Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
Adv Mater ; : e2309015, 2024 May 07.
Article in Italian | MEDLINE | ID: mdl-38714305

ABSTRACT

Topological bosonic systems have recently aroused intense interests in exploring exotic phenomena that have no counterparts in electronic systems. The squeezed bosonic interaction in these systems is particularly interesting, because it can modify the vacuum fluctuations of topological states, drive them into instabilities, and lead to topological parametric oscillators. However, these phenomena remain experimentally elusive because of limited nonlinearities in most existing topological bosonic systems. Here, a topological parametric phonon oscillator is experimentally realized based on a nonlinear nanoelectromechanical Dirac-vortex cavity with strong squeezed interaction. Specifically, the Dirac-vortex cavity is parametrically driven to provide phase-sensitive amplification for topological phonons, leading to the observation of coherent parametric phonon oscillation above the threshold. Additionally, it is confirmed that the random frequency variation caused by fabrication disorders can be suppressed effectively by increasing the cavity size, while the free spectral range reduces at a much slower rate, which benefit the realization of large-area single-mode lasers. Our results represent an important advance in experimental investigations of topological physics with large bosonic nonlinearities and parametric gain. This article is protected by copyright. All rights reserved.

2.
Sci Bull (Beijing) ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38782659

ABSTRACT

The Bloch band theory and Brillouin zone (BZ) that characterize wave-like behaviors in periodic mediums are two cornerstones of contemporary physics, ranging from condensed matter to topological physics. Recent theoretical breakthrough revealed that, under the projective symmetry algebra enforced by artificial gauge fields, the usual two-dimensional (2D) BZ (orientable Brillouin two-torus) can be fundamentally modified to a non-orientable Brillouin Klein bottle with radically distinct manifold topology. However, the physical consequence of artificial gauge fields on the more general three-dimensional (3D) BZ (orientable Brillouin three-torus) was so far missing. Here, we theoretically discovered and experimentally observed that the fundamental domain and topology of the usual 3D BZ can be reduced to a non-orientable Brillouin Klein space or an orientable Brillouin half-turn space in a 3D acoustic crystal with artificial gauge fields. We experimentally identify peculiar 3D momentum-space non-symmorphic screw rotation and glide reflection symmetries in the measured band structures. Moreover, we experimentally demonstrate a novel stacked weak Klein bottle insulator featuring a nonzero Z2 topological invariant and self-collimated topological surface states at two opposite surfaces related by a nonlocal twist, radically distinct from all previous 3D topological insulators. Our discovery not only fundamentally modifies the fundamental domain and topology of 3D BZ, but also opens the door towards a wealth of previously overlooked momentum-space multidimensional manifold topologies and novel gauge-symmetry-enriched topological physics and robust acoustic wave manipulations beyond the existing paradigms.

3.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2290-2298, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812129

ABSTRACT

Ligustilide is the main active component of the volatile oil from Angelica sinensis and Ligusticum chuanxiong in the Umbelliferae family. It is a phthalein compound with anti-inflammatory, analgesic, antioxidant, anti-tumor, anti-atherosclerosis, neuroprotective, and other pharmacological effects. It can improve the permeability of the blood-brain barrier and has important potential in the treatment of neurodegenerative diseases and other nervous system diseases, such as Alzheimer's disease, ischemic stroke, Parkinson's disease, vascular dementia, and depression. Therefore, the mechanism of ligustilide in the treatment of nervous system diseases was summarized to provide a reference for drug development and clinical application.


Subject(s)
4-Butyrolactone , Nervous System Diseases , Humans , Animals , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , 4-Butyrolactone/chemistry , Nervous System Diseases/drug therapy , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
4.
Phys Rev Lett ; 132(11): 113802, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38563911

ABSTRACT

Quantum Hall systems host chiral edge states extending along the one-dimensional boundary of any two-dimensional sample. In solid state materials, the edge states serve as perfectly robust transport channels that produce a quantized Hall conductance; due to their chirality, and the topological protection by the Chern number of the bulk band structure, they cannot be spatially localized by defects or disorder. Here, we show experimentally that the chiral edge states of a lossy quantum Hall system can be localized. In a gyromagnetic photonic crystal exhibiting the quantum Hall topological phase, an appropriately structured loss configuration imparts the edge states' complex energy spectrum with a feature known as point-gap winding. This intrinsically non-Hermitian topological invariant is distinct from the Chern number invariant of the bulk (which remains intact) and induces mode localization via the "non-Hermitian skin effect." The interplay of the two topological phenomena-the Chern number and point-gap winding-gives rise to a non-Hermitian generalization of the paradigmatic Chern-type bulk-boundary correspondence principle. Compared to previous realizations of the non-Hermitian skin effect, the skin modes in this system have superior robustness against local defects and disorders.

