Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Sci Total Environ ; 912: 169532, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38145683

ABSTRACT

Surfactants can transfer non-aqueous phase liquid (NAPL) contaminants to the aqueous phase, and enhance the removal of the latter in groundwater. However, the extensive use of surfactants causes secondary contamination and increases the non-target consumption of oxidants. It is pressing to develop a surfactant with high phase transfer efficiency and sound compatibility with oxidants to minimize the use of surfactants for groundwater remediation. The phase transfer capability of different surfactants and their binary mixtures, their enhanced KMnO4 oxidation performance for NAPL contaminants as well as influencing factors were investigated to solve the above-mentioned question. The results showed that Tween20, SDBS and BS-12 perform best in terms of phase transfer capability among nonionic, anionic and amphoteric surfactants respectively, and only SDBS and BS-12 produce a synergistic effect among the binary mixtures. The CMC of SDBS/BS-12 was lower than its ideal CMC value, and the self-assembly process of SDBS/BS-12 also formed larger aggregates, which improved the phase transfer performance. Compared to other single surfactants, the removal efficiency of petroleum hydrocarbons in the aquifer sediments was raised by 7.4-33.8 % using the mixed surfactant. The SDBS/BS-12 mixture was compatible with KMnO4 and boosted the reaction of NAPL contaminants with KMnO4 by transferring from the NAPL phase to the aqueous phase. As a result, the NAPL toluene and phenanthrene removal efficiency increased from 37 % and 29 % to 80 % and 86 % respectively. Natural organic matters inhibited the phase transfer efficiency of the SDBS/BS-12 mixture, whereas anions and monovalent cations enhanced the phase transfer capability of the mixture. High-valent cations led to precipitation in the SDBS/BS-12, which could be eliminated by adding Na2Si2O5. The SDBS/BS-12 mixture delivered the same phase transfer efficiency with the dosage of 1.73-23.07 % of other single surfactants, and its cost was equivalent to 0.25-41.7 % of the latter, thus embracing bright application prospects.

2.
J Hazard Mater ; 464: 132395, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37976849

ABSTRACT

Landfill is reservoir containing antibiotic resistance genes (ARGs) that pose a threat to human life and health. Heavy metals impose lasting effects on ARGs. This review investigated and analyzed the distribution, composition, and abundance of heavy metals and ARGs in landfill. The abundance ranges of ARGs detected in refuse and leachate were similar. The composition of ARG varied with sampling depth in refuse. ARG in leachate varies with the distribution of ARG in the refuse. The ARG of sulI was associated with 11 metals (Co, Pb, Mn, Zn, Cu, Cr, Ni, Sb, As, Cd, and Al). The effects of the total metal concentration on ARG abundance were masked by many factors. Low heavy metal concentrations showed positive effects on ARG diffusion; conversely, high heavy metal concentrations showed negative effects. Organic matter had a selective pressure effect on microorganisms and could provide energy for the diffusion of ARGs. Complexes of heavy metals and organic matter were common in landfill. Therefore, the hypothesis was proposed that organic matter and heavy metals have combined effects on the horizontal gene transfer (HGT) of ARGs during landfill stabilization. This work provides a new basis to better understand the HGT of ARGs in landfill.


Subject(s)
Anti-Bacterial Agents , Metals, Heavy , Humans , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Drug Resistance, Microbial/genetics , Waste Disposal Facilities
3.
Water Res ; 245: 120566, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37683521

