Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Microsyst Nanoeng ; 10: 83, 2024.
Article in English | MEDLINE | ID: mdl-38915828

ABSTRACT

Separating plasma from whole blood is an important sample processing technique required for fundamental biomedical research, medical diagnostics, and therapeutic applications. Traditional protocols for plasma isolation require multiple centrifugation steps or multiunit microfluidic processing to sequentially remove large red blood cells (RBCs) and white blood cells (WBCs), followed by the removal of small platelets. Here, we present an acoustofluidic platform capable of efficiently removing RBCs, WBCs, and platelets from whole blood in a single step. By leveraging differences in the acoustic impedances of fluids, our device generates significantly greater forces on suspended particles than conventional microfluidic approaches, enabling the removal of both large blood cells and smaller platelets in a single unit. As a result, undiluted human whole blood can be processed by our device to remove both blood cells and platelets (>90%) at low voltages (25 Vpp). The ability to successfully remove blood cells and platelets from plasma without altering the properties of the proteins and antibodies present creates numerous potential applications for our platform in biomedical research, as well as plasma-based diagnostics and therapeutics. Furthermore, the microfluidic nature of our device offers advantages such as portability, cost efficiency, and the ability to process small-volume samples.

2.
Front Public Health ; 12: 1357311, 2024.
Article in English | MEDLINE | ID: mdl-38873306

ABSTRACT

Limited data exist on HPV prevalence and genotyping during the COVID-19 pandemic. A total of 130,243 samples from 129, 652 women and 591 men who visited the First People's Hospital of Linping District between 2016 and 2022 were recruited. HPV genotypes were detected by polymerase chain reaction (PCR) amplification and nucleic acid molecular hybridization. Then the prevalence characteristics of HPV genotypes and trends in HPV infection rates from 2016 to 2022 were analyzed. Results showed that among the study population, the overall prevalence of HPV infection was 15.29%, with 11.25% having single HPV infections and 4.04% having multiple HPV infections, consistent with previous findings. HPV genotypes exhibited similar distribution patterns in both male and female groups, with HPV16, HPV52, HPV58, HPV18, and HPV39 being the most prevalent. Age-related analysis unveiled a bimodal pattern in HPV prevalence, with peaks in infection rates observed in individuals below 20 and those aged 61-65 years. Comparing the pre- and during COVID-19 periods revealed significant disparities in HPV infections, with variations in specific HPV genotypes, including 16, 18, 35, 45, 52, 58, 59, and 68. This study provides valuable insights into the prevalence, distribution, and epidemiological characteristics of HPV infections in a large population. It also highlights the potential impact of the COVID-19 pandemic on HPV trends.


Subject(s)
COVID-19 , Genotype , Papillomaviridae , Papillomavirus Infections , Humans , COVID-19/epidemiology , COVID-19/virology , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , Female , China/epidemiology , Male , Prevalence , Middle Aged , Adult , Aged , Papillomaviridae/genetics , Papillomaviridae/isolation & purification , Young Adult , SARS-CoV-2/genetics , Adolescent , Pandemics/statistics & numerical data
3.
Digit Health ; 10: 20552076241249668, 2024.
Article in English | MEDLINE | ID: mdl-38698828

ABSTRACT

Objective: Immunocompromised individuals, particularly HIV patients, worldwide are at risk from cryptococcal infection. There are a number of videos of cryptococcal infection and more and more individuals may search these videos, but the quality of videos on YouTube is unclear. This study set out to assess the content and quality of YouTube videos regarding cryptococcal infection. Methods: The keywords "Cryptococcus," "Cryptococcosis" and "Cryptococcal infection" were searched on YouTube. The videos were evaluated and graded by two impartial raters. A 14-point content score was used to categorize videos as bad, good or exceptional. The reliability and quality were evaluated utilizing the DISCERN instrument and a 5-point global quality score. Videos were then divided into groups based on uploading sources and content types. Results: A total of 46 videos were located, and the ratings provided by the two raters were identical. Our scoring algorithm determined that 54.3% (n = 25), 32.6% (n = 15) and 13.0% (n = 6) of the videos were poor, decent and exceptional, respectively. Regarding quality, no difference was identified between the various video categories. The global quality scale, number of views, days posted, content score and DISCERN showed a significant positive relationship. Conclusions: Professional individuals or healthcare organizations should be encouraged to submit high-quality videos for the expanding internet population, as only a small proportion of available videos had exceptional quality.

