Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 629, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877023

ABSTRACT

The Chungtien schizothoracin (Ptychobarbus chungtienensis), an endangered fish species endemic to the Zhongdian Plateau, remains underexplored in terms of transcriptomic sequencing. This investigation used tissues from five distinct organs (heart, liver, spleen, kidney, and brain) of the Chungtien schizothoracin for PacBio Iso-seq and RNA-seq analyses, yielding a repertoire of 16,598 full-length transcripts spanning lengths from 363 bp to 7,157 bp. Gene family clustering and phylogenetic analysis encompassed a comprehensive set of 13 fish species, all of which were cyprinids, including the zebrafish and the examined species Ptychobarbus chungtienensis. Moreover, the identification of long non-coding RNAs (lncRNAs) and coding sequences was accomplished across all five tissues. Comprehensive analyses of gene expression profiles and differentially expressed genes among the above five tissues were performed. In summary, the obtained full-length transcripts and detailed gene expression profiles of the Chungtien schizothoracin tissues furnish crucial expression data and genetic sequences, laying the groundwork for future investigations and fostering a holistic comprehension of the adaptive mechanisms inherent in the Chungtien schizothoracin under various conditions.


Subject(s)
Cyprinidae , Phylogeny , Transcriptome , Animals , Cyprinidae/genetics , RNA-Seq , RNA, Long Noncoding/genetics , Endangered Species
2.
Exp Biol Med (Maywood) ; 249: 10112, 2024.
Article in English | MEDLINE | ID: mdl-38715976

ABSTRACT

Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.


Subject(s)
Macrophages , Receptors, Calcium-Sensing , Ventricular Remodeling , Animals , Male , Mice , Rats , Blood Pressure , Fibrosis/metabolism , Hypertension/metabolism , Hypertension/pathology , Macrophages/metabolism , Myocardium/pathology , Myocardium/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Inbred SHR , Receptors, Calcium-Sensing/metabolism , Ventricular Remodeling/physiology
3.
Animals (Basel) ; 14(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38254442

ABSTRACT

Multi-omics-integrated analysis, known as panomics, represents an advanced methodology that harnesses various high-throughput technologies encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Sheep, playing a pivotal role in agricultural sectors due to their substantial economic importance, have witnessed remarkable advancements in genetic breeding through the amalgamation of multiomics analyses, particularly with the evolution of high-throughput technologies. This integrative approach has established a robust theoretical foundation, enabling a deeper understanding of sheep genetics and fostering improvements in breeding strategies. The comprehensive insights obtained through this approach shed light on diverse facets of sheep development, including growth, reproduction, disease resistance, and the quality of livestock products. This review primarily focuses on the application of principal omics analysis technologies in sheep, emphasizing correlation studies between multiomics data and specific traits such as meat quality, wool characteristics, and reproductive features. Additionally, this paper anticipates forthcoming trends and potential developments in this field.

4.
Genomics ; 116(1): 110773, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38158141

ABSTRACT

Preadipocyte differentiation represents a critical stage in adipogenesis, with mitochondria playing an undeniable pivotal role. Given the intricate interplay between transcription and metabolic signaling during adipogenesis, the regulation of sirtuin 5 (SIRT5) on mitochondrial function and lipid metabolism was revealed via multiple omics analysis. The findings suggest that SIRT5 plays a crucial role in promoting mitochondrial biosynthesis and maintaining mitochondrial function during preadipocyte differentiation. Moreover, SIRT5 modulates the metabolic levels of numerous bioactive substances by extensively regulating genes expression associated with differentiation, energy metabolism, lipid synthesis, and mitochondrial function. Finally, SIRT5 was found to suppress triacylglycerols (TAG) accumulation while enhancing the proportion and diversity of unsaturated fatty acids, and providing conditions for the expansion and stability of membrane structure during mitochondrial biosynthesis through numerous gene regulations. Our findings provide a foundation for the identification of crucial functional genes, signaling pathways, and metabolic substances associated with adipose tissue differentiation and metabolism.