5.
Plant Physiol ; 195(2): 970-985, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38478469

ABSTRACT

The Xishuangbanna (XIS) cucumber (Cucumis sativus var. xishuangbannanesis) is a semiwild variety that has many distinct agronomic traits. Here, long reads generated by Nanopore sequencing technology helped assembling a high-quality genome (contig N50 = 8.7 Mb) of landrace XIS49. A total of 10,036 structural/sequence variations (SVs) were identified when comparing with Chinese Long (CL), and known SVs controlling spines, tubercles, and carpel number were confirmed in XIS49 genome. Two QTLs of hypocotyl elongation under low light, SH3.1 and SH6.1, were fine-mapped using introgression lines (donor parent, XIS49; recurrent parent, CL). SH3.1 encodes a red-light receptor Phytochrome B (PhyB, CsaV3_3G015190). A ∼4 kb region with large deletion and highly divergent regions (HDRs) were identified in the promoter of the PhyB gene in XIS49. Loss of function of this PhyB caused a super-long hypocotyl phenotype. SH6.1 encodes a CCCH-type zinc finger protein FRIGIDA-ESSENTIAL LIKE (FEL, CsaV3_6G050300). FEL negatively regulated hypocotyl elongation but it was transcriptionally suppressed by long terminal repeats retrotransposon insertion in CL cucumber. Mechanistically, FEL physically binds to the promoter of CONSTITUTIVE PHOTOMORPHOGENIC 1a (COP1a), regulating the expression of COP1a and the downstream hypocotyl elongation. These above results demonstrate the genetic mechanism of cucumber hypocotyl elongation under low light.


Subject(s)
Cucumis sativus , Genome, Plant , Hypocotyl , Quantitative Trait Loci , Hypocotyl/growth & development , Hypocotyl/genetics , Cucumis sativus/genetics , Cucumis sativus/growth & development , Quantitative Trait Loci/genetics , Phytochrome B/genetics , Phytochrome B/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Light
6.
Front Nutr ; 11: 1327164, 2024.
Article in English | MEDLINE | ID: mdl-38379541

ABSTRACT

Amomum villosum Lour. (A. villosum), known as Sharen in China, is widely used for culinary and medicinal purposes due to containing a diverse set of bioactive compounds. In this study, the optimum ethanol extraction process was optimized and the composition and biological activities (antioxidant and antitumor) of five different fractions (dichloromethane, petroleum ether, ethyl acetate, n-butanol and H2O) extracted from the ethanol extract of A. villosum were investigated. The results showed that the optimal extraction conditions were extraction temperature 80°C, extraction time 120 min, ethanol concentration 40% and solid-liquid ratio 1:25 g/mL. Moreover, 35 bioactive compounds were successfully identified by UPLC-ESI-QTOF-MS/MS from five factions for the first time, including 12 phenolic acids and derivatives, 2 organic acids, 12 flavonoids and derivatives, 2 oxylipins and 7 proanthocyanidins. Among them, ethyl acetate fraction (Fr-EtOAc) exhibited the highest content of total phenolic (374.01 mg GAE/g DW) and flavonoid (93.11 mg RE/g DW), where vanillic acid, catechin, epicatechin and protocatechuic acid were the predominant phenolic compounds that accounting for 81.65% of the quantified bioactive compounds. In addition, Fr-EtOAc demonstrated excellent total antioxidant activity (IC50 of DPPH and ABTS assays were 0.23, 0.08 mg/mL, respectively, and FRAP assay was 322.91 mg VCE/100 g DW) and antitumor activity (1,000 µg/mL, 79.04% inhibition rate). The results could provide guidance for the industrial production and application of A. villosum.