ABSTRACT

Volatile and semi-volatile organic compounds (VOCs and SVOCs) carried by landfilled wastes may enter leachate, and require appropriate treatment before discharge. However, the driving factors of the entry of VOCs and SOVCs into leachate, their removal characteristics during leachate treatment and the dominant factors remain unclear. A global survey of the VOCs and SOVCs in leachate from 103 landfill sites combined with 27 articles on leachate treatment was conducted to clarify the abovementioned question. The results showed that SVOCs such as polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters (PAEs) and phenols were the most frequently detected in leachate on a global scale. However, four kinds of VOCs, i.e., toluene, ethylbenzene, xylenes and benzene, were frequently detected at high concentrations in landfill leachate as well. The concentrations of VOCs and SVOCs in leachate ranged from 1 × 10° to 1 × 108 ng/L. Solubility was a key factor driving the entry of VOCs and SOVCs into leachate, and higher solubility enables higher detectable concentrations in leachate (P<0.05). It was easiest to remove monocyclic aromatic hydrocarbons (MAHs) from leachate, followed by phenols and PAHs, and it was most difficult to remove PAEs. In terms of removing MAHs, the anoxic/oxic (A/O) process and the sequential batch reactor (SBR) process were comparable to the advanced oxidization process and far superior to the ultrafiltration and nanofiltration processes, and the removal rate increased with an increase in the Henry's constant and/or the hydrophilicity of the contaminants during the A/O and SBR processes (P<0.05). There were no significant differences among biological, advanced oxidation and reverse osmosis processes in the removal of phenolic. In terms of removing PAHs, the A/O process was comparable to the advanced oxidization process and more efficient than the other treatment processes. As to removing PAEs, the membrane bioreactor process was almost the same efficient as the advanced oxidization process and far more efficient than the other biological treatment processes. Future research should focus on the pollution of atmospheric VOCs and SVOCs near aeration units in leachate treatment plants, as well as the health risk assessment of VOCs and SVOCs in the treated leachate effluent. To the best of our knowledge, this is the first review regarding the occurrence and removal of VOCs and SVOCs from landfill leachates worldwide.


Subject(s)
Hydrocarbons, Aromatic , Polycyclic Aromatic Hydrocarbons , Volatile Organic Compounds , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Phenols
4.
Environ Res ; 212(Pt B): 113332, 2022 09.
Article in English | MEDLINE | ID: mdl-35483414

ABSTRACT

Appropriate and effective recycling of food waste (FW) has become increasingly significant with the promotion of garbage classification in China. In this study, a novel and green process was developed to recycle FW to prepare a biodegradable composite liquid mulching film (LMF) through crosslinking with sodium alginate (SA). The solid phase of FW was obtained as the raw material after hydrothermal pretreatment to remove pathogens and salts, and to improve the reactivity of active components at a moderate temperature. The prepared LMF had a hydrophobic surface and compact structure due to the lipid in FW and the acetalization reaction and hydrogen bonds among SA, glutaraldehyde and multi-active components of FW, resulting in enhanced water vapor barrier properties. The minimum water vapor permeability of the prepared LMF reached (8.23 ± 0.05) ✕ 10-12 g cm/(cm2·s·Pa) with 1.82 wt % of plasticizer, 0.74 wt% of crosslinker and a mass ratio of HTP-FW to SA of 3.56:1. The prepared LMF showed good mechanical properties and could maintain its integrity after spraying it on the soil surface for 31 days. In addition, it could effectively prevent the loss of soil moisture and heat, promote the seed germination of Chinese cabbage and achieve 89.14% of weight loss after burying in the soil for 27 days. This study provides a high value-added route to convert the FW to a hydrophobic LMF with superior properties, which addresses not only the problem of food waste but also the pollution of plastic mulching film.


Subject(s)
Agriculture , Refuse Disposal , Agriculture/methods , China , Food , Soil/chemistry , Steam
5.
J Hazard Mater ; 432: 128738, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35338938