Subject(s)
Lipid Metabolism , Sirtuins , Cattle , Animals , Sirtuins/genetics , Sirtuins/metabolism , Adipogenesis , Mitochondria/genetics , Adipose Tissue/metabolism
5.
Front Genet ; 14: 1318679, 2023.
Article in English | MEDLINE | ID: mdl-38075675

ABSTRACT

Introduction: Body measurement traits are integral in cattle production, serving as pivotal criteria for breeding selection. Wenshan cattle, a local breed in China's Yunnan province, exhibit remarkable genetic diversity. However, the molecular mechanisms regulating body measurement traits in Wenshan cattle remain unexplored. Methods: In this study, we performed a genome-wide association method to identify genetic architecture for body height body length hip height back height (BAH), waist height and ischial tuberosity height using the Bovine 50 K single nucleotide polymorphism Array in 1060 Wenshan cattles. Results: This analysis reveals 8 significant SNPs identified through the mixed linear model (MLM), with 6 SNPs are associated with multiple traits and 4 SNPs are associated with all 6 traits. Furthermore, we pinpoint 21 candidate genes located in proximity to or within these significant SNPs. Among them, Scarb1, acetoacetyl-CoA synthetase and HIVEP3 were implicated in bone formation and rarely encountered in livestock body measurement traits, emerge as potential candidate genes regulating body measurement traits in Wenshan cattle. Discussion: This investigation provides valuable insights into the genetic mechanisms underpinning body measurement traits in this unique cattle breed, paving the way for further research in this domain.

6.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069278

ABSTRACT

As an exemplary model for examining molecular mechanisms responsible for extreme phenotypic variations, plumage color has garnered significant interest. The Cygnus genus features two species, Cygnus olor and Cygnus atratus, that exhibit striking disparities in plumage color. However, the molecular foundation for this differentiation has remained elusive. Herein, we present two high-quality genomes for C. olor and C. atratus, procured using the Illumina and Nanopore technologies. The assembled genome of C. olor was 1.12 Gb in size with a contig N50 of 26.82 Mb, while its counterpart was 1.13 Gb in size with a contig N50 of 21.91 Mb. A comparative analysis unveiled three genes (TYR, SLC45A2, and SLC7A11) with structural variants in the melanogenic pathway. Notably, we also identified a novel gene, PWWP domain containing 2A (PWWP2A), that is related to plumage color, for the first time. Using targeted gene modification analysis, we demonstrated the potential genetic effect of the PWWP2A variant on pigment gene expression and melanin production. Finally, our findings offer insight into the intricate pattern of pigmentation and the role of polygenes in birds. Furthermore, these two high-quality genome references provide a comprehensive resource and perspective for comparative functional and genetic studies of evolution within the Cygnus genus.


Subject(s)
Birds , Genome , Animals , Genomics
7.
Animals (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38066966

ABSTRACT

The solute transport protein family 11 A1 (SLC11A1), also recognized as natural resistance-associated macrophage protein 1 (NRAMP1), represents a transmembrane protein encoded by the SLC11A1 gene. A variety of prior investigations have illuminated its involvement in conferring resistance or susceptibility to bacterial agents, positioning it as a promising candidate gene for breeding disease-resistant animals. Yaks (Bos grunniens), renowned inhabitants of the Qinghai-Tibet Plateau in China, stand as robust ruminants distinguished by their adaptability and formidable disease resistance. Notwithstanding these unique traits, there is scant literature on the SLC11A1 gene in the yak population. Our inquiry commences with the cloning of the 5' regulatory region sequence of the Zhongdian yak SLC11A1 gene. We employ bioinformatics tools to identify transcription factor binding sites, delineating pivotal elements like enhancers and cis-acting elements. To ascertain the promoter activity of this region, we amplify four distinct promoter fragments within the 5' regulatory region of the yak SLC11A1 gene. Subsequently, we design a luciferase reporter gene vector containing four site-specific deletion mutations and perform transient transfection experiments. Through these experiments, we measure and compare the activity of disparate gene fragments located within the 5' regulatory region, revealing regions bearing promoter functionality and discerning key regulatory elements. Our findings validate the promoter functionality of the 5' regulatory region, offering preliminary insights into the core and principal regulatory segments of this promoter. Notably, we identified single nucleotide polymorphisms (SNPs) that may be associated with important regulatory elements such as NF-1 and NF-1/L. This study provides a theoretical framework for in-depth research on the function and expression regulation mechanism of the yak SLC11A1 gene.