4.
Microsyst Nanoeng ; 10: 59, 2024.
Article in English | MEDLINE | ID: mdl-38736715

ABSTRACT

Large-field nanoscale fluorescence imaging is invaluable for many applications, such as imaging subcellular structures, visualizing protein interactions, and high-resolution tissue imaging. Unfortunately, conventional fluorescence microscopy requires a trade-off between resolution and field of view due to the nature of the optics used to form the image. To overcome this barrier, we developed an acoustofluidic scanning fluorescence nanoscope that simultaneously achieves superior resolution, a large field of view, and strong fluorescent signals. The acoustofluidic scanning fluorescence nanoscope utilizes the superresolution capabilities of microspheres that are controlled by a programmable acoustofluidic device for rapid fluorescence enhancement and imaging. The acoustofluidic scanning fluorescence nanoscope resolves structures that cannot be resolved with conventional fluorescence microscopes with the same objective lens and enhances the fluorescent signal by a factor of ~5 without altering the field of view of the image. The improved resolution realized with enhanced fluorescent signals and the large field of view achieved via acoustofluidic scanning fluorescence nanoscopy provides a powerful tool for versatile nanoscale fluorescence imaging for researchers in the fields of medicine, biology, biophysics, and biomedical engineering.

5.
Sci Adv ; 10(10): eadm8597, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457504

ABSTRACT

Efficient isolation and analysis of exosomal biomarkers hold transformative potential in biomedical applications. However, current methods are prone to contamination and require costly consumables, expensive equipment, and skilled personnel. Here, we introduce an innovative spaceship-like disc that allows Acoustic Separation and Concentration of Exosomes and Nucleotide Detection: ASCENDx. We created ASCENDx to use acoustically driven disc rotation on a spinning droplet to generate swift separation and concentration of exosomes from patient plasma samples. Integrated plasmonic nanostars on the ASCENDx disc enable label-free detection of enriched exosomes via surface-enhanced Raman scattering. Direct detection of circulating exosomal microRNA biomarkers from patient plasma samples by the ASCENDx platform facilitated a diagnostic assay for colorectal cancer with 95.8% sensitivity and 100% specificity. ASCENDx overcomes existing limitations in exosome-based molecular diagnostics and holds a powerful position for future biomedical research, precision medicine, and point-of-care medical diagnostics.


Subject(s)
Exosomes , Nucleotides , Humans , Biomarkers , Precision Medicine , Spectrum Analysis, Raman
6.
Microsyst Nanoeng ; 10: 23, 2024.
Article in English | MEDLINE | ID: mdl-38317693

ABSTRACT

Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method called FLocculation via Orbital Acoustic Trapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics.

7.
Microsyst Nanoeng ; 10: 2, 2024.
Article in English | MEDLINE | ID: mdl-38169478

ABSTRACT

The addition of surface acoustic wave (SAW) technologies to microfluidics has greatly advanced lab-on-a-chip applications due to their unique and powerful attributes, including high-precision manipulation, versatility, integrability, biocompatibility, contactless nature, and rapid actuation. However, the development of SAW microfluidic devices is limited by complex and time-consuming micro/nanofabrication techniques and access to cleanroom facilities for multistep photolithography and vacuum-based processing. To simplify the fabrication of SAW microfluidic devices with customizable dimensions and functions, we utilized the additive manufacturing technique of aerosol jet printing. We successfully fabricated customized SAW microfluidic devices of varying materials, including silver nanowires, graphene, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). To characterize and compare the acoustic actuation performance of these aerosol jet printed SAW microfluidic devices with their cleanroom-fabricated counterparts, the wave displacements and resonant frequencies of the different fabricated devices were directly measured through scanning laser Doppler vibrometry. Finally, to exhibit the capability of the aerosol jet printed devices for lab-on-a-chip applications, we successfully conducted acoustic streaming and particle concentration experiments. Overall, we demonstrated a novel solution-based, direct-write, single-step, cleanroom-free additive manufacturing technique to rapidly develop SAW microfluidic devices that shows viability for applications in the fields of biology, chemistry, engineering, and medicine.