ABSTRACT

Accidental oil leaks and spills can often result in severe soil and groundwater pollution. In situ chemical oxidation (ISCO) is a powerful and efficient remediation technology. In this review, the applications and recent advances of three commonly applied in-situ oxidants (hydrogen peroxide, persulfate, and permanganate), and the gap in remediation efficiency between lab-scale and field-scale applications is critically assessed. Feasible improvements for these measures, especially solutions for the 'rebound effect', are discussed. The removal efficiencies reported in 108 research articles related to petroleum-contaminated soil and groundwater were analyzed. The average remediation efficiency of groundwater (82.7%) by the three oxidants was higher than that of soil (65.8%). A number of factors, including non-aqueous phase liquids, adsorption effect, the aging process of contaminants, low-permeability zones, and vapor migration resulted in a decrease in the remediation efficiency and caused the residual contaminants to rebound from 19.1% of the original content to 57.7%. However, the average remediation efficiency of ISCO can be increased from 40.9% to 75.5% when combined with other techniques. In the future, improving the utilization efficiency of reactive species and enhancing the contact efficiency between oxidants and petroleum contaminants will be worthy of attention. Multi-technical combinations, such as the ISCO coupled with phase-transfer, viscosity control, controlled release or natural attenuation, can be effective methods to solve the rebound problem.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Petroleum , Soil Pollutants , Water Pollutants, Chemical , Groundwater/chemistry , Oxidants/chemistry , Oxidation-Reduction , Soil/chemistry , Soil Pollutants/analysis , Water Pollutants, Chemical/chemistry
6.
Huan Jing Ke Xue ; 42(7): 3565-3576, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-34212683

ABSTRACT

This study explored the responses of soil dissolved organic matter (DOM) to the application of different types of compost using a soil sample without compost as a control. Ultraviolet and fluorescence spectrum technology and EEM-PARAFAC was used to analyze DOM structure and driving factors in soil added with different proportion of cow dung compost (SCC), food and kitchen waste compost (SFC), and sludge compost (SCC). Compared with the control group, contents of AN, NH4+-N, DOC, and SOM in soil added with compost were significantly increased, and contents of SOM and DOC increased with the increasing of compost amount. When added compost in the same proportion, contents of AN, NO3--N, and DOC in SCC and SFC were significantly higher than those in SSC, while contents of NH4+-N and SOM were higher in SSC. The results of spectral analysis showed that the structure of conjugated benzene ring, hydrophobic component, quinone group, and chromogenic component in DOM of soil added with compost were significantly increased, the transition of unsaturated organic molecule (π→π*) was more active, the molecular weight of DOM increased, and the degree of humification was enhanced. When the amount of compost added is 5%, the influence of food and kitchen waste compost on DOM structure was greatest among three types of compost. At 10% and 20%, sludge compost had the greatest impact on DOM structure. The results of EEM-PARAFAC analysis showed that the relative content of fulvic acid-like substances with low molecular in DOM of soil added with compost was increased, while the relative content of proteoid-like substances decreased. 2D-COS analysis showed that compost affected the change order of fluorescence components in DOM. SCC and SFC were as follows:proteoid-like > fulvic acid-like > humus-like; in SSC, it was fulvic acid-like > proteoid-like > humus-like. The enhance of humification and the decrease of relative content of protein-like substances in DOM were related to increased DOC and AN, the relative content of humus-like in low molecular weight was positively correlated with the content of NO3--N, and the relative content of macromolecule fulvic acid-like was increased due to the input of SOM from compost.


Subject(s)
Composting , Soil , Humic Substances/analysis , Spectrometry, Fluorescence
7.
Sci Total Environ ; 787: 147649, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34000547

ABSTRACT

Landfills can cause groundwater contamination, the pollution characteristics in groundwater near landfill sites have been extensively investigated, while the rapid identification of leachate leakage remained unclear. Comprehensively characterizing dissolved organic matter (DOM) is crucial for tracing the source, species, and migration of contaminants within groundwater and protecting groundwater sources. Here, we showed that DOM composition from newer landfills was mainly composed of newly-produced tryptophan and tyrosine, and protein-like and humic-like substances were more abundant in landfills that were relatively older. DOM in landfill groundwater was initially dominated by outputs from microbial activities, followed by terrigenous input. Leaked leachate contained an additional dye-derived fluorescent matter at the excitation/emission wavelength of 240-260/440-460 nm that was absent in uncontaminated groundwater. Leachate leakage increased the concentrations of humic-like substance, DOM molecular weight, and microbial activity in the downstream groundwater, resulting in the microorganisms rapidly multiply and secrete large amounts of microbial metabolism by-products, making them suitable indicators of groundwater pollution. Three criteria were proposed to establish an interpretable fluorescence method to identify leachate pollution. The obtained results provide a novel insight into not only the monitoring, early warning, and identification but also the transport, fate and removal or transformation of groundwater leachate in landfills.