8.
Animals (Basel) ; 13(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38066978

ABSTRACT

Bovine spongiform encephalopathy (BSE) is a fatal disease in cattle caused by misfolded prion proteins and linked to indel polymorphisms in the promoter and intron 1 of the PRNP gene. The aim of this study was to determine the allele, genotype, and haplotype frequencies of PRNP indel polymorphisms and to investigate the effect of PRNP gene expressions of 23 bp and 12 bp indels via polymerase chain reaction (PCR) in Zhongdian Yak (Bos-grunniens) (YK), Zhongdian Yellow cattle (Bos-taurus) (YC), and Zhongdian Yakow (Bos-primigenius taurus × Bos-grunniens) (PK). Resultant high allelic frequencies were found in 23- and 12+, while haplotype frequencies were very low in 23+/12 in YK, YC, and PK. PRNP expression was higher in the +-/-- diplotype of the PK and (mean ± SE) was 3.6578 ± 1.85964. Furthermore, two variable sites were investigated-a 23 bp indel polymorphism holding AP1 binding site and a 12 bp indel polymorphism holding SP1 binding site. Additionally, reporter gene assays revealed a link between two proposed transcription factors and lower expression levels of the +/+ allele compared with the -/- allele. The expression level of PRNP was shown to be dependent on two indel polymorphisms in the bovine PRNP promoter, which includes binding sites for RP58 and SP1 transcription factors. These findings raised the possibility that the PRNP genotype may contribute to the high variation in PRNP expression.

9.
Animals (Basel) ; 13(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570263

ABSTRACT

This study was conducted to evaluate the influences of supplementing Ampelopsis grossedentata flavonoids (AGF) on the rumen bacterial microbiome, plasma physiology and biochemistry, and growth performance of goats. Twenty-four Nubian kids were randomly allocated to three dietary treatments: the control (CON, basal diet), the 1.0 g/kg AGF treatment (AGF), and the 12.5 mg/kg monensin treatment (MN). This trial consisted of 10 days for adaptation and 90 days for data and sample collection. The results reveal that Bacteroidetes, Firmicutes, and Proteobacteria are the dominant phyla in kids' rumen. Compared with the CON group, the alpha diversity in the MN and AGF groups significantly increased (p < 0.01). Beta-diversity shows that rumen microbial composition is more similar in the MN and AGF groups. LEfSe analysis shows that Prevotella_1 in the AGF group were significantly higher than those in the MN and CON group. The high-density lipoprotein cholesterol and glucose levels in the AGF group were significantly higher than those in the CON group (p < 0.05), whereas the low-density lipoprotein cholesterol, glutamic-pyruvic transaminase, and alkaline phosphatase levels exhibited the opposite trend. The average daily gains in the AGF and MN groups significantly increased, while the feed-to-gain ratios were significantly decreased (p < 0.05). The results suggest that adding AGF to the diet improves microbial composition and has important implications for studying juvenile livestock growth and improving economic benefits.

10.
Sci Adv ; 9(20): eadf5868, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37196083

ABSTRACT

Deoxyribonucleic acid (DNA) provides a collection of intelligent tools for the development of information cryptography and biosensors. However, most conventional DNA regulation strategies rely solely on enthalpy regulation, which suffers from unpredictable stimuli-responsive performance and unsatisfactory accuracy due to relatively large energy fluctuations. Here, we report an enthalpy and entropy synergistic regulation-based pH-responsive A+/C DNA motif for programmable biosensing and information encryption. In the DNA motif, the variation in loop length alters entropic contribution, and the number of A+/C bases regulates enthalpy, which is verified through thermodynamic characterizations and analyses. On the basis of this straightforward strategy, the performances, such as pKa, of the DNA motif can be precisely and predictably tuned. The DNA motifs are finally successfully applied for glucose biosensing and crypto-steganography systems, highlighting their potential in the field of biosensing and information encryption.


