Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Water Res ; 256: 121608, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657310

ABSTRACT

The application of ozone (O3) disinfection has been hindered by its low solubility in water and the formation of disinfection by-products (DBPs). In this study, capacitive disinfection is applied as a pre-treatment for O3 oxidation, in which manganese dioxide with a rambutan-like hollow spherical structure is used as the electrode to increase the charge density on the electrode surface. When a voltage is applied, the negative-charged microbes are attracted to the electrodes and killed by electrical interactions. The contact between microbes and capacitive electrodes leads to changes in cell permeability and burst of reactive oxygen species, thereby promoting the diffusion of O3 into the cells. After O3 penetrates the cell membrane, it can directly attack the cytoplasmic constituents, accelerating fatal and irreversible damage to pathogens. As a result, the performance of the capacitance-O3 process is proved better than the direct sum of the two individual process efficiencies. The design of capacitance-O3 system is beneficial to reduce the ozone dosage and DBPs with a broader inactivation spectrum, which is conducive to the application of ozone in primary water disinfection.


Subject(s)
Disinfection , Manganese Compounds , Oxides , Ozone , Ozone/pharmacology , Ozone/chemistry , Oxides/pharmacology , Oxides/chemistry , Disinfection/methods , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Cell Membrane/drug effects , Water Purification/methods , Electrodes , Bacteria/drug effects
2.
ACS Nano ; 18(8): 6579-6590, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38353995

ABSTRACT

Excitonic effects significantly influence the selective generation of reactive oxygen species and photothermal conversion efficiency in photocatalytic reactions; however, the intrinsic factors governing excitonic effects remain elusive. Herein, a series of single-atom catalysts with well-defined M1-N3C1 (M = Mn, Fe, Co, and Ni) active sites are designed and synthesized to investigate the structure-activity relationship between photocatalytic materials and excitonic effects. Comprehensive characterization and theoretical calculations unveil that excitonic effects are positively correlated with the number of valence electrons in single metal atoms. The single Mn atom with 5.93 valence electrons exhibits the weakest excitonic effects, which dominate superoxide radical (O2•-) generation through charge transfer and enhance photothermal conversion efficiency. Conversely, the single Ni atom with 9.27 valence electrons exhibits the strongest excitonic effects, dominating singlet oxygen (1O2) generation via energy transfer while suppressing photothermal conversion efficiency. Based on the valence electron number dependent excitonic effects, a reaction environment with hyperthermia and abundant cytotoxic O2•- is designed, achieving efficient and stable water disinfection. This work reveals single metal atom dependent excitonic effects and presents an atomic-level methodology for catalytic application targeted reaction environment tailoring.

3.
Nat Commun ; 14(1): 7011, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919306

ABSTRACT

The structure-activity relationship in catalytic ozonation remains unclear, hindering the understanding of activity origins. Here, we report activity trends in catalytic ozonation using a series of single-atom catalysts with well-defined M1-N3C1 (M: manganese, ferrum, cobalt, and nickel) active sites. The M1-N3C1 units induce locally polarized M - C bonds to capture ozone molecules onto M atoms and serve as electron shuttles for catalytic ozonation, exhibiting excellent catalytic activities (at least 527 times higher than commercial manganese dioxide). The combined in situ characterization and theoretical calculations reveal single metal atom-dependent catalytic activity, with surface atomic oxygen reactivity identified as a descriptor for the structure-activity relationship in catalytic ozonation. Additionally, the dissociation barrier of surface peroxide species is proposed as a descriptor for the structure-activity relationship in ozone decomposition. These findings provide guidelines for designing high-performance catalytic ozonation catalysts and enhance the atomic-level mechanistic understanding of the integral control of ozone and methyl mercaptan.