8.
Huan Jing Ke Xue ; 42(4): 1714-1723, 2021 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-33742807

ABSTRACT

In order to clarify the pollution levels of heavy metals in the drinking water sources of the Lijiang River Basin, surface water samples were collected from 62 sites throughout the Lijiang River during May 2019. Heavy metals, including As, Cd, Cr, Mn, Cu, Zn, Hg, Co, and Sb, in the water samples were analysed. Health risk assessments associated with these nine heavy metals were conducted using the health risk assessment model from the US EPA. The results indicated that the order of the average concentrations of heavy metals in the water samples were Mn > Zn > As > Cr > Cu > Sb > Co > Cd > Hg. No heavy metals exceeded the limit values of the drinking water health standards in China (GB 5749-2006), and the concentrations were lower than the limitations of Grade Ⅰ level in the environmental quality standards for surface water (GB 3838-2002). According to the spatial distribution, the high contents areas of As, Cr, Zn, and Sb were predominantly distributed downstream of the Lijiang River, while the high contents areas of Cd, Cu, Hg, Co, and Mn were mostly distributed in the upper reaches. Multivariate analysis indicated that Cd, Mn, Cu, and Co were primarily from agricultural production; Cr, Zn, and Sb were mainly from tourism transportation; As was predominantly from the weathering of rock parent material and soil erosion; Hg was mainly from the improper disposal of domestic garbage and atmospheric deposition. The results of the health risk assessment indicated that children were more susceptible to the threat of heavy metal pollution than adults, and the average annual risk of carcinogenic heavy metals to human health through drinking water ingestion were higher than those of non-carcinogenic metals. The maximum personal average annual health risk of Cr was higher than the maximum allowance levels recommended by the International Commission on Radiological Protection (5×10-5 a-1). The average annual risk of non-carcinogenic heavy metals (10-14-10-9 a-1) decreased in the order of Co > Cu > Hg > Zn > Sb > Mn, which were far below the maximum allowance levels recommended by the ICRP.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adult , Child , China , Environmental Monitoring , Humans , Metals, Heavy/analysis , Risk Assessment , Water , Water Pollutants, Chemical/analysis
9.
Sci Total Environ ; 760: 144122, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33341612

ABSTRACT

Landfill refuse is a mixture of inorganic minerals and organic matter that is capable of undergoing complexation and redox reactions due to its active functional groups. Organic matter often combines with minerals in landfill refuse and it remains unclear whether this combination involves electron transfer. Therefore, the effects of landfill refuse composition on reductive dechlorination and speciation transformation of heavy metals were investigated in this study. Results show that landfill refuse comprises protein- and humic-like substances, aliphatic structures, and a large number of hydroxyl, carboxyl, quinoid and other active functional group. The electron donating capacity (0.09-0.26 µmol/g(C)) of landfill refuse was found to be higher than its electron accepting capacity (0.03-0.23 µmol/g(C)), indicating that electron donating groups (hydroxyl) were the main redox-active moieties, facilitating the reductive dechlorination of pentachlorophenol (PCP) by microorganism. Fe2O3, FeO and SiO2 were the main inorganic minerals affecting PCP dechlorination. The speciation distribution of heavy metals in landfill refuse was determined by the BCR sequential extraction method. Results showed that Zn and Ni have high potential migration capacity, poor stability and the highest bioavailability, while Cr, Cu and Pb are relatively stable and have weak migration potential. The oxygen- and nitrogen-containing functional groups, aliphatic structures and aromatic carbon in landfill refuse can promote the transformation of Ni and Cr from an unstable to stable state. Protein-like substances exhibit a strong Cu binding ability, allowing Cu to combine with organic matter more easily than other assessed heavy metals. Both Fe2O3 and FeO affected the stability of Cu. FeO promoted the stabilization of Zn, whereas Fe2O3 and SiO2 promoted Cu instability. These results could provide some references for the treatment of organic chlorides and the stabilization of heavy metals in landfill refuse in China.