8.
Sci Adv ; 9(51): eadj9964, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134285

ABSTRACT

The study of molecular mechanisms at the single-cell level holds immense potential for enhancing immunotherapy and understanding neuroinflammation and neurodegenerative diseases by identifying previously concealed pathways within a diverse range of paired cells. However, existing single-cell pairing platforms have limitations in low pairing efficiency, complex manual operation procedures, and single-use functionality. Here, we report a multiparametric cellular immunity analysis by a modular acoustofluidic platform: CIAMAP. This platform enables users to efficiently sort and collect effector-target (i.e., NK92-K562) cell pairs and monitor the real-time dynamics of immunological response formation. Furthermore, we conducted transcriptional and protein expression analyses to evaluate the pathways that mediate effector cytotoxicity toward target cells, as well as the synergistic effect of doxorubicin on the cellular immune response. Our CIAMAP can provide promising building blocks for high-throughput quantitative single-cell level coculture to understand intercellular communication while also empowering immunotherapy by precision analysis of immunological synapses.


Subject(s)
Immunity, Cellular , Immunotherapy , Humans , K562 Cells
9.
Nat Commun ; 14(1): 7639, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993431

ABSTRACT

While mesenchymal stem cells (MSCs) have gained enormous attention due to their unique properties of self-renewal, colony formation, and differentiation potential, the MSC secretome has become attractive due to its roles in immunomodulation, anti-inflammatory activity, angiogenesis, and anti-apoptosis. However, the precise stimulation and efficient production of the MSC secretome for therapeutic applications are challenging problems to solve. Here, we report on Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs: AIMS. We create an acoustofluidic mechanobiological environment to form reproducible three-dimensional MSC aggregates, which produce the MSC secretome with high efficiency. We confirm the increased MSC secretome is due to improved cell-cell interactions using AIMS: the key mediator N-cadherin was up-regulated while functional blocking of N-cadherin resulted in no enhancement of the secretome. After being primed by IFN-γ, the secretome profile of the MSC aggregates contains more anti-inflammatory cytokines and can be used to inhibit the pro-inflammatory response of M1 phenotype macrophages, suppress T cell activation, and support B cell functions. As such, the MSC secretome can be modified for personalized secretome-based therapies. AIMS acts as a powerful tool for improving the MSC secretome and precisely tuning the secretory profile to develop new treatments in translational medicine.


Subject(s)
Mesenchymal Stem Cells , Secretome , Cytokines/genetics , Anti-Inflammatory Agents , Cadherins
10.
Res Sq ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37461478

ABSTRACT

Nanoscale fluorescence imaging with a large-field view is invaluable for many applications such as imaging of subcellular structures, visualizing protein interaction, and high-resolution tissue imaging. Unfortunately, conventional fluorescence microscopy has to make a trade-off between resolution and field of view due to the nature of the optics used to form an image. To overcome this barrier, we have developed an acoustofluidic scanning fluorescence nanoscope that can simultaneously achieve superior resolution, a large field of view, and enhanced fluorescent signal. The acoustofluidic scanning fluorescence nanoscope utilizes the super-resolution capability of microspheres that are controlled by a programable acoustofluidic device for rapid fluorescent enhancement and imaging. The acoustofluidic scanning fluorescence nanoscope can resolve structures that cannot be achieved with a conventional fluorescent microscope with the same objective lens and enhances the fluorescent signal by a factor of ~5 without altering the field of view of the image. The improved resolution with enhanced fluorescent signal and large field of view via the acoustofluidic scanning fluorescence nanoscope provides a powerful tool for versatile nanoscale fluorescence imaging for researchers in the fields of medicine, biology, biophysics, and biomedical engineering.

