Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 498
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 423, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037499

ABSTRACT

The Chinese medicinal fungi "Sanghuang" have been long recognized for their significant and valued medicinal properties, as documented in ancient medical literature. However, in traditional folk medicine, various macrofungi sharing similar appearance, habitat, and therapeutic effects with Sanghuang were erroneously used. These Sanghuang-like fungi mainly belong to the Porodaedalea, Phellinus, and Inonotus genera within the Hymenochaetaceae family. Despite the establishment of the Sanghuangporus genus and the identification of multiple species, the emerging taxonomic references based on morphological, ITS, and mycelial structural features have been inadequate to differentiate Sanghuangporus and Sanghuang-like fungi. To address this limitation, this study presents the first comparative and phylogenetic analysis of Sanghuang-related fungi based on mitogenomes. Our results show that Sanghuangporus species show marked convergence in mitochondrial genomic features and form a distinct monophyletic group based on phylogenetic analyses of five datasets. These results not only deepen our understanding of Sanghuang-like fungi but also offer novel insights into their mitochondrial composition and phylogeny, thereby providing new research tools for distinguishing members of the Sanghuangporus genus. KEY POINTS: • Sanghuangporus, Inonotus, and Porodaedalea are monophyly in sanghuang-like species. • Mitogenome-based analysis exhibits high resolution in sanghuang-like genus. • The mitogenomes provide strong evidence for reclassifying Phellinus gilvus S12 as Sanghuangporus vaninii.


Subject(s)
Phylogeny , Genome, Mitochondrial , Basidiomycota/genetics , Basidiomycota/classification , DNA, Fungal/genetics , Medicine, Chinese Traditional , Sequence Analysis, DNA
2.
J Cell Physiol ; : e31373, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988064

ABSTRACT

Cannabis, often recognized as the most widely used illegal psychoactive substance globally, has seen a shift in its legal status in several countries and regions for both recreational and medicinal uses. This change has brought to light new evidence linking cannabis consumption to various vascular conditions. Specifically, there is an association between cannabis use and atherosclerosis, along with conditions such as arteritis, reversible vasospasm, and incidents of aortic aneurysm or dissection. Recent research has started to reveal the mechanisms connecting cannabinoid compounds to atherosclerosis development. It is well known that the primary biological roles of cannabinoids operate through the activation of cannabinoid receptor types 1 and 2. Manipulation of the endocannabinoid system, either genetically or pharmacologically, is emerging as a promising approach to address metabolic dysfunctions related to obesity. Additionally, numerous studies have demonstrated the vasorelaxant properties and potential atheroprotective benefits of cannabinoids. In preclinical trials, cannabidiol is being explored as a treatment option for monocrotaline-induced pulmonary arterial hypertension. Although existing literature suggests a direct role of cannabinoids in the pathogenesis of atherosclerosis, the correlation between cannabinoids and other vascular diseases was only reported in some case series or observational studies, and its role and precise mechanisms remain unclear. Therefore, it is necessary to summarize and update previously published studies. This review article aims to summarize the latest clinical and experimental research findings on the relationship between cannabis use and vascular diseases. It also seeks to shed light on the potential mechanisms underlying these associations, offering a comprehensive view of current knowledge in this evolving field of study.

3.
Adv Mater ; : e2405086, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940367

ABSTRACT

In situ polymerized solid-state electrolytes have attracted much attention due to high Li-ion conductivity, conformal interface contact, and low interface resistance, but are plagued by lithium dendrite, interface degradation, and inferior thermal stability, which thereby leads to limited lifespan and severe safety hazards for high-energy lithium metal batteries (LMBs). Herein, an in situ polymerized electrolyte is proposed by copolymerization of 1,3-dioxolane with 1,3,5-tri glycidyl isocyanurate (TGIC) as a cross-linking agent, which realizes a synergy of battery thermal safety and interface compatibility with Li anode. Functional TGIC enhances the electrolyte polymeric level. The unique carbon-formation mechanism facilitates flame retardancy and eliminates the battery fire risk. In the meantime, TGIC-derived inorganic-rich interphase inhibits interface side reactions and promotes uniform Li plating. Intrinsically safe LMBs with nonflammability and outstanding electrochemical performances under extreme temperatures (130 °C) are achieved. This functional polymer design shows a promising prospect for the development of safe LMBs.