Subject(s)
Biosensing Techniques , DNA , Entropy , Nucleotide Motifs , Thermodynamics
11.
Mol Biotechnol ; 65(12): 1954-1967, 2023 12.
Article in English | MEDLINE | ID: mdl-37022597

ABSTRACT

Our previous study demonstrated in vivo that mouse cytomegalovirus (MCMV) infection promoted vascular remodeling after downregulation of miR-1929-3p. This study aimed to investigate the role of miR-1929-3p/ETAR/NLRP3 pathway in mouse vascular smooth muscle cells (MOVAS) after MCMV infection. First, PCR was used to detect the success of the infection. Second, MOVAS were transfected with the miR-1929-3p mimic, inhibitor, and ETAR overexpressed adenovirus vector. Cell proliferation was detected using EdU, whereas apoptosis was detected using flow cytometry. The expression of miR-1929-3p and ETAR were detected using qRT-PCR. Western blot detected proteins of cell proliferation, apoptosis, and the NLRP3 inflammasome. Interleukin-1ß and interleukin-18 were determined using ELISA. The results revealed that after 48 h, MCMV infection promoted the proliferation of MOVAS when the MOI was 0.01. MCMV infection increased ETAR by downregulating miR-1929-3p. The miR-1929-3p mimic reversed the proliferation and apoptosis, whereas the miR-1929-3p inhibitor promoted this effect. ETAR overexpression further promoted MCMV infection by downregulating miR-1929-3p-mediated proliferation and apoptosis. MCMV infection mediates the downregulation of miR-1929-3p and the upregulation of ETAR, which activates NLRP3 inflammasome. In conclusion, MCMV infection promoted the proliferation of MOVAS, possibly by downregulating miR-1929-3p, promoting the upregulation of the target gene ETAR and activating NLRP3 inflammasome.


Subject(s)
Cytomegalovirus Infections , MicroRNAs , Muromegalovirus , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Down-Regulation , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Muromegalovirus/genetics , Muromegalovirus/metabolism , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism , Muscle, Smooth, Vascular/metabolism , Apoptosis/genetics , Cytomegalovirus Infections/metabolism , Cell Proliferation
12.
In Vitro Cell Dev Biol Anim ; 59(3): 179-192, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37002490

ABSTRACT

MicroRNAs are crucial in the development of myocardial remodeling in hypertension. Low miR-1929-3p expression induced by murine cytomegalovirus (MCMV) infection is closely related to hypertensive myocardial remodeling. This study investigated the molecular mechanism of miR-1929-3p-induced myocardial remodeling after MCMV infection. We modeled MCMV-infected mouse cardiac fibroblasts (MMCFs) as the primary cell model. First, MCMV infection reduced the expression of miR-1929-3p and increased the mRNA and protein expression of its target gene endothelin receptor type A (ETAR) in mouse cardiac fibroblasts (MCFs), which demonstrated an internal relationship with myocardial fibrosis (MF) based on high proliferation, phenotypic transformation (α-SMA), and collagen expression in MMCFs. The transfection of the miR-1929-3p mimic downregulated the high expression of ETAR and alleviated these adverse effects in MMCFs. Inversely, these effects were exacerbated by the miR-1929-3p inhibitor. Second, the transfection of endothelin receptor type A over-expressed adenovirus (adETAR) reversed these positive effects of the miR-1929-3p mimic on MF improvement. Third, the transfection of adETAR exhibited a strong inflammatory response in MMCFs with increased expression of NOD-like receptors pyrin domain containing 3 (NLRP3) and increased secretion of interleukin-18. However, we found that the ETAR antagonist BQ123 and the selected NLRP3 inflammasome inhibitor MCC950 effectively eliminated the inflammatory response induced by both MCMV infection and miR-1929-3p inhibitor. Moreover, the MCF supernatant was related to cardiomyocyte hypertrophy. Our findings suggest that MCMV infection promotes MF by inducing the downregulation of miR-1929-3p and the high expression of ETAR, which activates NLRP3 inflammasomes in MCFs.


Subject(s)
MicroRNAs , Muromegalovirus , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism , Muromegalovirus/genetics , Muromegalovirus/metabolism , Fibrosis , MicroRNAs/genetics , MicroRNAs/metabolism , Fibroblasts
13.
RSC Adv ; 13(3): 1587-1593, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36688064

ABSTRACT

A rapid, simple, and sensitive fluorescent detection method for brown spot of tobacco is established by lambda exonuclease-induced Mg2+-dependent DNAzyme amplification. It contains hybridization of the Alternaria alternata genome and HP1, digestion of the 5'-phosphorylated strand of the hybrid dsDNA by lambda exonuclease, acquisition of complete Mg2+-dependent DNAzyme, cleavage of the substrate modified with FAM and BHQ-1, and fluorescent detection. The proposed assay exhibits good sensitivity (10 pg L-1), selectivity and reproducibility. The method does not require pure DNA and expensive instruments, and can be performed within 2.5 hours. To the best of our knowledge, this is the first report of fluorescent detection of Alternaria alternata and its tobacco field samples. This method can be applied to the rapid and sensitive detection of Alternaria alternata in tobacco and its seedlings, and is particularly important for the green prevention and control of tobacco brown spot disease.