7.
Medicine (Baltimore) ; 103(7): e37077, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363926

ABSTRACT

To examine the factors that contribute to patient delays among individuals with chronic kidney disease (CKD) and offer insights to help develop specific risk management strategies. Conducted as a cross-sectional study between September 2021 and April 2022, this study used a convenient sampling technique to select 245 individuals diagnosed with CKD from a Grade 3 Class A hospital located in Shanxi Province. These individuals were chosen as the subjects of the study. The research participants underwent an investigation using several assessment tools, including socio-demographic information questionnaire, medical behavior, the social support rating scale, the simplified coping style questionnaire, and the General Self-efficacy Scale. The study revealed that 35.4% of individuals with CKD experienced patient delay (the interval between the initial onset and the time of seeking medical attention being longer than or equal to 3 months). Through a multifactorial logistic regression analysis, it was determined that various factors independently influenced patient delay in patients with CKD. These factors included the level of knowledge about CKD, educational level, frequency of attending physical examinations, severity of initial symptoms, social support, self-efficacy, positive coping, and negative coping. Numerous factors contribute to the Patient Delay. To effectively enhance awareness and coping abilities regarding CKD in high-risk groups, it is essential to implement focused and continuous interventions throughout the medical seeking process.


Subject(s)
Renal Insufficiency, Chronic , Humans , Cross-Sectional Studies , Renal Insufficiency, Chronic/therapy , Self Efficacy
8.
BMC Health Serv Res ; 24(1): 256, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419049

ABSTRACT

BACKGROUND: The challenge posed by Alcohol-Related Frequent Attenders (ARFAs) in Emergency Departments (EDs) is growing in Singapore, marked by limited engagement with conventional addiction treatment pathways. Recognizing this gap, this study aims to explore the potential benefits of Assertive Community Treatment (ACT) - an innovative, community-centered, harm-reduction strategy-in mitigating the frequency of ED visits, curbing Emergency Medical Services (EMS) calls, and uplifting health outcomes across a quartet of Singaporean healthcare institutions. METHODS: Employing a prospective before-and-after cohort design, this investigation targeted ARFAs aged 21 years and above, fluent in English or Mandarin. Eligibility was determined by a history of at least five ED visits in the preceding year, with no fewer than two due to alcohol-related issues. The study contrasted health outcomes of patients integrated into the ACT care model versus their experiences under the exclusive provision of standard emergency care across Hospitals A, B, C and D. Following participants for half a year post-initial assessment, the evaluation metrics encompassed socio-demographic factors, ED, and EMS engagement frequencies, along with validated health assessment tools, namely Christo Inventory for Substance-misuse Services (CISS) scores, University of California, Los Angeles (UCLA) Loneliness scores, and Centre for Epidemiologic Studies Depression Scale Revised (CESD-R-10) scores. DISCUSSION: Confronted with intricate socio-economic and medical challenges, the ARFA cohort often grapples with heightened vulnerabilities in relation to alcohol misuse. Pioneering the exploration of ACT's efficacy with ARFAs in a Singaporean context, our research is anchored in a patient-centered approach, designed to comprehensively address these multifaceted clinical profiles. While challenges, like potential high attrition rates and sporadic data collection, are anticipated, the model's prospective contribution towards enhancing patient well-being and driving healthcare efficiencies in Singapore is substantial. Our findings have the potential to reshape healthcare strategies and policy recommendations. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04447079. Initiated on 25 June 2020.


Subject(s)
Alcohol-Related Disorders , Alcoholism , Community Mental Health Services , Emergency Medical Services , Humans , Alcoholism/therapy , Cohort Studies , Prospective Studies , Emergency Service, Hospital
9.
Adv Mater ; 36(18): e2311022, 2024 May.
Article in English | MEDLINE | ID: mdl-38290153

ABSTRACT

2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room-temperature skyrmion-hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room-temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L-TEM). Upon an optimized field cooling procedure, zero-field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30-180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above-room-temperature skyrmion-hosting vdW material, holding great promise for future spintronics.