4.
Nat Commun ; 15(1): 3353, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637535

ABSTRACT

Developing facile and direct synthesis routes for enantioselective construction of cyclic π-conjugated molecules is crucial. However, originate chirality from the distorted structure around heptagon-containing polyarenes is largely overlooked, the enantioselective construction of all-carbon heptagon-containing polyarenes remains a challenge. Herein, we present a highly enantioselective synthesis route for fabricating all carbon heptagon-containing polyarenes via palladium-catalyzed carbene-based cross-coupling of benzyl bromides and N-arylsulfonylhydrazones. A wide range of nonplanar, saddle-shaped tribenzocycloheptene derivatives are efficiently prepared in high yields with excellent enantioselectivities using this approach. In addition, stereochemical stability experiments show that these saddle-shaped tribenzocycloheptene derivatives have high inversion barriers.

5.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38675374

ABSTRACT

Supercritical anti-solvent fluidized bed (SAS-FB) coating technology has the advantages of reducing particle size, preventing high surface energy particle aggregation, improving the dissolution performance and bioavailability of insoluble drugs. The poor solubility of Biopharmaceutics Classification System (BCS) class IV drugs poses challenges in achieving optimal bioavailability. Numerous anti-cancer drugs including paclitaxel (PTX) belong to the BCS class IV, hindering their therapeutic efficacy. To address this concern, our study explored SAS-FB technology to coat PTX with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) onto lactose. Under our optimized conditions, we achieved a PTX coating efficiency of 96.8%. Further characterization confirmed the crystalline state of PTX in the lactose surface coating by scanning electron microscopy and X-ray powder diffraction. Dissolution studies indicated that SAS-FB processed samples release over 95% of the drug within 1 min. Moreover, cell transmembrane transport assays demonstrated that SAS-FB processed PTX samples co-coated with TPGS had an enhanced PTX internalization into cells and a higher permeability coefficient compared to those without TPGS. Finally, compared to unprocessed PTX, SAS-FB (TPGS) and SAS-FB processed samples showed a 2.66- and 1.49-fold increase in oral bioavailability in vivo, respectively. Our study highlights the efficacy of SAS-FB co-coating for PTX and TPGS as a promising strategy to overcome bioavailability challenges inherent in BCS class IV drugs. Our approach holds broader implications for enhancing the performance of similarly classified medications.

6.
Parasit Vectors ; 17(1): 195, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671515

ABSTRACT

BACKGROUND: Toxoplasma gondii and Neospora caninum are closely related protozoan parasites that are considered important causes of abortion in livestock, causing huge economic losses. Hunan Province ranks 12th in the production of beef and mutton in China. However, limited data are available on the seroprevalence, risk factors and molecular characterization of T. gondii and N. caninum in beef cattle and goats in Hunan province, China. METHODS: Sera of 985 beef cattle and 1147 goats were examined for the presence of specific antibodies against T. gondii using indirect hemagglutination test (IHAT) and anti-N. caninum IgG using competitive-inhibition enzyme-linked immunoassay assay (cELISA). Statistical analysis of possible risk factors was performed using PASW Statistics. Muscle samples of 160 beef cattle and 160 goats were examined for the presence of T. gondii DNA (B1 gene) and N. caninum DNA (Nc-5 gene) by nested PCR. The B1 gene-positive samples were genotyped at 10 genetic markers using the multilocus nested PCR-RFLP (Mn-PCR-RFLP). RESULTS: Specific IgG against T. gondii were detected in 8.3% (82/985) and 13.3% (153/1147) and against N. caninum in 2.1% (21/985) and 2.0% (23/1147) of the beef cattle and goats, respectively. Based on statistical analysis, the presence of cats, semi-intensive management mode and gender were identified as significant risk factors for T. gondii infection in beef cattle. Age was a significant risk factor for T. gondii infection in goats (P < 0.05), and age > 3 years was a significant risk factor for N. caninum infection in beef cattle (P < 0.05). PCR positivity for T. gondii was observed in three beef samples (1.9%; 3/160) and seven chevon samples (4.4%; 7/160). Genotyping of PCR positive samples identified one to be ToxoDB#10. The N. caninum DNA was observed in one beef sample (0.6%; 1/160) but was negative in all chevon samples. CONCLUSIONS: To our knowledge, this is the first large-scale serological and molecular investigation of T. gondii and N. caninum and assessment of related risk factors in beef cattle and goats in Hunan Province, China. The findings provide baseline data for executing prevention and control of these two important parasites in beef cattle and goats in China.