4.
Environ Sci Technol ; 57(51): 21876-21887, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-37978925

ABSTRACT

Effective and affordable disinfection technology is one key to achieving Sustainable Development Goal 6. In this work, we develop a process by integrating Far-UVC irradiation at 222 nm with free chlorine (UV222/chlorine) for rapid inactivation of the chlorine-resistant and opportunistic Aspergillus niger spores in drinking water. The UV222/chlorine process achieves a 5.0-log inactivation of the A. niger spores at a chlorine dosage of 3.0 mg L-1 and a UV fluence of 30 mJ cm-2 in deionized water, tap water, and surface water. The inactivation rate constant of the spores by the UV222/chlorine process is 0.55 min-1, which is 4.6-fold, 5.5-fold, and 1.8-fold, respectively, higher than those of the UV222 alone, chlorination alone, and the conventional UV254/chlorine process under comparable conditions. The more efficient inactivation by the UV222/chlorine process is mainly attributed to the enhanced generation of reactive chlorine species (e.g., 6.7 × 10-15 M of Cl•) instead of hydroxyl radicals from UV222 photolysis of chlorine, which is verified through both experiments and a kinetic model. We further demonstrate that UV222 photolysis damages the membrane integrity and benefits the penetration of chlorine and radicals into cells for inactivation. The merits of the UV222/chlorine process over the UV254/chlorine process also include the more effective inhibition of the photoreactivation of the spores after disinfection and the lower formation of chlorinated disinfection byproducts and toxicity.


Subject(s)
Drinking Water , Water Purification , Chlorine/pharmacology , Spores, Fungal , Photolysis , Disinfection , Ultraviolet Rays , Chlorides
5.
Water Res ; 245: 120612, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37729695

ABSTRACT

Well water is an important water source in isolated rural areas but easily suffers from microbial contamination. Herein, we anchored periodic Au nanoarrays on mesoporous silica nanodisks (Au-MSN) to fabricate a solar-driven nano-stove for well water disinfection. The solar/Au-MSN process completely inactivated 3.98, 6.55, 7.11 log10 cfu/mL, and 3.37 log10 pfu/mL of Aspergillus niger spores, Escherichia coli, chlorine-resistant Spingopyxis sp. BM1-1, and bacteriophage MS2 within 5 min, respectively. Moreover, the complete inactivation of various microorganisms (even at a viable but nonculturable state) was achieved in the flow-through reactor under natural solar light in real well water matrixes. Thorough characterizations and theoretical simulations verified that the densely anchoring strategy of Au-MSN's nanoarray worked on broadband absorption via the photon confinement effect, and trace amounts of Au can induce strong electromagnetic fields and collective localized heating. The resulting surge of 1O2 and heat synergically destroyed membranes, dysfunction cellular self-defense and metabolic system, induced intracellular oxidative stress, and ultimately inactivated microorganisms. Additionally, the 1O2-dominated oxidation and cell adhesion facilitated the selective disinfection in real well water matrixes. This study provides a cost-effective and practical solution for efficient well water disinfection, which assists isolated rural areas in getting safe drinking water.

6.
Environ Sci Technol ; 57(35): 13205-13216, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37487235

ABSTRACT

The design of a micro-/nanoreactor is of great significance for catalytic ozonation, which can achieve effective mass transfer and expose powerful reaction species. Herein, the mesoporous carbon with atomic Fe-N4 sites embedded in the ordered carbon nanochannels (Fe-N4/CMK-3) was synthesized by the hard-template method. Fe-N4/CMK-3 can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the internal catalytic ozonation of CH3SH. During the CH3SH oxidation process, the mass transfer coefficient of the Fe-N4/CMK-3 confined system with sufficient O3 transfer featured a level of at least 1.87 × 10-5, which is 34.6 times that of the Fe-N4/C-Si unconfined system. Detailed experimental studies and theoretical calculations demonstrated that the anchored atomic Fe-N4 sites and nanoconfinement effects regulated the local electronic structure of the catalyst and promoted the activation of O3 molecules to produce atomic oxygen species (AOS) and reactive oxygen species (ROS), eventually achieving efficient oxidation of CH3SH into CO2/SO42-. Benefiting from the high diffusion rate and the augmentation of AOS/ROS, Fe-N4/CMK-3 exhibited an excellent poisoning tolerance, along with high catalytic durability. This contribution provides the proof-of-concept strategy for accelerating catalytic ozonation of sulfur-containing volatile organic compounds (VOCs) by combining confined catalysis and atomic catalysts and can be extended to the purification of other gaseous pollutants.