10.
Sci Total Environ ; 756: 144142, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33302075

ABSTRACT

Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Soil Pollutants , Environmental Pollution , Soil , Soil Pollutants/analysis , Solubility , Surface-Active Agents
11.
Huan Jing Ke Xue ; 41(9): 4253-4261, 2020 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-33124307

ABSTRACT

To investigate the long-term effects of irrigation with treated domestic and industrial wastewater on the microbial community structure of the soil, Illumina MiSeq high-throughput sequencing technology was applied. Groundwater irrigated soil was used as a control. The effects of soil environmental factors and their interactions on the microbial community structure were investigated. Compared with the groundwater irrigation, irrigation with treated domestic wastewater can significantly increase the contents of TOC, DOC, Eh, NH4+-N, and TP, whereas irrigation with treated industrial wastewater can increase the contents of Cd, Cr, Cu, Pb, and Zn in the soil. Irrigation with treated wastewater also increases the relative abundance of Acidobacteria and Planctomycetes, and reduces the relative abundance of Firmicutes and Tectomicrobia. The effects of treated wastewater from different sources on functional microorganisms in soil are also different; irrigation with treated domestic wastewater can increase the relative abundance of Chloroflexi and Nitrospirae, whereas irrigation with treated industrial wastewater has negative effects on the abundance of Actinobacteria. The results of db-RDA analysis show that TN, TP, DOC, and Eh are the main factors that impact the microbial communities in soils irrigated with treated domestic wastewater (P<0.05), and heavy metals are the main factors that impact the microbial communities in soils irrigated with treated industrial wastewater (P<0.05). Compared with groundwater irrigation, treated wastewater irrigation can change the correlations between soil environmental factors, which in turn affect the microbial community structure. The growth of microorganisms in soils irrigated with treated domestic wastewater is mainly controlled by the increase in the nutrients such as DOC, TN, and TP and changes in soil redox conditions. The abundance of microorganisms in soil irrigated with treated industrial wastewater is significantly correlated with the accumulation of heavy metals.


Subject(s)
Metals, Heavy , Microbiota , Soil Pollutants , Agricultural Irrigation , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis , Wastewater/analysis
12.
J Hazard Mater ; 400: 123313, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32947713

ABSTRACT

Particulate organic matter (POM) includes humin and non-degradable residues, and the knowledge about its composition, evolution and environmental behavior is limited. The composition, evolution and its influence on dechlorination of the POM in landfill was studied. The results show that POM accounts for 27 %-57 % of the organic matter in landfill cell, which is mainly composed of protein-, fulvic- and humic-like components. Firmicutes and Proteobacteria were the main microorganisms driving the compositional evolution of POM during the landfilling process. The electron acceptance capacities (EAC) and electron donating capacities (EDC) of POM were in the range of 0.05-0.51 µmol/gC-1 and 0.13-0.66 µmol/gC-1, respectively, and the average EAC and EDC of POM in the intermediate and old stage of landfill were higher than those in the initial stage. The combined action of MR-1 and POM increased the degradation rate of PCP by 20 %-40 %, which was ascribed to the reduction capacities and electron transfer process of POM. POM derived from the intermediate and old stages promoted PCP dechlorination more effectively when compared with the initial stage due to its high electron transfer capacities (ETC), which are of great significance for soil in-situ bioremediation.

