Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Food Chem ; 448: 139135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569405

ABSTRACT

The impacts of enzymatically produced acylglycerol and glycerin monostearate on the characteristics of gelatin-stabilized omega-3 emulsions and microcapsules were investigated. Tuna oil was enzymatically produced and the resulting acylglycerol was mixed with tuna oil at 12.5% (w/w) to prepare a novel oil phase. This oil phase was stabilized by gelatin to prepare oil-in-water emulsions and subsequent microcapsules via complex coacervation. The tuna oil with glycerin monostearate (GMS) at 1 and 2% (w/w) were used as controls. Results showed that both acylglycerol and GMS significantly reduced the emulsion droplet size and zeta potential, while increasing the viscoelasticity and stability. The diacylglycerol/monoacylglycerol were involved in the oil/water interfacial layer formation by lowering interfacial tension and increasing droplet surface hydrophobicity. Overall, the changed emulsion properties promoted the complex coacervation and contributed to the formation of microcapsules with improved oxidative stability. Therefore, enzymatically produced acylglycerol can develop high-quality stable omega-3 microencapsulated novel food ingredients.


Subject(s)
Capsules , Emulsions , Fatty Acids, Omega-3 , Fish Oils , Gelatin , Emulsions/chemistry , Capsules/chemistry , Gelatin/chemistry , Fatty Acids, Omega-3/chemistry , Fish Oils/chemistry , Animals , Particle Size , Glycerol/chemistry , Tuna , Glycerides/chemistry , Hydrophobic and Hydrophilic Interactions , Biocatalysis
2.
Am J Chin Med ; 52(1): 1-33, 2024.
Article in English | MEDLINE | ID: mdl-38351701

ABSTRACT

Obesity is a common metabolic syndrome that causes a significant burden on individuals and society. Conventional therapies include lifestyle interventions, bariatric surgery, and pharmacological therapies, which are not effective and have a high risk of adverse events. Acupuncture is an effective alternative for obesity, it modulates the hypothalamus, sympathetic activity and parasympathetic activity, obesity-related hormones (leptin, ghrelin, insulin, and CCK), the brain-gut axis, inflammatory status, adipose tissue browning, muscle blood flow, hypoxia, and reactive oxygen species (ROS) to influence metabolism, eating behavior, motivation, cognition, and the reward system. However, hypothalamic regulation by acupuncture should be further demonstrated in human studies using novel techniques, such as functional MRI (fMRI), positron emission tomography (PET), electroencephalogram (EEG), and magnetoencephalography (MEG). Moreover, a longer follow-up phase of clinical trials is required to detect the long-term effects of acupuncture. Also, future studies should investigate the optimal acupuncture therapeutic option for obesity. This review aims to consolidate the recent improvements in the mechanism of acupuncture for obesity as well as discuss the future research prospects and potential of acupuncture for obesity.


Subject(s)
Acupuncture Therapy , Obesity , Humans , Obesity/etiology , Acupuncture Therapy/methods , Adipose Tissue , Magnetic Resonance Imaging/methods
3.
Food Chem ; 443: 138563, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38290301

ABSTRACT

In this study, golden pomfret myofibrillar protein (MP) was used as the research object, and the oxidation system of malondialdehyde (MDA) as an inducer and the static digestion model in vitro was established for the analysis of the changes in protein structure and molecular morphology during oxidation and digestion. Subsequently, the effects of MDA-mediated oxidation on the structure and digestive properties of golden pomfret myofibrillar fibrillar protein were determined. The results showed that the hydrolysis degree and digestion rate of MP were inhibited with the increase in MDA concentration (0, 0.5, 1, 2, 5, 10 mmol/L), and the carbonyl group, surface hydrophobicity, irregular curling, and MDA content increased significantly (P < 0.05), whereas the total sulfhydryl groups, α-helices, free amino groups, hydrolysis degree, and MDA incorporation decreased significantly (P < 0.05), The molecular particle size was significantly reduced (P < 0.05), and the molecular morphology and molecular structure were analyzed (P >0.05). Finally, the molecular size and cross-linking degree gradually increased. In conclusion, MDA can alter the structure and morphology of proteins, resulting in a decrease in hydrolysis and digestion rate. This study can provide theoretical support and reference for the regulation of protein digestion.