Subject(s)
Antibodies, Protozoan , Cattle Diseases , Coccidiosis , Goat Diseases , Goats , Neospora , Toxoplasma , Toxoplasmosis, Animal , Animals , Goats/parasitology , Neospora/genetics , Neospora/immunology , Neospora/isolation & purification , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasma/isolation & purification , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , China/epidemiology , Cattle , Seroepidemiologic Studies , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/parasitology , Goat Diseases/epidemiology , Goat Diseases/parasitology , Antibodies, Protozoan/blood , Female , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Male , Risk Factors , Immunoglobulin G/blood , DNA, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay/veterinary , Genotype , Polymerase Chain Reaction/veterinary
7.
Int J Nanomedicine ; 19: 2625-2638, 2024.
Article in English | MEDLINE | ID: mdl-38505169

ABSTRACT

Purpose: Psoriasis is a chronic and recurrent inflammatory dermatitis characterized by T cell imbalance and abnormal keratinocyte proliferation. MicroRNAs (miRNAs) hold promise as therapeutic agents for this disease; however, their clinical application is hindered by poor stability and limited skin penetration. This study demonstrates the utilization of Framework Nucleic Acid (FNA) for the topical delivery of miRNAs in psoriasis treatment. Methods: By utilizing miRNA-125b as the model drug, FNA-miR-125b was synthesized via self-assembly. The successful synthesis and stability of FNA-miR-125b in bovine fetal serum (FBS) were verified through gel electrophoresis. Subsequently, flow cytometry was employed to investigate the cell internalization on HaCaT cells, while qPCR determined the effects of FNA-miR-125b on cellular functions. Additionally, the skin penetration ability of FNA-miR-125b was assessed. Finally, a topical administration study involving FNA-miR-125b cream on imiquimod (IMQ)-induced psoriasis mice was conducted to evaluate its therapeutic efficacy. Results: The FNA-miR-125b exhibited excellent stability, efficient cellular internalization, and potent inhibition of keratinocyte proliferation. In the psoriasis mouse model, FNA-miR-125b effectively penetrated the skin tissue, resulting in reduced epidermal thickness and PASI score, as well as decreased levels of inflammatory cytokines.


Subject(s)
MicroRNAs , Psoriasis , Animals , Cattle , Mice , MicroRNAs/genetics , Keratinocytes , Skin , Psoriasis/drug therapy , Psoriasis/chemically induced , Imiquimod/therapeutic use , Disease Models, Animal , Mice, Inbred BALB C
8.
Parasitol Res ; 123(3): 168, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517567

ABSTRACT

Cattle ticks (Rhipicephalus microplus) are important economic ectoparasites causing direct and indirect damage to cattle and leading to severe economic losses in cattle husbandry. It is common knowledge that R. microplus is a species complex including five clades; however, the relationships within the R. microplus complex remain unresolved. In the present study, we assembled the complete mitochondrial genome of clade C by next-generation sequencing and proved its correctness based on long PCR amplification. It was 15,004 bp in length and consisted of 13 protein genes, 22 transfer genes, and two ribosomal genes located in the two strains. There were two copies of the repeat region (pseudo-nad1 and tRNA-Glu). Data revealed that cox1, cox2, and cox3 genes were conserved within R. microplus with small genetic differences. Ka/Ks ratios suggested that 12 protein genes (excluding nad6) may be neutral selection. The genetic and phylogenetic analyses indicated that clade C was greatly close to clade B. Findings in the current study provided more data for the identification and differentiation of the R. microplus complex and made up for the lack of information about R. microplus clade C.


