, the potential for a resurgence remains, necessitating urgent therapeutic interventions. Like other flaviviruses, ZIKV presents promising drug targets within its replication machinery, notably the NS3 helicase (NS3Hel) protein, which plays critical roles in viral replication. However, a lack of structural information impedes the development of specific inhibitors targeting NS3Hel. Here we applied high-throughput crystallographic fragment screening on ZIKV NS3Hel, which yielded structures that reveal 3D binding poses of 46 fragments at multiple sites of the protein, including 11 unique fragments in the RNA-cleft site. These fragment structures provide templates for direct design of hit compounds and should thus assist the development of novel direct-acting antivirals against ZIKV and related flaviviruses, thus opening a promising avenue for combating future outbreaks.

4.
BMC Infect Dis ; 22(1): 133, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35135496

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections lead to acute- and chronic Long COVID (LC) symptoms. However, few studies have addressed LC sequelae on brain functions. This study was aimed to examine if acute symptoms of coronavirus disease 2019 (COVID-19) would persist during LC, and if memory problems would be correlated with sleep, depressive mood, or anxious complaints. METHODS: Our work followed a cohort of 236 patients from two public hospitals of the Federal District in mid-western Brazil. Patients' interviews checked for clinical symptoms during acute and LC (5-8 months after real-time reverse transcription polymerase chain reaction, RT-qPCR). RESULTS: Most cases were non-hospitalized individuals (86.3%) with a median age of 41.2 years. While myalgia (50%), hyposmia (48.3%), and dysgeusia (45.8%) were prevalent symptoms in acute phase, fatigue (21.6%) followed by headache (19.1%) and myalgia (16.1%) commonly occurred during LC. In LC, 39.8% of individuals reported memory complaints, 36.9% felt anxious, 44.9% felt depressed, and 45.8% had sleep problems. Furthermore, memory complaints were associated with sleep problems (adjusted OR 3.206; 95% CI 1.723-6.030) and depressive feelings (adjusted OR 3.981; 95% CI 2.068-7.815). CONCLUSIONS: The SARS-CoV-2 infection leads to persistent symptoms during LC, in which memory problems may be associated with sleep and depressive complaints.


Subject(s)
COVID-19 , Mental Health , Adult , Anxiety , Brazil/epidemiology , COVID-19/complications , COVID-19/psychology , Depression , Humans , Memory , Post-Acute COVID-19 Syndrome
5.
Biomolecules ; 11(8)2021 08 11.
Article in English | MEDLINE | ID: mdl-34439854

ABSTRACT

Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBMs commonly acquire resistance to standard-of-care therapies. Among the novel means to sensitize GBM to DNA-damaging therapies, a promising strategy is to combine them with inhibitors of the DNA damage repair (DDR) machinery, such as inhibitors for poly(ADP-ribose) polymerase (PARP). PARP inhibitors (PARPis) have already shown efficacy and have received regulatory approval for breast, ovarian, prostate, and pancreatic cancer treatment. In these cancer types, after PARPi administration, patients carrying specific mutations in the breast cancer 1 (BRCA1) and 2 (BRCA2) suppressor genes have shown better response when compared to wild-type carriers. Mutated BRCA genes are infrequent in GBM tumors, but their cells can carry other genetic alterations that lead to the same phenotype collectively referred to as 'BRCAness'. The most promising biomarkers of BRCAness in GBM are related to isocitrate dehydrogenases 1 and 2 (IDH1/2), epidermal growth factor receptor (EGFR), phosphatase and tensin homolog (PTEN), MYC proto-oncogene, and estrogen receptors beta (ERß). BRCAness status identified by accurate biomarkers can ultimately predict responsiveness to PARPi therapy, thereby allowing patient selection for personalized treatment. This review discusses potential biomarkers of BRCAness for a 'precision medicine' of GBM patients.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Glioblastoma/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Biomarkers, Tumor/genetics , Humans , Proto-Oncogene Mas
6.
Nucl Med Biol ; 72-73: 49-54, 2019.
Article in English | MEDLINE | ID: mdl-31330412