10.
Appl Microbiol Biotechnol ; 108(1): 170, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38265689

ABSTRACT

The deep-sea environment is an extremely difficult habitat for microorganisms to survive in due to its intense hydrostatic pressure. However, the mechanisms by which these organisms adapt to such extreme conditions remain poorly understood. In this study, we investigated the metabolic adaptations of Microbacterium sediminis YLB-01, a cold and stress-tolerant microorganism isolated from deep-sea sediments, in response to high-pressure conditions. YLB-01 cells were cultured at normal atmospheric pressure and 28 ℃ until they reached the stationary growth phase. Subsequently, the cells were exposed to either normal pressure or high pressure (30 MPa) at 4 ℃ for 7 days. Using NMR-based metabolomic and proteomic analyses of YLB-01 cells exposed to high-pressure conditions, we observed significant metabolic changes in several metabolic pathways, including amino acid, carbohydrate, and lipid metabolism. In particular, the high-pressure treatment stimulates cell division and triggers the accumulation of UDP-glucose, a critical factor in cell wall formation. This finding highlights the adaptive strategies used by YLB-01 cells to survive in the challenging high-pressure environments of the deep sea. Specifically, we discovered that YLB-01 cells regulate amino acid metabolism, promote carbohydrate metabolism, enhance cell wall synthesis, and improve cell membrane fluidity in response to high pressure. These adaptive mechanisms play essential roles in supporting the survival and growth of YLB-01 in high-pressure conditions. Our study offers valuable insights into the molecular mechanisms underlying the metabolic adaptation of deep-sea microorganisms to high-pressure environments. KEY POINTS: • NMR-based metabolomic and proteomic analyses were conducted on Microbacterium sediminis YLB-01 to investigate the significant alterations in several metabolic pathways in response to high-pressure treatment. • YLB-01 cells used adaptive strategies (such as regulated amino acid metabolism, promoted carbohydrate metabolism, enhanced cell wall synthesis, and improved cell membrane fluidity) to survive in the challenging high-pressure environment of the deep sea. • High-pressure treatment stimulated cell division and triggered the accumulation of UDP-glucose, a critical factor in cell wall formation, in Microbacterium sediminis YLB-01 cells.


Subject(s)
Actinomycetales , Proteomics , Amino Acids , Glucose , Uridine Diphosphate , Microbacterium
11.
Small ; 20(5): e2305360, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37786291

ABSTRACT

Thermoelectric (TE) building materials have the potential to revolutionize sustainable architecture by converting temperature differences into electrical energy. This study introduces geopolymeric TE materials enhanced with manganese dioxide (MnO2 ) as a modifying agent. Calorimetric experiments examine the impact of MnO2 on geopolymerization. Mechanical tests show that adding MnO2 (up to 5% by weight) improves the geopolymer composite's strength, achieving a peak compressive strength of 36.8 MPa. The Seebeck effect of the MnO2 -modified geopolymeric composite is also studied. The inclusion of MnO2 boosts the Seebeck coefficient of the geopolymer, reaching a notable 4273 µV C-1 at a 5% MnO2 dosage. This enhancement is attributed to an increase in the density of states (DOS) and a reduction in relaxation time. However, excessive MnO2 or high alkali levels may adversely affect the Seebeck coefficient by lengthening the relaxation time.

12.
Opt Express ; 31(25): 41773-41782, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087567

ABSTRACT

Soft-clamped silicon nitride membrane resonators are capable of coherence times τ exceeding 100 ms at millikelvin bath temperatures. However, harnessing strong optomechanical coupling in dry dilution refrigerators remains a challenge due to vibration issues and heating by optical absorption. Here, we address these issues with an actuator-free optical cavity and mechanical resonator design, with the cavity mounted on a simple vibration-isolation platform. We observe dynamical backaction when the cavity is driven with a free-space optical beam stabilized close to the red sideband using a two-beam locking scheme. Finally, we characterize the effect of absorption heating on coherence time, finding it scales with the intracavity power P as τ ∝ P-(0.34±0.04).

13.
J Med Virol ; 95(11): e29208, 2023 11.
Article in English | MEDLINE | ID: mdl-37947293

ABSTRACT

The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 µg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.