Subject(s)
Cattle Diseases , Genome, Mitochondrial , Rhipicephalus , Tick Infestations , Animals , Cattle , Rhipicephalus/genetics , Phylogeny , Tick Infestations/veterinary , Tick Infestations/parasitology , Cattle Diseases/parasitology
9.
Drug Test Anal ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488339

ABSTRACT

5F-MDMB-PICA, an indole-type synthetic cannabinoid (SC), was classified illicit globally in 2020. Although the extensive metabolism of 5F-MDMB-PICA in the human body warrants the development of robust analytical methods for metabolite detection and quantification, a current lack of reference standards for characteristic metabolites hinders such method creation. This work described the synthesis of 18 reference standards for 5F-MDMB-PICA and its possible Phase I metabolites, including three hydroxylated positional isomers R14 to R16. All the compounds were systematic characterized via nuclear magnetic resonance, Fourier transform infrared spectroscopy, and high-resolution mass spectrometry. Furthermore, two methods were developed for the simultaneous detection of all standards using liquid chromatography-tandem mass spectrometry and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. By comparison with authentic samples, R17 was identified as a suitable urine biomarker for 5F-MDMB-PICA uptake.

10.
Plants (Basel) ; 13(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38498522

ABSTRACT

As the only aquatic lineage of Pteridaceae, Parkerioideae is distinct from many xeric-adapted species of the family and consists of the freshwater Ceratopteris species and the only mangrove ferns from the genus Acrostichum. Previous studies have shown that whole genome duplication (WGD) has occurred in Parkerioideae at least once and may have played a role in their adaptive evolution; however, more in-depth research regarding this is still required. In this study, comparative and evolutionary transcriptomics analyses were carried out to identify WGDs and explore their roles in the environmental adaptation of Parkerioideae. Three putative WGD events were identified within Parkerioideae, two of which were specific to Ceratopteris and Acrostichum, respectively. The functional enrichment analysis indicated that the lineage-specific WGD events have played a role in the adaptation of Parkerioideae to the low oxygen concentrations of aquatic habitats, as well as different aquatic environments of Ceratopteris and Acrostichum, such as the adaptation of Ceratopteris to reduced light levels and the adaptation of Acrostichum to high salinity. Positive selection analysis further provided evidence that the putative WGD events may have facilitated the adaptation of Parkerioideae to changes in habitat. Moreover, the gene family analysis indicated that the plasma membrane H+-ATPase (AHA), vacuolar H+-ATPase (VHA), and suppressor of K+ transport growth defect 1 (SKD1) may have been involved in the high salinity adaptation of Acrostichum. Our study provides new insights into the evolution and adaptations of Parkerioideae in different aquatic environments.

11.
Vet Sci ; 11(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38393071

ABSTRACT

Stimbiotic supplementation may provide an innovative feed additive solution to accelerate the proliferation of beneficial fiber-degrading bacteria in the distal intestine and the utilization of dietary fiber. Optimal utilization of dietary fiber has multiple benefits for gut health and nutrient utilization. This study was conducted to evaluate the late gestation and lactation performance, the plasma, colostrum, and milk immunoglobulin (IgA, IgG, and IgM) concentrations, and the anti-inflammatory and antioxidant biomarkers in plasma of sows fed with or without a stimbiotic during the late gestation and lactation phase. A total of 40 sows were allocated to two treatment groups: control (CT) with no supplementation or 100 mg/kg stimbiotic (VP), with 20 sows per treatment. Sows were fed the treatment diets from d 85 of gestation to d 28 of lactation. In the results, the average daily weight gain of piglets during lactation was greater from sows fed in the VP group compared to that in the CT group (p < 0.05). The plasma concentrations of IgM at farrowing and IgG at weaning of the sows fed the diet with the stimbiotic supplementation were much higher than those in the CT sows (p < 0.05), respectively. In addition, the dietary stimbiotic increased the concentrations of IgM in the colostrum and of IgA and IgM in the milk at d 14 of lactation (p < 0.05). Plasma concentrations of malondialdehyde (MDA) on d 0 and d 28 of lactation tended to be lower in sows fed the VP diets compared with those of the sows fed the CT diets. Thus, our study indicated that stimbiotic supplementation could improve the daily weight gain of piglets and the immune function of sows in lactation.