11.
Sci Adv ; 8(47): eade0640, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36417505

ABSTRACT

High-precision isolation of small extracellular vesicles (sEVs) from biofluids is essential toward developing next-generation liquid biopsies and regenerative therapies. However, current methods of sEV separation require specialized equipment and time-consuming protocols and have difficulties producing highly pure subpopulations of sEVs. Here, we present Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER), which allows single-step, rapid (<10 min), high-purity (>96% small exosomes, >80% exomeres) fractionation of sEV subpopulations from biofluids without the need for any sample preprocessing. Particles are iteratively deflected in a size-selective manner via an excitation resonance. This previously unidentified phenomenon generates patterns of virtual, tunable, pillar-like acoustic field in a fluid using surface acoustic waves. Highly precise sEV fractionation without the need for sample preprocessing or complex nanofabrication methods has been demonstrated using ANSWER, showing potential as a powerful tool that will enable more in-depth studies into the complexity, heterogeneity, and functionality of sEV subpopulations.

12.
Microsyst Nanoeng ; 8: 81, 2022.
Article in English | MEDLINE | ID: mdl-35846176

ABSTRACT

Nanoscale optical resolution with a large field of view is a critical feature for many research and industry areas, such as semiconductor fabrication, biomedical imaging, and nanoscale material identification. Several scanning microscopes have been developed to resolve the inverse relationship between the resolution and field of view; however, those scanning microscopes still rely upon fluorescence labeling and complex optical systems. To overcome these limitations, we developed a dual-camera acoustofluidic nanoscope with a seamless image merging algorithm (alpha-blending process). This design allows us to precisely image both the sample and the microspheres simultaneously and accurately track the particle path and location. Therefore, the number of images required to capture the entire field of view (200 × 200 µm) by using our acoustofluidic scanning nanoscope is reduced by 55-fold compared with previous designs. Moreover, the image quality is also greatly improved by applying an alpha-blending imaging technique, which is critical for accurately depicting and identifying nanoscale objects or processes. This dual-camera acoustofluidic nanoscope paves the way for enhanced nanoimaging with high resolution and a large field of view.

13.
Lab Chip ; 22(16): 2978-2985, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35647808

ABSTRACT

Machine learning image recognition and classification of particles and materials is a rapidly expanding field. However, nanomaterial identification and classification are dependent on the image resolution, the image field of view, and the processing time. Optical microscopes are one of the most widely utilized technologies in laboratories across the world, due to their nondestructive abilities to identify and classify critical micro-sized objects and processes, but identifying and classifying critical nano-sized objects and processes with a conventional microscope are outside of its capabilities, due to the diffraction limit of the optics and small field of view. To overcome these challenges of nanomaterial identification and classification, we developed an intelligent nanoscope that combines machine learning and microsphere array-based imaging to: (1) surpass the diffraction limit of the microscope objective with microsphere imaging to provide high-resolution images; (2) provide large field-of-view imaging without the sacrifice of resolution by utilizing a microsphere array; and (3) rapidly classify nanomaterials using a deep convolution neural network. The intelligent nanoscope delivers more than 46 magnified images from a single image frame so that we collected more than 1000 images within 2 seconds. Moreover, the intelligent nanoscope achieves a 95% nanomaterial classification accuracy using 1000 images of training sets, which is 45% more accurate than without the microsphere array. The intelligent nanoscope also achieves a 92% bacteria classification accuracy using 50 000 images of training sets, which is 35% more accurate than without the microsphere array. This platform accomplished rapid, accurate detection and classification of nanomaterials with miniscule size differences. The capabilities of this device wield the potential to further detect and classify smaller biological nanomaterial, such as viruses or extracellular vesicles.