Subject(s)
Carbon , Ozone , Reactive Oxygen Species , Catalysis , Nanotechnology
7.
Ecotoxicol Environ Saf ; 263: 115212, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37418945

ABSTRACT

Antimicrobial resistance has gained increasing attention, because of the awareness of its potential health risks. Strategies for the removal of antibiotic resistance genes (ARGs) are urgently required. In the present study, UV-LEDs at wavelength of 265 and 285 nm were integrated at five conditions, including single 265 nm UV-LED, single 285 nm UV-LED, and combined 265 nm and 285 nm UV-LED at different intensities, to remove tet A, cat 1, and amp C. The ARGs removal efficiency, gene behavior, and possible cellular mechanism were analyzed using real-time quantitative PCR, flow cytometry, and transmission electron microscopy (TEM). The 265 nm UV-LED is more effective than the 285 nm UV-LED and their combinations in terms of ARGs control, in which 1.91, 1.71, and 1.45 log were removed for tet A, cat 1, and amp C, respectively, at a UV dosage of 500 mJ/cm2. The intracellular gene leakage was detected in all five UV-LED experiment scenarios even when the cell membrane damage was insignificant with the highest increase of 0.69 log ARGs. ROS was generated during the irradiation, and the ROS was strongly negative correlated with intracellular ARGs, which could promote the degradation and removal of ARGs. This study provides a new insight of intracellular ARGs removal, because direct irradiation, ROS oxidation, and leakage to the extracellular serve as the three main pathways under high-dosage UV-LED irradiation. Further research should be focused on the mechanism and optimization of UV technology with 265 nm UV-LED for ARG control.


Subject(s)
Genes, Bacterial , Water Purification , Anti-Bacterial Agents/pharmacology , Reactive Oxygen Species , Wastewater , Drug Resistance, Microbial/genetics , Ultraviolet Rays
8.
Environ Sci Technol ; 57(24): 9064-9074, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37257188

ABSTRACT

Far-UVC radiation is an emerging tool for combating pathogenic microorganisms in water, but its vulnerability to water matrix components remains unclear. We herein report the critical impacts of nitrate during Far-UVC disinfection of water. Nitrate at environmentally relevant concentrations (0.5-10.0 mg-N L-1) significantly inhibits Escherichia coli inactivation by Far-UVC radiation at 222 nm, via prolonging the "lag phase" of inactivation and reducing the inactivation rate constants by 1.08-2.74 times, while it shows negligible impact on E. coli inactivation by UVC radiation at 254 nm. The inhibitory impact of nitrate on Far-UVC disinfection is attributed to its strong light-shielding effect. Although hydroxyl radicals and reactive nitrogen species are generated from Far-UVC photolysis of nitrate at high concentrations of 10-13 and ∼10-7 M, respectively, those radicals are unable to compensate for the light-shielding effect of nitrate on E. coli inactivation. Moreover, reactive nitrogen species lead to the formation of nitrogenous byproducts, which increase the genotoxicity of the water. The findings advance the fundamental photochemistry and radical chemistry of nitrate at 222 nm and provide useful insights to guide the operation of Far-UVC in treating nitrate-containing water.


Subject(s)
Escherichia coli , Nitrates , Escherichia coli/radiation effects , Nitrates/pharmacology , Disinfection , Photolysis , Ultraviolet Rays
9.
Angew Chem Int Ed Engl ; 62(26): e202305355, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37096446

ABSTRACT

Photocatalytic oxygen reduction reaction (ORR) offers a promising hydrogen peroxide (H2 O2 ) synthetic strategy, especially the one-step two-electron (2e- ) ORR route holds great potential in achieving highly efficient and selectivity. However, efficient one-step 2e- ORR is rarely harvested and the underlying mechanism for regulating the ORR pathways remains greatly obscure. Here, by loading sulfone units into covalent organic frameworks (FS-COFs), we present an efficient photocatalyst for H2 O2 generation via one-step 2e- ORR from pure water and air. Under visible light irradiation, FS-COFs exert a superb H2 O2 yield of 3904.2 µmol h-1 g-1 , outperforming most reported metal-free catalysts under similar conditions. Experimental and theoretical investigation reveals that the sulfone units accelerate the separation of photoinduced electron-hole (e- -h+ ) pairs, enhance the protonation of COFs, and promote O2 adsorption in the Yeager-type, which jointly alters the reaction process from two-step 2e- ORR to the one-step one, thereby achieving efficient H2 O2 generation with high selectivity.