13.
Ecol Evol ; 14(1): e10836, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38239339

ABSTRACT

The Golden apple snail, Pomacea canaliculata, is one of the world's 100 worst invasive alien species that is best known for its damage to wetland agriculture. It also acts as an intermediate host of some zoonotic parasites such as Angiostrongylus cantonensis, posing threats to human public health and safety. Despite is being an important agricultural pest, the genetic information and population expansion history of this snail remains poorly understood in China. In this study, we analyzed the genetic variation and population genetics of P. canaliculata populations in seven regions of China based on molecular markers of three mitochondrial (mt) genes. A total of 15 haplotypes were recognized based on single mt cox1, nad1, and nad4, and eight haplotypes were identified using the concatenated genes. High haplotype diversity, moderate nucleotide diversity, low gene flow, and high rates of gene differentiation among the seven P. canaliculata populations were detected. Shanghai and Yunnan populations showed higher genetic flow and very low genetic differentiation. The results of Tajima's D, Fu's F s, and mismatch distribution showed that P. canaliculata did not experience population expansion in China. Genetic distance based on haplotypes suggested that nad1 gene was more conserved than cox1 gene within P. canaliculata. The phylogenetic analyses showed there may be two geographical lineages in the Chinese mainland. The present study may provide a new genetic marker to analyze P. canaliculata, and results support more evidence for studying the genetic distribution of P. canaliculata in China and contribute to a deeper understanding of its population genetics and evolutionary biology.

14.
RSC Adv ; 14(2): 1216-1228, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38174231

ABSTRACT

The potential applications of Ir2P are promising due to its desirable hardness, but its fundamental properties are still not fully understood. In this study, we present a systematic investigation of Ir2P's structural, electronic, superconducting, optical, and thermodynamic properties of Ir2P under pressure. Our calculations show that Ir2P has a Fm3̄m structure at ambient pressure, which matches well with experimental data obtained from high-pressure synchrotron X-ray diffraction. As pressure increases, a transition from the Fm3̄m to the I4/mmm phase occurs at 103.4 GPa. The electronic structure and electron-phonon coupling reveal that the Fm3̄m and I4/mmm phases of Ir2P are superconducting materials with superconducting transition temperatures of 2.51 and 0.89 K at 0 and 200 GPa, respectively. The optical properties of Ir2P indicate that it has optical conductivity in the infrared, visible, and ultraviolet regions. Additionally, we observed that the reflectivity R(ω) of Ir2P is higher than 76% in the 25-35 eV energy range at different pressures, which suggests that it could be used as a reflective coating. We also explored the finite-temperature thermodynamic properties of Ir2P, including the Debye temperature, the first and second pressure derivatives of the isothermal bulk modulus, and the thermal expansion coefficient up to 2000 K using the quasi-harmonic Debye model. Our findings offer valuable insights for engineers to design better devices.