Subject(s)
Nanostructures , Neural Networks, Computer , Machine Learning , Microscopy
14.
Nat Mater ; 21(5): 540-546, 2022 05.
Article in English | MEDLINE | ID: mdl-35332292

ABSTRACT

Precise and selective manipulation of colloids and biological cells has long been motivated by applications in materials science, physics and the life sciences. Here we introduce our harmonic acoustics for a non-contact, dynamic, selective (HANDS) particle manipulation platform, which enables the reversible assembly of colloidal crystals or cells via the modulation of acoustic trapping positions with subwavelength resolution. We compose Fourier-synthesized harmonic waves to create soft acoustic lattices and colloidal crystals without using surface treatment or modifying their material properties. We have achieved active control of the lattice constant to dynamically modulate the interparticle distance in a high-throughput (>100 pairs), precise, selective and reversible manner. Furthermore, we apply this HANDS platform to quantify the intercellular adhesion forces among various cancer cell lines. Our biocompatible HANDS platform provides a highly versatile particle manipulation method that can handle soft matter and measure the interaction forces between living cells with high sensitivity.


Subject(s)
Acoustics , Colloids , Colloids/chemistry , Materials Science
15.
Plant Dis ; 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35134303

ABSTRACT

Metasequoia glyptostroboides Hu & W. C. Cheng (Taxodiaceae), commonly called the Chinese redwood or dawn redwood, is a well-known "living fossil" and rare relict plant species endemic to China, which has been successfully cultivated throughout the world (Ma 2007). In July to September 2020, trees of Chinese redwood which were more than thirty years-old, showed symptoms of decline and death associated with branch dieback, root and collar rot (Fig. 1) in Yangtze River shelter-forests of Jiangling County in Hubei Province, China (112°15'19″E, 30°11'56″N; 40m). Diseased roots and rhizosphere soils were collected in September 2020 and April 2021. Using the baiting method, a homothallic Phytophthora sp. was recovered consistently from diseased roots and soil samples of Chinese redwood. All the isolates of this Phytophthora sp. formed similar colonies on V8 agar and corn meal agar (Fig. 2), and then three representative isolates (L4-5-4, L4-5-5 and L4-5-6) were randomly selected for morphological and molecular identification. In distilled water, semipapillate persistent sporangia were borne in simple sympodial branched sporangiophores. Sporangia were predominantly ovoid (Fig. 3a, d and f), but other shapes were observed including subglobose (Fig. 3b), limoniform (Fig. 3c) or distorted shapes (Fig. 3e), averaging 44.1 ± 7.7 µm (n=102) in length and 32.8 ± 5.2 µm (n=102) in width, with narrow exit pores of 8.0 ± 1.4 µm (n=93) and a length/breadth ratio of 1.3 ± 0.10 (n=102). Chlamydospores were not observed. Oogonia were globose or subglobose, 20.51 to 40.15 µm (av. 33.1 ± 3.9 µm) (n=119) in diameter, with smooth walls and paragynous antheridium (Fig. 3g-i). Oospores were globose or subglobose in elongated oogonia with medium wall thickness of 1.9 ± 0.5 µm (n=36), aplerotic or plerotic and 16.9 to 32.6 µm in diameter (av. 26.6 ± 3.8 µm) (n=40). According to the above morphological characteristics, this Phytophthora sp. was placed in Waterhouse's (1963) group III. The sequences of the internal transcribed spacers (ITS) region of nuclear ribosomal DNA of each isolate (GenBank Accession No. OK087320, OK087321 and OK087322) was 760 bp and had identity of 99.84% with three P. acerina isolates (JX951285, JX951291 and JX951296), while the 800 bp ß-tubulin (BTUB) sequences (OK140540, OK140541 and OK140542) showed 99.97% homology to the sequence of P. acerina (KC201283) (Ginetti, Moricca and Squires 2014) (Table 1). The ML phylogenetic trees were established by comparing ITS and BTUB sequences of three Phytophthora strains (L4-5-4, L4-5-5 and L4-5-6) with reference sequences of isolates of Phytophthora in ITS and BTUB in GenBank (Fig. 4-5). Based on the morphological and molecular characteristics, the strains were identified as namely P. acerina. In addition, pathogenicity assays were performed with one of the three strains (L4-5-4) on M. glyptostroboides using both one year old and three years old seedlings. Inoculum was prepared by subculturing agar plugs from edges of CMA cultures into V8 medium plates, incubating at 20 ℃ in darkness for 10 days. Six seedlings planted in pots filled with sterilized soil were inoculated by mycelium plug at root collar and stem wounded by a 8 mm diameter puncher. Six control seedlings were inoculated in the same manner as above, and sterile agar plugs were used. After 35 days, inoculated seedlings all had necrotic lesions at the inoculation sites, and some seedlings had the symptoms of foliage blight and dieback, whereas control seedlings remained healthy (Fig. 6). The number of fibrous roots after inoculation was significantly less than the control, and the roots of inoculated seedlings blackened or even rotted, while there were no obvious symptoms in the control (Fig. 7). Phytophthora isolates recovered from the symptomatic tissues of artificially inoculated plants were identical to isolate L4-5-4 in morphological characters and ITS sequencing. This is the first report of P. acerina causing root rot on the Chinese redwood in China. As only the seedlings were inoculated, further research is needed to address the epidemiology and pathogenicity of P. acerina to adult trees of Chinese red wood. References: Ginetti, B. et al. 2014. Plant Pathology, 63(4): 858-876. Ma, J. S. 2007. Bulletin of the Peabody Museum of Natural History, 48(2): 235-253. Waterhouse, G. M. 1963. Mycological Papers 92:1-22.