Subject(s)
Hydrogen Peroxide , Metal-Organic Frameworks , Humans , Electrons , Hypoxia , Sulfones
10.
ACS Nano ; 17(9): 8755-8766, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37070712

ABSTRACT

Comprehensively understanding the interdependency between the orientated atomic array and intrinsic piezoelectricity in one-dimension (1D) tellurium (Te) crystals will greatly benefit their practical piezo-catalytic applications. Herein, we successfully synthesized the various 1D Te microneedles by precisely orientating the atomic growth orientation by tuning (100)/(110) planes ratios (Te-0.6, Te-0.3, Te-0.4) to reveal the secrets of piezoelectricity. Explicitly, the theoretical simulations and experimental results have solidly validated that the Te-0.6 microneedle grown along the [110] orientation possesses a stronger asymmetric distribution of Te atoms array causing the enhanced dipole moment and in-plane polarization, which boosts a higher transfer and separation efficiency of the electron and hole pairs and a higher piezoelectric potential under the same stress. Additionally, the orientated atomic array along the [110] has p antibonding states with a higher energy level, resulting in a higher CB potential and a broadened band gap. Meanwhile, it also has a much lower barrier toward the valid adsorption of H2O and O2 molecules over other orientations, effectively conducive to the production of reactive oxygen species (ROS) for the efficient piezo-catalytic sterilization. Therefore, this study not only broadens the fundamental perspectives in understanding the intrinsic mechanism of piezoelectricity in 1D Te crystals but also provides a candidate 1D Te microneedle for practical piezo-catalytic applications.

11.
Water Res ; 233: 119781, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36841167

ABSTRACT

In rural areas where low-temperature groundwater is used as a drinking water source, cost-effective sterilization techniques are needed to prevent groundwater consumers from the disease risks triggered by pathogenic microorganisms like Escherichia coli and fungal spores. In this study, micro/nano bubbles (MNBs) coupled with the tellurium (Te)-based catalysts were used to considerably enhance the solar disinfection (SODIS) efficiency while overcoming the intrinsic defects of SODIS, particularly in low-temperature. Sterilization tests showed that 6.5 log10 cfu/mL of E. coli K-12 and 4.0 log10 cfu/mL of Aspergillus niger spores were completely inactivated within 5 min while applying this novel process for disinfection of raw groundwater, even in low-temperature. The underlying mechanisms of the extraordinary sterilization efficiency were revealed through comprehensive characterization of the catalysts and the physiological changes of the microorganisms. The localized surface plasmon resonance (LSPR) effect of the Te catalysts was identified to take advantage of photothermal synergism to achieve cell death. The integration of MNBs with the facet-engineered Te catalysts improved the photothermal catalytic effect and extracellular electron transfer, which substantially strengthened disinfection efficiency. This study provides a targeted solution into microbial inactivation in groundwater and emphasizes a cost-effective groundwater sterilization process.


Subject(s)
Groundwater , Water Purification , Tellurium , Escherichia coli , Groundwater/microbiology , Disinfection/methods , Water Purification/methods
12.
Environ Sci Technol ; 56(17): 12542-12552, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35976624

ABSTRACT

UVA photolysis of nitrite (NO2-) occurs in a number of natural and engineered aquatic systems. This study reports for the first time that pathogenic microorganisms can be effectively inactivated during the coexposure of UVA irradiation and NO2- under environmentally relevant conditions. The results demonstrated that more than 3 log inactivation of Escherichia coli K-12, Staphylococcus aureus, and Spingopyxis sp. BM1-1 was achieved by UVA photolysis of 2.0 mg-N L-1 of NO2- in synthetic drinking water and real surface water. The inactivation was mainly attributed to the reactive species generated from UVA photolysis of NO2- rather than UVA irradiation or NO2- oxidation alone. The inactivation was predominantly contributed by the reactive nitrogen species (NO2• and ONOO-/HOONO) instead of the reactive oxygen species (HO• or O2•-). A kinetic model to simulate the reactive species generation from UVA photolysis of NO2- was established, validated, and used to predict the contributions of different reactive species to the inactivation under various environmental conditions. Several advanced tools (e.g., D2O - labeling with Raman spectroscopy) were used to demonstrate that the inactivation by the UVA/NO2- treatment was attributed to the DNA destruction by the reactive nitrogen species, which completely suppressed the viable but nonculturable (VBNC) states and the reactivation of bacteria. This study highlights a novel process for the inactivation of pathogenic microorganisms in water and emphasizes the critical role of reactive nitrogen species in water disinfection and purification.