ABSTRACT

INTRODUCTION: Increased activity of matrix metalloproteases (MMPs) is associated with reduced survival in several cancer subtypes. Aiming to produce an MMP tumour cell-selective cytotoxin, we genetically modified both components of the AB-type lethal toxin from Bacillus anthracis. Component A, Protective Antigen (PA-WT), was re-engineered to form an oligomeric pore in cell membranes only when cleaved by MMPs (PA-L1). The pore-translocation domain (LFn - N-terminal, 30 kDa) of the Lethal Factor (LF), component B, was fused to the catalytic domain of Pseudomonas exotoxin-A to increase its cytotoxic effect when delivered to cancerous cells. Here, we develop radiolabelled forms of LFn for MMP activity imaging by SPECT using the LFn/PA-L1 system. METHODS: DOTA-GA-maleimide was conjugated to LFn to allow radiolabelling with 111In via two different routes: (1) LFn was conjugated with maleimide-DOTA-GA under mild conditions, and then radiolabelled in acidic conditions at 95°C, or (2) 111In was coordinated to maleimide-DOTA-GA first and then conjugated via maleimide chemistry to LFn. Circular Dichroism Spectroscopy of LFn was performed to evaluate changes in its secondary structure. Cell uptake assays using the differently labelled forms of [111In]In-DOTA-GA-LFn in the presence or not of PA-WT or PA-L1 were performed. RESULTS: LFn was successfully radiolabelled by either strategy. Comparison of the secondary structure content of LFn exposed to 37°C or 95°C, showed a loss of alpha helix content at higher temperatures. Cell uptake of both forms of [111In]In-DOTA-GA-LFn, labelled directly or indirectly, was significantly higher in MMP-positive cells, in the presence of PA-L1, compared to controls. Notably, despite being exposed to high temperatures, uptake of directly labelled [111In]In-DOTA-GA-LFndir was higher than indirectly labelled [111In]In-DOTA-GA-LFnindir. CONCLUSIONS: 111In-radiolabelling of LFn results in a functional molecule that targets MMP-activity in cells when combined with PA-L1. [111In]In-LFn/PA-L1 is a promising MMP activity imaging agent for SPECT imaging.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Toxins/metabolism , Breast Neoplasms/pathology , Cell Membrane/metabolism , Indium Radioisotopes/metabolism , Matrix Metalloproteinases/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Antigens, Bacterial/chemistry , Bacterial Toxins/chemistry , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Female , Humans , Indium Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Tumor Cells, Cultured
7.
J Nucl Med ; 60(10): 1474-1482, 2019 10.
Article in English | MEDLINE | ID: mdl-30954944

ABSTRACT

Increased activity of matrix metalloproteinases (MMPs) is associated with worse prognosis in different cancer types. The wild-type protective antigen (PA-WT) of the binary anthrax lethal toxin was modified to form a pore in cell membranes only when cleaved by MMPs (to form PA-L1). Anthrax lethal factor (LF) is then able to translocate through these pores. Here, we used a 111In-radiolabeled form of LF with the PA/LF system for noninvasive in vivo imaging of MMP activity in tumor tissue by SPECT. Methods: MMP-mediated activation of PA-L1 was correlated to anthrax receptor expression and MMP activity in a panel of cancer cells (HT1080, MDA-MB-231, B8484, and MCF7). Uptake of 111In-radiolabeled PA-L1, 111In-PA-WTK563C, or 111In-LFE687A (a catalytically inactive LF mutant) in tumor and normal tissues was measured using SPECT/CT imaging in vivo. Results: Activation of PA-L1 in vitro correlated with anthrax receptor expression and MMP activity (HT1080 > MDA-MB-231 > B8484 > MCF7). PA-L1-mediated delivery of 111In-LFE687A was demonstrated and was corroborated using confocal microscopy with fluorescently labeled LFE687A Uptake was blocked by the broad-spectrum MMP inhibitor GM6001. In vivo imaging showed selective accumulation of 111In-PA-L1 in MDA-MB-231 tumor xenografts (5.7 ± 0.9 percentage injected dose [%ID]/g) at 3 h after intravenous administration. 111In-LFE687A was selectively delivered to MMP-positive MDA-MB-231 tumor tissue by MMP-activatable PA-L1 (5.98 ± 0.62 %ID/g) but not by furin-cleavable PA-WT (1.05 ± 0.21 %ID/g) or a noncleavable PA variant control, PA-U7 (2.74 ± 0.24 %ID/g). Conclusion: Taken together, our results indicate that radiolabeled forms of mutated anthrax lethal toxin hold promise for noninvasive imaging of MMP activity in tumor tissue.