14.
Nanomaterials (Basel) ; 13(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36678085

ABSTRACT

Tobacco bacterial wilt is a serious disease caused by the soil-borne bacterium Ralstonia solanacearum (R. solanacearum). Herein, a rapid and purification-free α-hemolysin (α-HL) nanopore-sensing strategy based on polymerase chain reaction (PCR) and lambda exonuclease digestion was established to detect R. solanacearum. A 198-nucleotide-long single-stranded DNA was obtained via asymmetric PCR or the lambda exonuclease-mediated digestion of the PCR product. The DNA fragment produced unique long-lived, current-blocking signals when it passed through the α-HL nanopore. This sensing approach can allow for the determination of R. solanacearum in tobacco samples and can be conveniently extended to other DNA monitoring because of the extremely wide range of PCR applications.

15.
Small ; 19(11): e2205825, 2023 03.
Article in English | MEDLINE | ID: mdl-36587982

ABSTRACT

The combination of photodynamic therapy (PDT) and chemotherapy (chemo-photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non-suitable treatment light source, and uncontrollable release of therapeutic agents, result in reduced combined treatment efficacy. This study considered adenosine triphosphate (ATP), which is highly upregulated in tumor cells, as a biomarker and developed ingenious ATP-activated nanoparticles (CDNPs) that are directly self-assembled from near-infrared photosensitizer (Cy-I) and amphiphilic Cd(II) complex (DPA-Cd). After selective entry into tumor cells, the positively charged CDNPs would escape from lysosomes and be disintegrated by the high ATP concentration in the cytoplasm. The released Cy-I is capable of producing single oxygen (1 O2 ) for PDT with 808 nm irradiation and DPA-Cd can concurrently function for chemotherapy. Irradiation with 808 nm light can lead to tumor ablation in tumor-bearing mice after intravenous injection of CDNPs. This carrier-free nanoparticle offers a new platform for chemo-photodynamic therapy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Mice , Cadmium , Photosensitizing Agents/therapeutic use , Infrared Rays , Neoplasms/drug therapy
16.
Anim Biotechnol ; 34(7): 2433-2440, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35875846

ABSTRACT

Among the numerous transmissible spongiform encephalopathies (TSEs), bovine spongiform encephalopathy (BSE) is the most well-known TSEs. It is a potential Creutzfeldt-Jakob (CJD) disease mutation that can be transferred through cattle to humans. In several animals, the prion protein gene (PRNP) is recognized to take active part in TSE vulnerability or tolerance. Previous studies have found indels polymorphism in PRNP gene promoter and intron1 region linked to BSE vulnerability. It's linked with 23 bp indels polymorphism in putative promoter and 12 bp indel in intron 1 of the PRNP gene. The aim of this study was to compare the allele, genotype and haplotype frequencies of PRNP indel polymorphisms in Zhongdian Yak (Bos grunniens) (YK), Zhongdian Yellow cattle (Bos taurus) (YC) and Zhongdian Yakow (Bos primigenius taurus × Bos grunniens) (PK) with worldwide reported healthy or affected BSE cattle, in order to assess their potential resistance to BSE. A comparison of Chinese bovine populations with healthy and BSE-affected German and Swiss cattle from globally was conducted, and result indicating significant difference (p < .001) between healthy and affected cattle. Additionally, as compared to prior studies with Chinese bovine population, the significant results were found. In this study, the allelic frequency D23 finding high deletion in all analyzed Chinese bovine species, and haplotype D12-D23 exhibited a less significant inclination toward susceptibility to BSE.