Subject(s)
Escherichia coli K12 , Water Purification , Disinfection/methods , Escherichia coli/radiation effects , Nitrites , Nitrogen Dioxide , Photolysis , Reactive Nitrogen Species , Ultraviolet Rays , Water , Water Purification/methods
13.
Environ Sci Technol ; 56(16): 11657-11669, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35881963

ABSTRACT

The elimination of gaseous sulfur-containing volatile organic compounds (S-VOCs) by a microbubble-assisted Fenton-like process is an innovative strategy. Herein, we established a microbubble-assisted Fenton-like process to eliminate malodorous microbubble CH3SH as representative gaseous S-VOCs, in which BiOCl nanosheets loaded on a three-dimensional sponge were exposed to (001) or (010) facets and induced Fenton-like interface reactions. Intriguingly, the microbubble-assisted Fenton-like process significantly removed 99.9% of CH3SH, higher than that of the macrobubble-assisted Fenton-like process (39.0%). The self-accelerating interfacial catalytic mechanism was in-depth identified by in situ ATR-FTIR, PTR-TOF-MS, EPR, and DFT computational study. The extraordinary elimination performance of microbubble-assisted Fenton-like process lies in the enhancing dissolution/mass transfer of gaseous CH3SH in the gas/liquid phase and the tight contact between CH3SH-microbubbles and 3D-BiOCl sponge due to the low rising velocity (0.13 mm s-1) and negative charge (-45.53 mV) of CH3SH-microbubbles, as well as the effective generation of 1O2 by activating the enriched dissolved oxygen in CH3SH-microbubble via effective electron-polarized sites on 3D-BiOCl sponge. Furthermore, CH3SH-microbubbles transferred electrons to H2O2 through electron-rich oxygen vacancy centers of the 3D-BiOCl sponge to generate more •OH, thus achieving excellent elimination performance. Overall, this study demonstrates the enhanced self-accelerating interfacial catalytic elimination by S-VOC microbubble and provides the underlying mechanisms.


Subject(s)
Microbubbles , Volatile Organic Compounds , Gases , Hydrogen Peroxide , Oxygen , Sulfur
14.
J Hazard Mater ; 437: 129373, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35728326

ABSTRACT

The pathogenic microorganisms in water pose a great threat to human health. Photothermal and photothermocatalytic disinfection using nanomaterials (NPs) has offered a promising and effective strategy to address the challenges in solar water disinfection (SODIS), especially in the point-of-use operations. This review aims at providing comprehensive and state-of-the-art knowledge of photothermal-based disinfection by NPs. The fundamentals and principles of photothermal-based disinfection were first introduced. Then, recent advances in developing photothermal/photothermocatalytic catalysts were systematically summarized. The light-to-heat conversion and disinfection performance of a large variety of photothermal materials were presented. Given the complicated mechanisms of photothermal-based disinfection, the attacks from reactive oxygen species and heat, the destruction of bacterial cells, and the antibacterial effects of released metal ions were highlighted. Finally, future challenges and opportunities associated with the development of cost-effective photothermal/photothermocatalytic disinfection systems were outlined. This review will provide guidance in designing future NPs and inspire more research efforts from environmental nano-communities to move towards practical water disinfection operations.


Subject(s)
Nanostructures , Water Purification , Disinfection , Humans , Sunlight , Water
15.
Water Res ; 217: 118423, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35417821

ABSTRACT

Solar disinfection (SODIS) is regarded as an affordable and effective point-of-use (POU) water disinfection treatment urgently needed in rural developing world. This work developed an enhanced SODIS scheme that utilized a novel flower pollen-based catalyst (Te-TRP). The bench-scale experiments demonstrated 100% photothermocatalytic inactivation of approximately 7-log E. coli K-12, Spingopyxis sp. BM1-1, or S. aureus bacterium by Te-TRP within 40-60 min. Moving toward practical device design, we constructed a flow-through reactor and demonstrated the outstanding water disinfection performance of Te-TRP. The in-depth mechanistic study revealed the synergetic effect between photocatalysis and photothermal conversion and identified the bacterial inactivation pathway. 1O2 and ·O2¯ were verified to be the dominant reactive oxygen species involved in the bacterial inactivation. The damage to bacterial cells caused by photothermocatalytic reactions was systematically investigated, demonstrating the cell membrane destruction, the loss of enzyme activity, the increased cell membrane permeability, and the complete inactivation of bacteria without the viable but nonculturable state cells. This work not only affords a facile approach to preparing biomaterial-based catalysts capable of efficient photothermocatalytic bacterial inactivation, but also proposes a prototype of POU water treatment, opening up an avenue for sustainable environmental remediation.