Subject(s)
Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Indium Radioisotopes/chemistry , Neoplasms/diagnostic imaging , Tomography, Emission-Computed, Single-Photon , Animals , Biological Transport , Cell Line, Tumor , Humans , Kinetics , MCF-7 Cells , Matrix Metalloproteinase 14/chemistry , Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinases/metabolism , Mice , Mutation , Neoplasm Transplantation
8.
J Nucl Med ; 60(4): 504-510, 2019 04.
Article in English | MEDLINE | ID: mdl-30389822

ABSTRACT

Poly(ADP-ribose) polymerase (PARP) inhibitors are increasingly being studied as cancer drugs, as single agents, or as a part of combination therapies. Imaging of PARP using a radiolabeled inhibitor has been proposed for patient selection, outcome prediction, dose optimization, genotoxic therapy evaluation, and target engagement imaging of novel PARP-targeting agents. Methods: Here, via the copper-mediated 18F-radiofluorination of aryl boronic esters, we accessed, for the first time (to our knowledge), the 18F-radiolabeled isotopolog of the Food and Drug Administration-approved PARP inhibitor olaparib. The use of the 18F-labeled equivalent of olaparib allows direct prediction of the distribution of olaparib, given its exact structural likeness to the native, nonradiolabeled drug. Results:18F-olaparib was taken up selectively in vitro in PARP-1-expressing cells. Irradiation increased PARP-1 expression and 18F-olaparib uptake in a radiation-dose-dependent fashion. PET imaging in mice showed specific uptake of 18F-olaparib in tumors expressing PARP-1 (3.2% ± 0.36% of the injected dose per gram of tissue in PSN-1 xenografts), correlating linearly with PARP-1 expression. Two hours after irradiation of the tumor (10 Gy), uptake of 18F-olaparib increased by 70% (P = 0.025). Conclusion: Taken together, we show that 18F-olaparib has great potential for noninvasive tumor imaging and monitoring of radiation damage.


Subject(s)
Fluorine Radioisotopes , Gene Expression Regulation, Enzymologic , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerases/metabolism , Positron-Emission Tomography , Animals , Boronic Acids/chemistry , Cell Line, Tumor , Cell Transformation, Neoplastic , Copper/chemistry , Mice , Mice, Inbred BALB C , Phthalazines/chemistry , Piperazines/chemistry , Radiochemistry , Tumor Hypoxia
9.
Biochim Biophys Acta ; 1858(7 Pt A): 1488-98, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27063608

ABSTRACT

Recently, several peptides have been studied regarding the defence process against pathogenic microorganisms, which are able to act against different targets, with the purpose of developing novel bioactive compounds. The present work focuses on the structural and functional evaluation of the palindromic antimicrobial peptide Pa-MAP2, designed based on the peptide Pa-MAP from Pleuronectes americanus. For a better structural understanding, molecular modelling analyses were carried out, together with molecular dynamics and circular dichroism, in different media. Antibacterial activity against Gram-negative and positive bacteria was evaluated, as well as cytotoxicity against human erythrocytes, RAW 264.7, Vero and L6 cells. In silico docking experiments, lipid vesicle studies, and atomic force microscopy (AFM) imaging were carried out to explore the activity of the peptide. In vivo studies on infected mice were also done. The palindromic primary sequence favoured an α-helix structure that was pH dependent, only present on alkaline environment, with dynamic N- and C-terminals that are stabilized in anionic media. Pa-MAP2 only showed activity against Gram-negative bacteria, with a MIC of 3.2 µM, and without any cytotoxic effect. In silico, lipid vesicles and AFM studies confirm the preference for anionic lipids (POPG, POPS, DPPE, DPPG and LPS), with the positively charged lysine residues being essential for the initial electrostatic interaction. In vivo studies showed that Pa-MAP2 increases to 100% the survival rate of mice infected with Escherichia coli. Data here reported indicated that palindromic Pa-MAP2 could be an alternative candidate for use in therapeutics against Gram-negative bacterial infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Escherichia coli Infections/drug therapy , Peptidomimetics/chemistry , Alanine/chemistry , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/isolation & purification , Cell Survival/drug effects , Chlorocebus aethiops , Cholesterol/chemistry , Erythrocytes/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Infections/microbiology , Escherichia coli Infections/mortality , Flounder/metabolism , Humans , Lipopolysaccharides/chemistry , Mice , Molecular Dynamics Simulation , Molecular Sequence Data , Peptidomimetics/chemical synthesis , Peptidomimetics/pharmacology , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Phosphatidylserines/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Survival Analysis , Unilamellar Liposomes/chemistry , Vero Cells
10.
Hepat Res Treat ; 2016: 6592143, 2016.
Article in English | MEDLINE | ID: mdl-26942007