15.
Biochem Genet ; 62(2): 1087-1102, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37532836

ABSTRACT

Actinomycetes are remarkable natural sources of active natural molecules and enzymes of considerable industrial value. Streptomyces mobaraensis is the first microorganism found to produce transglutaminase with broad industrial applications. Although transglutaminase in S. mobaraensis has been well studied over the past three decades, the genome of S. mobaraensis and its secondary metabolic potential were poorly reported. Here, we presented the complete genome of S. mobaraensis DSM40587 obtained from the German Collection of Microorganisms and Cell Cultures GmbH. It contains a linear chromosome of 7,633,041 bp and a circular plasmid of 23,857 bp. The chromosome with an average GC content of 73.49% was predicted to harbour 6683 protein-coding genes, seven rRNA and 69 tRNA genes. Comparative genomic analysis reveals its meaningful genomic characterisation. A comprehensive bioinformatics investigation identifies 35 putative BGCs (biosynthesis gene clusters) involved in synthesising various secondary metabolites. Of these, 13 clusters showed high similarity (> 55%) to known BGCs coding for polyketides, nonribosomal peptides, hopene, RiPP (Ribosomally synthesized and post-translationally modified peptides), and others. Furthermore, these BGCs with over 65% similarity to the known BGCs were analysed in detail. The complete genome of S. mobaraensis DSM40587 reveals its capacity to yield diverse bioactive natural products and provides additional insights into discovering novel secondary metabolites.

16.
Adv Mater ; 36(3): e2307768, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37852012

ABSTRACT

All-solid-state lithium (Li) metal batteries (ASSLMBs) employing sulfide solid electrolytes have attracted increasing attention owing to superior safety and high energy density. However, the instability of sulfide electrolytes against Li metal induces the formation of two types of incompetent interphases, solid electrolyte interphase (SEI) and mixed conducting interphase (MCI), which significantly blocks rapid Li-ion transport and induces uneven Li deposition and continuous interface degradation. In this contribution, a dynamically stable mixed conducting interphase (S-MCI) is proposed by in situ stress self-limiting reaction to achieve the compatibility of Li metal with composite sulfide electrolytes (Li6 PS5 Cl (LPSCl) and Li10 GeP2 S12 (LGPS)). The rational design of composite electrolytes utilizes the expansion stress induced by the electrolyte decomposition to in turn constrain the further decomposition of LGPS. Consequently, the S-MCI inherits the high dynamical stability of LPSCl-derived SEI and the lithiophilic affinity of Li-Ge alloy in LGPS-derived MCI. The Li||Li symmetric cells with the protection of S-MCI can operate stably for 1500 h at 0.5 mA cm-2 and 0.5 mAh cm-2 . The Li||NCM622 full cells present stable cycling for 100 cycles at 0.1 C with a high-capacity retention of 93.7%. This work sheds fresh insight into constructing electrochemically stable interphase for high-performance ASSLMBs.

17.
BMC Plant Biol ; 23(1): 633, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38066415

ABSTRACT

BACKGROUND: Flower color plays a crucial role in attracting pollinators and facilitating environmental adaptation. Investigating the causes of flower color polymorphism and understanding their potential effects on both ecology and genetics can enhance our understanding of flower color polymorphism in wild plant. RESULTS: In this study, we examined the differences of potential male and female fitness between purple- and yellow- flower individuals in Iris potaninii on the Qinghai-Tibet Plateau, and screened key genes and positively selective genes involved in flower color change. Our results showed that yellow flower exhibited a higher pollen-to-ovule ratio. Yellow flowers were derived from purple flowers due to the loss of anthocyanins, and F3H could be an essential gene affecting flower color variation though expression regulation and sequence polymorphism in this species. Furthermore, our findings suggest that genes positively selected in yellow-flowered I. potaninii might be involved in nucleotide excision repair and plant-pathogen interactions. CONCLUSIONS: These results suggest that F3H induces the flower color variation of Iris potaninii, and the subsequent ecological and additive positive selection on yellow flowers may further enhance plant adaptations to alpine environments.