16.
Opt Lett ; 47(4): 826-829, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35167535

ABSTRACT

This Letter reports ring-shaped photoacoustic (PA) tweezers that are capable of manipulating single or multiple micron-sized particles. By illuminating a thin layer of an optically absorptive liquid medium with a focused annular pulsed laser beam and a higher pulse repetition rate (e.g., 800 Hz), both acoustic radiation force and instantaneous vaporization repulsion are generated within a certain distance of the illumination region. This makes it possible to conduct continuous and versatile locomotion of single or multiple microparticles. In this Letter, interactions between two or more particles are demonstrated, such as separation, attachment, and grouping of microparticles. The PA tweezers combine some of the advantages of conventional optical and acoustic tweezers and are expected to be a useful alternative approach for the manipulation of microscale objects.


Subject(s)
Acoustics , Optical Tweezers , Light , Spectrum Analysis
17.
Biosens Bioelectron ; 196: 113730, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34736099

ABSTRACT

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative brain disorder that affects tens of millions of older adults worldwide and has significant economic and societal impacts. Despite its prevalence and severity, early diagnosis of AD remains a considerable challenge. Here we report an integrated acoustofluidics-based diagnostic system (ADx), which combines triple functions of acoustics, microfluidics, and orthogonal biosensors for clinically accurate, sensitive, and rapid detection of AD biomarkers from human plasma. We design and fabricate a surface acoustic wave-based acoustofluidic separation device to isolate and purify AD biomarkers to increase the signal-to-noise ratio. Multimodal biosensors within the integrated ADx are fabricated by in-situ patterning of the ZnO nanorod array and deposition of Ag nanoparticles onto the ZnO nanorods for surface-enhanced Raman scattering (SERS) and electrochemical immunosensors. We obtain the label-free detections of SERS and electrochemical immunoassay of clinical plasma samples from AD patients and healthy controls with high sensitivity and specificity. We believe that this efficient integration provides promising solutions for the early diagnosis of AD.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Metal Nanoparticles , Aged , Alzheimer Disease/diagnosis , Humans , Immunoassay , Silver , Spectrum Analysis, Raman
18.
Neural Plast ; 2021: 6552246, 2021.
Article in English | MEDLINE | ID: mdl-34804154