Subject(s)
COVID-19 , Plants, Medicinal , Humans , SARS-CoV-2 , High-Throughput Screening Assays , Quercetin/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Plant Extracts/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Gallic Acid/pharmacology , Molecular Docking Simulation
14.
Phys Chem Chem Phys ; 25(42): 28941-28947, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37855655

ABSTRACT

Lattice dynamics plays a significant role in manipulating the unique physical properties of materials. In this work, femtosecond transient optical spectroscopy is used to investigate the generation mechanism and relaxation dynamics of coherent phonons in Fe1.14Te-a parent compound of chalcogenide superconductors. The reflectivity time series consist of the exponential decay component due to hot carriers and damped oscillations caused by the A1g phonon vibration. The vibrational frequency and dephasing time of the A1g phonons are obtained as a function of temperature. With increasing temperature, the phonon frequency decreases and can be well described with the anharmonicity model. Dephasing time is independent of temperature, indicating that the phonon dephasing is dominated by phonon-defect scattering. The impulsive stimulated Raman scattering mechanism is responsible for the coherent phonon generation. Owing to the resonance Raman effect, the maximum photosusceptibility of the A1g phonons occurs at 1.590 eV, corresponding to an electronic transition in Fe1.14Te.

15.
Light Sci Appl ; 12(1): 255, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37872140

ABSTRACT

Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for robust lasers. Here, we experimentally realize the topological Dirac-vortex microcavity lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave linearly polarized vertical laser emission at a telecom wavelength. We confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size, and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip.

16.
Materials (Basel) ; 16(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895747

ABSTRACT

To address the issues of low strength, poor water stability, and hazardous substance leaching associated with using phosphogypsum (PG) as a direct road-based material, the traditional approach involves employing inorganic cementing materials to stabilize PG, effectively addressing the problems. This study innovatively utilizes the xanthan gum (XG) and sodium methylsiliconate (SM) as curing agents for PG to solve the above problems. An organic curing agent stabilized PG was prepared by dry mixing XG and PG. The unconfined compressive strength, water stability, and leaching behavior of stabilized PG were investigated, the leaching behavior was characterized by ion leaching concentration, and the mechanisms behind the strength development of stabilized PG were explored by SEM and FTIR. The experimental results indicate that the single incorporation of XG reduced the strength and water stability of stabilized PG, while the single incorporation of SM had a limited effect on strength and water stability. In addition, the dual incorporation of XG and SM significantly improved the strength and water stability of stabilized PG. At the same time, the dual incorporation of XG and SM greatly reduced the leaching of hazardous substances from stabilized PG. These results demonstrate the feasibility of using stabilized PG for road base materials.

17.
Mater Horiz ; 10(8): 3034-3043, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37199532

ABSTRACT

In spintronics, ordered magnetic domains are important for magnetic microdevices and controlling the orientation of ordered magnetic domains is important for applications such as domain wall resistance and spin wave propagation. Although a magnetic field or a current can reorient ordered magnetic domains, an energy-efficient electric-field-driven rotation of the ordered magnetic domains remains elusive. Here, using a nanotrenched polymeric layer, we obtain ordered magnetic strip domains in Ni films on a ferroelectric substrate. By applying electric fields to the ferroelectric substrate, we demonstrate that the ordered magnetic strip domains in Ni films are switched between the y- and x-axes driven by electric-fields. This switching of magnetic strip orientation is attributed to the electric-field-modulated in-plane magnetic anisotropies along the x- and y-axes of the Ni films, which are caused by the anisotropic biaxial strain of the ferroelectric substrate via strain-mediated magnetoelectric coupling. These results provide an energy-efficient approach for manipulating the ordered magnetic domains using electric fields.