ABSTRACT

Hepatitis C virus (HCV) has emerged as the major pathogen of liver diseases in recent years leading to worldwide blood-transmitted chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Accurate diagnosis for differentiation of hepatitis C from other viruses is thus of pivotal importance for proper treatment. In this work we developed a recombinant multiepitope protein (rMEHCV) for hepatitis C diagnostic purposes based on conserved and immunodominant epitopes from core, NS3, NS4A, NS4B, and NS5 regions of the virus polyprotein of genotypes 1a, 1b, and 3a, the most prevalent genotypes in South America (especially in Brazil). A synthetic gene was designed to encode eight epitopes in tandem separated by a flexible linker and bearing a his-tag at the C-terminal end. The recombinant protein was produced in Escherichia coli and purified in a single affinity chromatographic step with >95% purity. Purified rMEHCV was used to perform an ELISA which showed that the recombinant protein was recognized by IgG and IgM from human serum samples. The structural data obtained by circular dichroism (CD) spectroscopy showed that rMEHCV is a highly thermal stable protein at neutral and alkaline conditions. Together, these results show that rMEHCV should be considered an alternative antigen for hepatitis C diagnosis.

11.
IET Nanobiotechnol ; 8(4): 222-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25429501

ABSTRACT

Brosimum gaudichaudii Tréc. (Moraceae) is a common Brazilian Cerrado plant known by its pharmaceutical industry relevance. The authors investigated the latex protein components and potential biotechnological applications. Some protein fragments had their sequences elucidated, presenting similarities to jacalin and Kunitz-type trypsin inhibitors. Amino acid residue modifications were found, such as glutamine N-terminal residue cyclisation into pyroglutamic acid residue, and mass differences corresponding to hexoses and N-acetylhexosamine presence. The latex was used to produce a nanoscale structured film, which presented an increased attraction and reduced adhesion behaviours. The film presented high homogeneity, as observed by low nanoroughness values, probably because of its intrinsic components, such as the jacalin-like protein that has known agglutination properties. The immobilised Kunitz-type trypsin inhibitor presence in the latex film allow us to point out to applications related to this inhibition, as in active food packaging, since these peptidase inhibitors are able to inhibit pests and microorganism proliferation.


Subject(s)
Latex/chemistry , Moraceae/chemistry , Nanostructures/chemistry , Plant Proteins/chemistry , Amino Acid Sequence , Elastic Modulus , Molecular Sequence Data , Peptides , Plant Lectins , Sequence Alignment
12.
Org Biomol Chem ; 11(29): 4764-77, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23680860

ABSTRACT

In the present manuscript, a novel fluorescent chalcone derivative is synthesized and its photophysical properties are fully characterized. The designed fluorophore is applied as a probe to study protein-dye interactions with bovine serum albumin. Circular dichroism gave interesting results on the thermodynamics of the interaction. NMR spectroscopy, especially relaxation measurements, revealed the atoms in the chalcone derivative that interacts with the protein upon binding. Molecular docking calculations indicate that the most favourable binding sites are near the two tryptophan residues. Furthermore, ab initio and DFT calculations offer insights into the reactivity and physicochemical properties of this novel fluorophore.


Subject(s)
Chalcone/chemistry , Fluorescent Dyes/chemistry , Quantum Theory , Serum Albumin, Bovine/chemistry , Animals , Cattle , Chalcone/chemical synthesis , Crystallography, X-Ray , Fluorescent Dyes/chemical synthesis , Models, Molecular , Molecular Structure , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...