Subject(s)
Disinfection , Water Purification , Anti-Bacterial Agents , Bacteria , Escherichia coli , Flowers , Pollen , Staphylococcus aureus
16.
Environ Sci Technol ; 56(8): 4936-4949, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35348318

ABSTRACT

Nano- and microplastics have become a serious global concern, threatening our living environments. Previous studies have shown that many organisms, including bacteria, animals, and plants, can be affected by microplastics. However, little is known about one ecologically important group of soil organisms, the protists. In this study, we investigated how polystyrene micro- and nanoplastics interacted with a soil amoeba Dictyostelium discoideum. The results showed that environmental concentrations of nano- and microplastics could negatively affect the soil amoeba's fitness and development. D. discoideum ingested both nano- and microplastics through phagocytosis but packed and excreted them during slug migration, which also promoted their biodegradation. Fourier transform infrared spectroscopy analyses revealed the formation of new oxygen-containing functional groups and the sign of possible oxidation of polystyrene. Also, nano- and microplastic exposure disrupted the nutrient and energy metabolisms of D. discoideum and affected the expression of key genes (e.g., cf45-1, dcsA, aprA, dymB, and gefB) related to morphogenesis and phagocytosis. In conclusion, our results show that nano- and microplastics have complex bilateral interactions with the soil amoeba, affecting each other's fate in the soil environment. This study provides new insights into how soil protists interact with nano- and microplastics in the soil ecosystem.


Subject(s)
Amoeba , Dictyostelium , Amoeba/microbiology , Animals , Ecosystem , Microplastics , Plastics , Polystyrenes , Soil
17.
Environ Sci Technol ; 56(6): 3678-3688, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35195408

ABSTRACT

Catalytic ozonation of methyl mercaptan (CH3SH) can effectively control this unbearable odorous sulfur-containing volatile organic compound (S-VOC). The construction of an electronic metal-support interaction (EMSI) coordination structure to maximize the number of active sites and increase the intrinsic activity of active sites is an effective means to improve catalytic performance. In this work, the abundant Si-OH groups on PSBA-15 (SBA-15 before calcination) were used to anchor Mn to form a Si-O-Mn-based EMSI coordination structure. Detailed characterizations and theoretical simulations reveal that the strong EMSI effect significantly adjusts and stabilizes the electronic structure of Mn 3d states, resulting in an electron-rich center on the Si-O-Mn bond to promote the specific adsorption/activation of ozone (O3) and an electron-poor center on the (Si-O-)Mn-O bond to adsorb a large amount of CH3SH accompanied by its own oxidative degradation. In situ Raman and in situ Fourier transform infrared (FTIR) analyses identify that catalytic ozonation over 3.0Mn-PSBA generates atomic oxygen species (AOS/*O) and reactive oxygen species (ROS/•O2-) to achieve efficient decomposition of CH3SH into CO2/SO42-. Furthermore, the electrons obtained from CH3SH in electron-poor centers are transferred to maintain the redox cycle of Mn2+/3+ → Mn4+ → Mn2+/3+ through the internal bond bridge, thus accomplishing the efficient and stable degradation of CH3SH prolonged to 180 min. Therefore, the rational design of catalysts with abundant active sites and optimized inherent activity via the EMSI effect can provide significant potential to improve catalytic performance and eliminate odorous gases.

18.
Environ Sci Technol ; 55(24): 16723-16734, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34882404

ABSTRACT

Constructing catalysts with electronic metal-support interaction (EMSI) is promising for catalytic reactions. Herein, graphene-supported positively charged (Pt2+/Pt4+) atomically dispersed Pt catalysts (AD-Pt-G) with PtxC3 (x = 1, 2, and 4)-based EMSI coordination structures are achieved for boosting the catalytic ozonation for odorous CH3SH removal. A CH3SH removal efficiency of 91.5% can be obtained during catalytic ozonation using optimum 0.5AD-Pt-G within 12 h under a gas hourly space velocity of 60,000 mL h-1 g-1, whereas that of pure graphene is 40.4%. Proton transfer reaction time-of-flight mass spectrometry, in situ diffuse reflectance infrared Fourier transform spectroscopy/Raman, and electron spin resonance verify that the PtxC3 coordination structure with atomic Pt2+ sites on AD-Pt-G can activate O2 to generate peroxide species (*O2) for partial oxidation of CH3SH during the adsorption period and trigger O3 into surface atomic oxygen (*Oad), *O2, and superoxide radicals (·O2-) to accomplish a stable, high-efficiency, and deeper oxidation of CH3SH during the catalytic ozonation stage. Moreover, the results of XPS and DFT calculation imply the occurrence of Pt2+ → Pt4+ → Pt2+ recirculation on PtxC3 for AD-Pt-G to maintain the continuous catalytic ozonation for 12 h, i.e., Pt2+ species devote electrons in 5d-orbitals to activate O3, while Pt4+ species can be reduced back to Pt2+ via capturing electrons from CH3SH. This study can provide novel insights into the development of atomically dispersed Pt catalysts with a strong EMSI effect to realize excellent catalytic ozonation for air purification.