18.
Nat Commun ; 14(1): 1991, 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37031270

ABSTRACT

Chiral edge states that propagate oppositely at two parallel strip edges are a hallmark feature of Chern insulators which were first proposed in the celebrated two-dimensional (2D) Haldane model. Subsequently, counterintuitive antichiral edge states that propagate in the same direction at two parallel strip edges were discovered in a 2D modified Haldane model. Recently, chiral surface states, the 2D extension of one-dimensional (1D) chiral edge states, have also been observed in a photonic analogue of a 3D Haldane model. However, despite many recent advances in antichiral edge states and chiral surface states, antichiral surface states, the 2D extension of 1D antichiral edge states, have never been realized in any physical system. Here, we report the experimental observation of antichiral surface states by constructing a 3D modified Haldane model in a magnetic Weyl photonic crystal with two pairs of frequency-shifted Weyl points (WPs). The 3D magnetic Weyl photonic crystal consists of gyromagnetic cylinders with opposite magnetization in different triangular sublattices of a 3D honeycomb lattice. Using microwave field-mapping measurements, unique properties of antichiral surface states have been observed directly, including the antichiral robust propagation, tilted surface dispersion, a single open Fermi arc connecting two projected WPs and a single Fermi loop winding around the surface Brillouin zone (BZ). These results extend the scope of antichiral topological states and enrich the family of magnetic Weyl semimetals.

19.
Materials (Basel) ; 16(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36836955

ABSTRACT

TiO2 is a promising anode material for lithium-ion batteries (LIBs) due to its low cost, suitable operating voltage, and excellent structural stability. The inherent poor electron conductivity and low ion diffusion coefficient, however, severely limit its application in lithium storage. Here, Co-doped TiO2 is synthesized by a hydrothermal method as an anode material since Co@TiO2 possesses a large specific surface area and high electronic conductivity. Thanks to the Co dopants, the ion diffusion and electron transport are both greatly improved, which is very beneficial for cycle stability, coulombic efficiency (CE), reversible capacity, and rate performance. As a result, Co@TiO2 shows a high reversible capacity of 227 mAh g-1 at 3 C, excellent rate performance, and cycling stability with a capacity of about 125 mAh g-1 at 10C after 600 cycles (1 C = 170 mA g-1).

20.
Medicine (Baltimore) ; 102(7): e32884, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36800610

ABSTRACT

Transurethral enucleation and resection of prostate (TUERP), as one of the conventional surgical methods for patients with benign prostatic hyperplasia (BPH), usually resulted in pseudo urinary incontinence after surgery. The present study was thereby conducted to evaluate the feasibility of anterior lobe-preserving transurethral enucleation and resection of prostate (ALP-TUERP) on reducing the incidence rate of urinary incontinence after surgery in patients with BPH. Patients diagnosed with BPH underwent surgical treatment were enrolled in the present study within the inclusion criteria. Characteristics including age, prostate volume (before surgery), PSA level, maximum free flow rate, international prostate symptom score, and quality of life were reviewed and compared between the groups of ALP-TUERP and TUERP. Incidence rate of urinary incontinence on 24 hours, 3 days, 7 days, and 14 days after catheter drawing was deemed as main outcome, which was compared between the groups. In addition, secondary outcomes including surgery time, difference value of hemoglobin before and after surgery (∆Hemoglobin), catheter retaining time, catheter flushing time, and incidence rate of recurrent bleeding were also compared between the groups. There were 81 patients included in the present study within the inclusion criteria. There was no statistical difference on the baseline characteristics including age, prostate volume (before surgery), PSA level, maximum free flow rate (before surgery), international prostate symptom score, or quality of life between the 2 groups. Statistical superiority was observed on the incidence rate of urinary incontinence on day 1 (χ2 = 9.375, P = .002), and day 3 (χ2 = 4.046, P = .044) in the group ALP-TUERP, when comparing to group TUERP. However, the difference was not observed anymore after 7 days after catheter drawing (P = .241 for day 7, P = .494 for day 14) between them. In addition, no statistical differences were observed on surgery time, difference value of hemoglobin before and after surgery (∆Hemoglobin), catheter retaining time, or catheter flushing time between the group ALP-TUERP and TUERP (all P > .05). Results of the present study demonstrated a potentially statistical superiority of ALP-TUERP on the reduction of incidence rate of urinary incontinence comparing to conventionally TUERP.


Subject(s)
Prostatic Hyperplasia , Transurethral Resection of Prostate , Urinary Incontinence , Humans , Male , Feasibility Studies , Prostate/surgery , Prostate-Specific Antigen , Prostatic Hyperplasia/complications , Prostatic Hyperplasia/surgery , Prostatic Hyperplasia/diagnosis , Quality of Life , Retrospective Studies , Transurethral Resection of Prostate/methods , Treatment Outcome , Urinary Incontinence/epidemiology , Urinary Incontinence/etiology , Urinary Incontinence/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...