Subject(s)
Cattle Diseases , Encephalopathy, Bovine Spongiform , Prions , Animals , Cattle/genetics , Encephalopathy, Bovine Spongiform/genetics , Gene Frequency/genetics , Polymorphism, Genetic/genetics , Prion Proteins/genetics , Prions/genetics
17.
Nanoscale Adv ; 4(18): 3883-3891, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36133334

ABSTRACT

Nanopore technology has attracted extensive attention due to its rapid, highly sensitive, and label-free performance. In this study, we aimed to identify proteinogenic amino acids using a wild-type aerolysin nanopore. Specifically, bipolar peptide probes were synthesised by linking four aspartic acid residues to the N-terminal and five arginine residues to the C-terminal of individual amino acids. With the help of the bipolar peptide carrier, 9 proteinogenic amino acids were reliably recognised based on current blockade and dwell time using an aerolysin nanopore. Furthermore, by changing the charge of the peptide probe, two of the five unrecognized amino acids above mentioned were identified. These findings promoted the application of aerolysin nanopores in proteinogenic amino acid recognition.

18.
Chem Asian J ; 17(21): e202200747, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36029274

ABSTRACT

The main protease (Mpro ), which is highly conserved and plays a critical role in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a natural biomarker for SARS-CoV-2. Accurate assessment of the Mpro activity is crucial for the detection of SARS-CoV-2. Herein, we report a nanopore-based sensing strategy that uses an enzyme-catalyzed cleavage reaction of a peptide substrate to measure the Mpro activity. The peptide was specifically cleaved by the Mpro , thereby releasing the output products that, when translocated through aerolysin, quantitatively produced the signature current events. The proposed method exhibited high sensitivity, allowing the detection of Mpro concentrations as low as 1 nM without the use of any signal amplification techniques. This simple, convenient, and label-free nanopore assay may expand the diagnostic tools for viruses.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Nanopores , Humans , COVID-19/diagnosis , Peptides , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/analysis
19.
Int J Mol Med ; 49(3)2022 Mar.
Article in English | MEDLINE | ID: mdl-35014675

ABSTRACT

Following the publication of this article, the authors have realized that the images selected for the 'MCMV+miR­NC' and 'MCMV+miR­1929­3p' data panels (15 months), as featured in the lower of the two rows of data shown in Fig. 4A on p. 726, were derived from the same experimental group. The authors re­examined their original data, and discovered that an error had inadvertently been made on account of the similar file names of the two images. The corrected version of Fig. 4, featuring the correct data for the 'MCMV+miR­NC' experiment, is shown on the next page. The authors regret that this error was not picked up upon before the paper was sent to press, and thank the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish a corrigendum. Note that the error did not affect either the results or the conclusions reported in the study, and all the authors agree to this corrigendum. Furthermore, the authors regret any inconvenience caused to the readership. [the original article was published in International Journal of Molecular Medicine 47: 719-731, 2021; DOI: 10.3892/ijmm.2020.4829].

20.
Adv Mater ; 34(6): e2106797, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34761453

ABSTRACT

Conventional photosensitizers (PSs) often show poor tumor retention and are rapidly cleared from the bloodstream, which is one of the key hindrances to guarantee precise and efficient photodynamic therapy (PDT) in vivo. In this work, a photosensitizer assembly nanosystem that sharply enhances tumor retention up to ≈10 days is present. The PSs are synthesized by meso-substituting anthracene onto a BODIPY scaffold (AN-BDP), which then self-assembles into stable nanoparticles (AN-BDP NPs) with amphiphilic block copolymers due to the strong intermolecular π-π interaction of the anthracene. Additionally, the incorporated anthracene excites the PSs, producing singlet oxygen under red-light irradiation. Although AN-BDP NPs can completely suppress regular test size tumors (≈100 mm3 ) by one-time radiation, only 12% tumor growth inhibition rate is observed in the case of large-size tumors (≈350 mm3 ) under the same conditions. Due to the long-time tumor retention, AN-BDP NPs allow single-dose injection and three-time light treatments, resulting in an inhibition rate over 90%, much more efficient than single-time radiation of conventional clinically used PSs including chlorin-e6 (Ce6) and porphyrin with poor tumor retention. The results reveal the importance of long tumor retention time of PSs for efficient PDT, which can accelerate the clinical development of nanophotosensitizers.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Porphyrins , Animals , Cell Line, Tumor , Mice , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Porphyrins/pharmacology , Porphyrins/therapeutic use , Singlet Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...