ABSTRACT

The objective of this study was to systematically review the literature on the effects of cognitive behavioral therapy (CBT) on insomnia and pain in patients with traumatic brain injury (TBI). PubMed, Embase, the Cochrane Library, Cumulative Index to Nursing and Allied Health, and Web of Science databases were searched. Outcomes, including pain, sleep quality, and adverse events, were investigated. Differences were expressed using mean differences (MDs) with 95% confidence intervals (CIs). The statistical analysis was performed using STATA 16.0. Twelve trials with 476 TBI patients were included. The included studies did not indicate a positive effect of CBT on pain. Significant improvements were shown for self-reported sleep quality, reported with the Pittsburgh Self-Reported Sleep Quality Index (MD, -2.30; 95% CI, -3.45 to -1.15; P < 0.001) and Insomnia Severity Index (MD, -5.12; 95% CI, -9.69 to -0.55; P = 0.028). No major adverse events related to CBT were reported. The underpowered evidence suggested that CBT is effective in the management of sleep quality and pain in TBI adults. Future studies with larger samples are recommended to determine significance. This trial is registered with PROSPERO registration number CRD42019147266.


Subject(s)
Brain Injuries, Traumatic/therapy , Cognitive Behavioral Therapy/methods , Pain Management/methods , Sleep Wake Disorders/therapy , Adult , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/psychology , Cognitive Behavioral Therapy/trends , Humans , Pain/physiopathology , Pain/psychology , Randomized Controlled Trials as Topic/methods , Sleep Wake Disorders/physiopathology , Sleep Wake Disorders/psychology , Treatment Outcome
19.
Micromachines (Basel) ; 12(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34832800

ABSTRACT

Vortex beams have a typical characteristic of orbital angular momentum, which provides a new degree of freedom for information processing in remote communication and a form of non-contact manipulation for trapping particles. In acoustics, vortex beams are generally observed on the surface of a metamaterial structure or in a waveguide with a hard boundary owing to the characteristic of easy diffusion in free space. The realization of an acoustic vortex beam with a long-distance propagation in free space still remains a challenge. To overcome this, we report a type of acoustic Bessel vortex (ABV) beam created by a quasi-three-dimensional reflected metasurface in free space based on phase modulation. By using the Bessel and vortex phase profiles, we can realize an ABV beam with the high performances of both Bessel and vortex beams, and its effective propagation distance is larger than 9.2λ in free space. Beyond that, we discuss the bandwidth and topological charge of the ABV beam in detail, and the fractional bandwidth can reach about 0.28. The proposed ABV beam has the advantages of a high-performance vortex, long-distance propagation, and broad bandwidth, which provide a new pathway for designing multifunctional vortex devices with promising applications.

20.
Small ; 17(46): e2103848, 2021 11.
Article in English | MEDLINE | ID: mdl-34658129

ABSTRACT

Droplet microfluidics has revolutionized the biomedical and drug development fields by allowing for independent microenvironments to conduct drug screening at the single cell level. However, current microfluidic sorting devices suffer from drawbacks such as high voltage requirements (e.g., >200 Vpp), low biocompatibility, and/or low throughput. In this article, a single-phase focused transducer (SPFT)-based acoustofluidic chip is introduced, which outperforms many microfluidic droplet sorting devices through high energy transmission efficiency, high accuracy, and high biocompatibility. The SPFT-based sorter can be driven with an input power lower than 20 Vpp and maintain a postsorting cell viability of 93.5%. The SPFT sorter can achieve a throughput over 1000 events per second and a sorting purity up to 99.2%. The SPFT sorter is utilized here for the screening of doxorubicin cytotoxicity on cancer and noncancer cells, proving its drug screening capability. Overall, the SPFT droplet sorting device shows great potential for fast, precise, and biocompatible drug screening.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Cell Survival , Lab-On-A-Chip Devices , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...