Subject(s)
Graphite , Ozone , Catalysis , Oxidation-Reduction , Oxygen
19.
Water Res ; 203: 117557, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34418644

ABSTRACT

Liquid sludge often contains odorous and toxic hydrogen sulfide and high levels of FeII compounds (e.g., iron sulfides), due to the extensive use of iron salts for hydrogen sulfide control in sewers and for enhanced primary treatment and phosphate removal in wastewater treatment plants. We proposed and verified that dosing appropriate chemical oxidants in the sulfide-iron-laden sludge can be a simple and cost-effective strategy to remove hydrogen sulfide, phosphate, and emerging organic contaminants, and to improve sludge dewaterability simultaneously. Among the seven oxidants investigated, H2O2, ClO2 and NaClO2 were the more cost-effective oxidants than others to control hydrogen sulfide release from the liquid sludge. Dosing these three oxidants also improved sludge dewaterability and removed dissolved phosphate from the liquid sludge, with H2O2 performing the best. Hydrogen sulfide was removed via both direct oxidation by the dosed oxidants and indirect oxidation by the FeIII that was in-situ formed from oxidation of the FeII compounds in the sludge. The in-situ formed FeIII also precipitated/adsorbed the soluble phosphate into the solid form (FePO4). Fenton-like reactions occurred between H2O2 and the FeII compounds in the sludge, and hydroxyl radicals (HO•) were generated. HO• oxidized hydrogen sulfide, destructed refractory organic emerging contaminants and sludge extracellular polymeric compounds (EPSs), and improved the sludge dewaterability. The formation of HO• can be enhanced by hydrogen sulfide and the sludge EPSs present in the sludge through providing more available FeII for the Fenton-like reactions. This study demonstrates the importance of selecting and dosing suitable oxidants to the sulfide-iron-laden sludge with due consideration for the multiple benefits in engineering practices. The same principles may be also used in formulating a dual oxidant-iron strategy to treat sulfide-iron-laden sewage, sludge, and sediments for simultaneous abatement of various pollutants.


Subject(s)
Hydrogen Sulfide , Sewage , Hydrogen Peroxide , Iron , Oxidants , Oxidation-Reduction , Phosphates , Sulfides , Waste Disposal, Fluid
20.
Environ Res ; 197: 111026, 2021 06.
Article in English | MEDLINE | ID: mdl-33744265

ABSTRACT

Here we developed the functionalized biochar as low-cost and heavy metal-free photocatalysts via a facile iodine doping method, which exhibit efficient adsorption and visible-light-driven photocatalytic degradation of representative organic pollutants, phenol and tetracycline. On one hand, iodine doping elevates the adsorption via creating extra pores, e.g., the adsorbed amounts of phenol by iodine-doped WSP and OSR biochar are increased by 161.8% and 146.3%, respectively, which in turn facilitates the photocatalytic oxidation of the adsorbed pollutants. On the other hand, iodine doping leads to the strong photo-induced excitation and remarkably reduced charge carrier transfer resistance, boosting the photocatalytic activity of iodine-doped biochar by more than 20 orders towards organic pollutants (e.g., phenol) degradation. The systematic analysis of reactive species reveals the active roles of O2-, H2O2, 1O2, OH, electrons, and holes in photocatalytic process and identifies O2- to be the major contributor. This work affords a facile approach to generating porous and visible-light-driven photocatalyst from biomass for efficient adsorbing and degrading organic pollutants, opening up an avenue to turn biowaste into biomaterials for sustainable environmental remediation.


Subject(s)
Doping in Sports , Environmental Pollutants , Iodine , Adsorption , Catalysis , Charcoal , Hydrogen Peroxide , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...