13.
Environ Pollut ; 258: 113736, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31877467

ABSTRACT

The long-term and large-scale utilization of fertilizers and pesticides in facility agriculture leads to groundwater pollution. However, the coexistence and interactions between organic fertilizers (i.e., organic matter), toxic metals, and pesticides in shallow groundwater have seldom been studied. Thus, the study sought to characterize said interactions via fluorescence, ultraviolet-visible spectroscopy (UV-Vis), and Fourier-transform infrared spectroscopy coupled with two-dimensional correlation spectroscopy and chemometric techniques. The results indicated that groundwater DOM was comprised of protein-, polysaccharide-, and lignin-like substances derived from organic fertilizers. Protein-like substances accounted for the binding of Co, Ni, and Fe, while polysaccharide- and lignin-like substances were mainly responsible for Cr and Mo complexation. Moreover, lignin- and polysaccharide-like substances played a key role in the binding of pesticides (i.e., dichlorodiphenyltrichloroethane [DDT], endosulfan, γ-hexachlorocyclohexane [γ-HCH], monocrotophos, chlorpyrifos, and chlorfenvinphos), rendering the conversion of γ-HCH to ß-hexachlorocyclohexane (ß-HCH) and the degradation of DDT to dichlorobenzene dichloroethylene (DDE) ineffective. However, the presence of protein-like substances in groundwater benefited the degradation and conversion of γ-HCH and α-endosulfan. Redundancy analyses showed that lignin- and polysaccharide-like matter had the most impacts on the coexistence of DOM with toxic metals and pesticides.


Subject(s)
Fertilizers , Groundwater/analysis , Metals/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis , Agriculture
14.
Environ Pollut ; 253: 488-496, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31330341

ABSTRACT

Electron transfer capacities (ETC) of humic-like acids (HLA) and their effects on dechlorination are dependent on their redox-active properties. Aging and minerals can affect the chemical compositions and structures of HLA. However, the underlying mechanism and the impacts on the dechlorination capacities of HLA are poorly understood. We investigated how redox properties change in association with the intrinsic chemical natures and exterior minerals of the HLA extracted from landfilled solid wastes. Furthermore, the ETC of the landfill-derived HLA could be strengthened by increasing landfill age and demineralization, thereby facilitating the dechlorination of pentachlorophenol (PCP). The HLA molecules started to polymerize aromatic macromolecules during landfilling, leading to an increase in ETC and dechlorination capacities. Macromolecular HLA were dissociated to smaller molecules and exposed more aromatic and carboxyl groups when separated from minerals, which enhanced the ETC and the dechlorination abilities of the HLA. Microbial-mediated dechlorination was an effective way to degrade PCP, and almost 80% of the PCP was transformed after 40 days of demineralized HLA and Shewanella oneidensis MR-1 incubation. The demineralization and aging further facilitated the microbial-mediated PCP dechlorination. The findings provide a scientific base for improving in-situ bioremediation of chlorinated compound-contaminated soils using freshly synthesized HLA.


Subject(s)
Biodegradation, Environmental , Humic Substances , Pentachlorophenol/chemistry , Soil Pollutants/chemistry , Waste Disposal Facilities , Halogenation , Oxidation-Reduction , Soil Microbiology
15.
Waste Manag ; 95: 450-457, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31351631

ABSTRACT

To observe the effect of aeration strategies on the dissipation of fluoroquinolones (FQs) during aerobic composting and explore their dissipation pathways, 60-L composting and 0.5-L incubation experiments were carried out in this study. Three aeration strategies (windrow, static aeration, feedback aeration) were applied to remove two typical FQs (Norfloxacin (NOR) and Ofloxacin (OFL)) during the 60-L composting of sewage sludge with 5 mg kg-1 of FQs added. Then, three 0.5 L-sample groups were taken during the three phases of the 60-L composting matrixes without FQs under static aeration, and were inoculated separately at 35 °C, 55 °C and 40 °C after being added with 5 mg kg-1 of FQs. In each group, incubation was carried out for three treatments (sterilization + no aeration, sterilization + aeration, and no sterilization + aeration). The FQs in the sewage sludge were mainly removed in the mesophilic and thermophilic phases in all the aeration strategies. The removal efficiencies were high for the whole process: 89.6-95.4% for NOR and 87.2-95.4% for OFL. The order of removal efficiency of FQs was static aeration > feedback aeration > windrow. The combination of composting phases facilitated to the rapid dissipation of FQs, which reduced the half-life to about 1/6 to 1/5 of the values in each phase. In the mesophilic and thermophilic compost, biodegradation was the main pathway for the dissipation of FQs followed by irreversible adsorption. Irreversible adsorption and biodegradation provided similar removal efficiencies for the curing compost. The volatilization of FQs was non-negligible in all phases.