Subject(s)
Iris Plant , Humans , Iris Plant/genetics , Iris Plant/metabolism , Anthocyanins/genetics , Anthocyanins/metabolism , Tibet , Polymorphism, Genetic , Flowers/genetics , Flowers/metabolism , Color , Pigmentation/genetics
18.
Cell Death Discov ; 9(1): 456, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38097554

ABSTRACT

MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a human paracaspase protein with proteolytic activity via its caspase-like domain. The pharmacological inhibition of MALT1 by MI-2, a specific chemical inhibitor, diminishes the response of endothelial cells to inflammatory stimuli. However, it is largely unknown how MALT1 regulates the functions of vascular smooth muscle cells (SMCs). This study aims to investigate the impact of MALT1 inhibition by MI-2 on the functions of vascular SMCs, both in vitro and in vivo. MI-2 treatment led to concentration- and time-dependent cell death of cultured aortic SMCs, which was rescued by the iron chelator deferoxamine (DFO) or ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, but not by inhibitors of apoptosis (Z-VAD-fmk), pyroptosis (Z-YVAD-fmk), or necrosis (Necrostatin-1, Nec-1). MI-2 treatment downregulated the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy polypeptide 1 (FTH1), which was prevented by pre-treatment with DFO or Fer-1. MI-2 treatment also activated autophagy, which was inhibited by Atg7 deficiency or bafilomycin A1 preventing MI-2-induced ferroptosis. MI-2 treatment reduced the cleavage of cylindromatosis (CYLD), a specific substrate of MALT1. Notably, MI-2 treatment led to a rapid loss of contractility in mouse aortas, which was prevented by co-incubation with Fer-1. Moreover, local application of MI-2 significantly reduced carotid neointima lesions and atherosclerosis in C57BL/6J mice and apolipoprotein-E knockout (ApoE-/-) mice, respectively, which were both ameliorated by co-treatment with Fer-1. In conclusion, the present study demonstrated that MALT1 inhibition induces ferroptosis of vascular SMCs, likely contributing to its amelioration of proliferative vascular diseases.

19.
J Adv Res ; 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37956861

ABSTRACT

BACKGROUND: Aging, a complex and profound journey, leads us through a labyrinth of physiological and pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating the aging process and driving the emergence and progression of aging-related diseases. AIM OF REVIEW: This review aims to offer a comprehensive outline of BRD4's functions involved in the aging process, and potential mechanisms through which BRD4 governs the initiation and progression of various aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW: BRD4 has a fundamental role in regulating the cell cycle, apoptosis, cellular senescence, the senescence-associated secretory phenotype (SASP), senolysis, autophagy, and mitochondrial function, which are involved in the aging process. Several studies have indicated that BRD4 governs the initiation and progression of various aging-related diseases, including Alzheimer's disease, ischemic cerebrovascular diseases, hypertension, atherosclerosis, heart failure, aging-related pulmonary fibrosis, and intervertebral disc degeneration (IVDD). Thus, the evidence from this review supports that BRD4 could be a promising target for managing various aging-related diseases, while further investigation is warranted to gain a thorough understanding of BRD4's role in these diseases.

20.
Front Oncol ; 13: 1205783, 2023.
Article in English | MEDLINE | ID: mdl-37909010

ABSTRACT

We present herein a rare case of large vascular and cardiac metastases of low-grade endometrial stromal sarcoma (LG-ESS) in a female patient, which occurred after misdiagnosis of endometrial stromal nodule (ESN) as submucosal leiomyoma 7 years ago. Preoperative three-dimensional CT reconstruction was used to assess the extent of the lesion. The patient underwent radical resection: thrombectomy and total hysterectomy with bilateral salpingo-oophorectomy without establishing the cardiopulmonary bypass. Intraoperative transesophageal ultrasound (TEE) was used to monitor whether the intracardiac mass was removed completely. To date, this patient is alive without any evidence of recurrence 3 years after surgery. The differential diagnosis of ESN and LG-ESS is often difficult. A clear distinction can only be reliably made after histological analysis of the tumor's entire interface with the neighboring myometrium. This case highlights that follow-ups of patients with ESN are important. Regular follow-up can detect metastasis and recurrence of misdiagnosed LG-ESS as early as possible. Distant metastasis of LG-ESS is rare, especially involving large vessels or the heart. The treatment should largely rely on multidisciplinary cooperation. Although the surgery is traumatic, the perioperative mortality rate is low, and patients can avoid death from congestive heart failure or sudden death.

SELECTION OF CITATIONS
SEARCH DETAIL