Subject(s)
Composting , Adsorption , Biodegradation, Environmental , Fluoroquinolones , Sewage
16.
Sci Total Environ ; 665: 920-928, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30790763

ABSTRACT

Compost-derived dissolved organic matter (DOM), which has a wide distribution of molecular weight (MW) and polarity, has a potential application in the remediation of the contaminated soil due to its redox-active functional groups. Composting treatment can change the MW and polarity of the DOM through microbial transformation and degradation. However, the relationship between the redox properties of compost-derived DOM and its MW and polarity is still unclear. DOM was extracted from municipal solid wastes with different composting times in this study, and it was further fractionated into humic acids (HA), fulvic acids (FA) and hydrophilic (HyI) fractions based on its hydrophobicity and XAD-8 resin. Electron transfer capacities [including electron accepting capacities (EAC) and electron donating capacities (EDC)] of the HA, FA and HyI fractions and their associations with polarity and MW were studied. The results showed that the EAC of the HA, FA and HyI all increased after composting. The EDC of the HA and HyI exhibited an increasing trend as well, though that of the FA decreased remarkably after composting. The MW, polarity and redox-active functional groups of the HA, FA and HyI fractions were determined using high performance liquid chromatography and excitation-emission matrix fluorescence spectra coupled with parallel factor analysis. The result showed that the quinone-like groups were mainly detected in the medium MW and transphilic sub-fractions of the HA, FA and HyI, and were the main functional groups responsible for the EAC. The low MW sub-fractions, which consisted mainly of tyrosine-like matter, were the main functional components accounted for the EDC. The results advance our understanding of the influence of MW and polarity on the redox properties of organic substances, and facilitate to reveal the important redox-active functional groups when compost is utilized to remediate the contaminated soil.

17.
Chemosphere ; 222: 757-765, 2019 May.
Article in English | MEDLINE | ID: mdl-30738318

ABSTRACT

The electron transfer capacities (ETC) of dissolved organic matter (DOM) are related to their hydrophobicity. However, the underlying mechanism is poorly understood. The DOM was extracted from chicken manure compost, and fractionated into four fractions based on hydrophobicity, i.e., hydrophobic acid (HOA), hydrophobic base (HOB), hydrophilic matter (HIM) and acid insoluble matter (AIM) fractions. The composition, structure and ETC of the four fractions were measured using spectral technology and electrochemical methods. The results showed that the HOA and AIM fractions consisted mainly of fulvic- and humic-like substances, the HOB fraction comprised mainly organic nitrogen compounds, and the HIM was mainly composed of carbohydrates and protein-like matter. The electron donating capacities (EDC) and electron accepting capacities (EAC) of the four fractions were in the range of 616.90-5224.66 and 7.30-191.20 µmoL/g(C), respectively, The HOB fraction exhibited the highest EDC among the four fractions, followed by the HOA, AIM and HIM fractions. The EAC of the four fractions was characterized by the order of AIM, HOB, HOA and HIM. The tryptophan- and humic-like substances and organic nitrogen compounds accounted for the EDC, whereas the carboxyl group on aromatic substance responsible for the EAC.


Subject(s)
Composting , Electron Transport , Hydrophobic and Hydrophilic Interactions , Manure , Organic Chemicals/analysis , Animals , Carbon Dioxide/chemistry , Chemical Fractionation , Chickens , Humic Substances , Nitrogen Compounds/chemistry , Tryptophan/chemistry
18.
Sci Total Environ ; 651(Pt 1): 909-916, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30257230

ABSTRACT

Landfill is an important method for the treatment of municipal solid wastes. Microbes play a central role in the biodegradation and stabilization of organic matter during landfill; however, the succession of microbial communities in landfills and their association with organic matter still remain unclear. This study investigated the succession and diversity of microorganisms in landfill depending on different depths and ages as well as its association with dissolved organic matter (DOM) and heavy metals. The results showed that the actinobacterial diversity and richness were high compared to bacteria in young landfill cells. The diversity and richness of bacteria and actinobacterial were the highest in the middle layer in the intermediate and old landfill cells. Firmicutes, Proteobacteria, and Actinobacteria were the most dominant phyla. Firmicutes were mainly affected by the humification degree, and the aromatic and protein-like substance content of the landfill-derived DOM. The phylum Proteobacteria was greatly affected by the lipid and humic-like substances content of the landfill-derived DOM, while the distribution of Actinobacteria was regulated by both aromatic and humic-like substances. The effect of dissolved heavy metals on the microbial distribution in landfill differed for the metals Cr, Ni, Pb, Mn, Cu, Zn, and Cd. Siderophile elements (Cr, Ni, and Pb) were necessary trace elements for Proteobacteria and Actinobacteria, and promoted their growth. Oxyphilic element (Mn) was an important factor promoting the growth of Actinobacteria. However, no apparent relationship was found between sulfurophile elements (Cu, Zn, and Cd) and microorganisms.


Subject(s)
Metals, Heavy/analysis , Refuse Disposal , Soil Microbiology , Soil/chemistry , Waste Disposal Facilities , Biodegradation, Environmental , Biodiversity
19.
Environ Sci Pollut Res Int ; 25(13): 13026-13034, 2018 May.
Article in English | MEDLINE | ID: mdl-29480395

ABSTRACT

The changes of dissolved organic matter (DOM) components during stabilization process play significant effects on its redox properties but are little reported. Composting is a stabilization process of DOM, during which both the components and electron transfer capacities (ETCs) of DOM change. The redox components within compost-derived DOM during the stabilization process are investigated in this study. The results show that compost-derived DOM contained protein-like, fulvic-like, and humic-like components. The protein-like component decreases during composting, whereas the fulvic- and humic-like components increase during the process. The electron-donating capacity (EDC), electron-accepting capacity (EAC), and ETC of compost-derived DOM all increase during composting but their correlations with the components presented significant difference. The humic-like components were the main functional component responsible for both EDC and ETC, whereas the protein- and fluvic-like components show negative effects with the EAC, EDC, and ETC, suggesting that the components within DOM have specific redox properties during the stabilization process. These findings are very meaningful for better understanding the geochemical behaviors of DOM in the environment.


Subject(s)
Benzopyrans/analysis , Composting , Humic Substances/analysis , China , Electron Transport , Oxidation-Reduction
20.
Environ Sci Pollut Res Int ; 25(9): 9132-9144, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29340861

ABSTRACT

Fluorescence excitation-emission matrix (EEM) spectroscopy combined with principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to investigate the compositional characteristics of dissolved and particulate/colloidal organic matter and its correlations with nitrogen, phosphorus, and heavy metals in an effluent-dominated stream, Northern China. The results showed that dissolved organic matter (DOM) was comprised of fulvic-like, humic-like, and protein-like components in the water samples, and fulvic-like substances were the main fraction of DOM among them. Particulate/colloidal organic matter (PcOM) consisted of fulvic-like and protein-like matter. Fulvic-like substances existed in the larger molecular form in PcOM, and they comprised a large amount of nitrogen and polar functional groups. On the other hand, protein-like components in PcOM were low in benzene ring and bound to heavy metals. It could be concluded that nitrogen, phosphorus, and heavy metals in effluent had an effect on the compositional characteristics of natural DOM and PcOM, which may deepen our understanding about the environmental behaviors of organic matter in effluent.


Subject(s)
Humic Substances/analysis , Metals, Heavy/analysis , Particulate Matter/analysis , Phosphorus/analysis , Spectrometry, Fluorescence/methods , China , Factor Analysis, Statistical , Fluorescence , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...