Subject(s)
Muscle Proteins , Seafood , Muscle Proteins/chemistry , Oxidation-Reduction , Myofibrils/chemistry , Hydrolysis
4.
Food Chem ; 441: 138332, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38183722

ABSTRACT

The impact of oxidized myoglobin (Mb) on myofibrillar protein (MP) oxidation and water retention was investigated. Results showed that the oxidation of Mb increased with increasing concentration of oxidized linoleic acid (OLA). In the presence of 100 mmol/L OLA, hemin iron decreased by 62.07 % compared to the control group. Further investigation showed that mild oxidation of Mb (≤10 mmol/L OLA) increased the water retention and the absolute value of the zeta potential of MP, whereas excessive oxidation (>10 mmol/L OLA) decreased these properties. With the increase of Mb oxidation, the carbonyl content in MP increased, and α-helices changed to random helix. And the tertiary structure changed. Pearson correlation analysis suggested that oxidized Mb affected the water retention of MP, which was closely related to hemin iron and non-hemin iron. In conclusion, OLA induced Mb oxidation, further promoted MP oxidation and affected its water retention.


Subject(s)
Hemin , Myoglobin , Myoglobin/chemistry , Hemin/chemistry , Oxidation-Reduction , Iron , Water
5.
Food Chem X ; 18: 100712, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37397206

ABSTRACT

A preliminary study was conducted of the chemical, structural properties and immunomodulatory activities of fucoidan isolated from Sargassum Zhangii (SZ). Sargassum Zhangii fucoidan (SZF) was determined to have a sulfate content of 19.74 ± 0.01% (w/w) and an average molecular weight of 111.28 kDa. SZF possessed a backbone structure of (1,4)-α-d-linked-galactose, (3,4)-α-l-fucose, (1,3)-α-d-linked-xylose, ß-d-linked-mannose and a terminal (1,4)-α-d-linked-glucose. The main monosaccharide composition was determined as (w/w) 36.10% galactose, 20.13% fucose, 8.86% xylose, 7.36% glucose, 5.62% mannose, and 18.07% uronic acids, respectively. An immunostimulatory assay showed that SZF, compared to commercial fucoidans (Undaria pitnnaifida and Fucus vesiculosus sources), significantly elevated nitric oxide production via up-regulation of cyclooxygenase-2 and inducible nitric oxide synthase at both gene and protein levels. These results suggest that SZ has the potential to be a source of fucoidan with enhanced properties that may act as a useful ingredient for functional foods, nutritional supplements, and immune enhancers.

6.
J Pain Res ; 16: 1381-1390, 2023.
Article in English | MEDLINE | ID: mdl-37128272

ABSTRACT

Purpose: Knee osteoarthritis (KOA) is regarded as one of the leading musculoskeletal diseases. Although the efficacy is under exploration, fire needling therapy is considered an effective alternative for KOA. This trial aims to investigate the effectiveness of different frequencies of fire needling therapy in attenuating pain and promoting function in KOA patients. Methods: This is a study protocol for a pilot, three-arm, single-center, randomized controlled trial. A total of 90 participants with KOA will be recruited and randomly assigned to the high-frequency fire needling group (3 sessions per week, for 6 weeks), the low-frequency fire needling group (1 session per week, for 6 weeks) or the positive control group (Diclofenac Diethylamine Emulgel, 3 times per day, for 6 weeks) in a 1:1:1 ratio. Participants will accomplish the trial at Week 14 after a follow-up evaluation. The response rate will be set as the primary outcome that the proportion of participants obtaining a minimal clinically important difference, which is identified as ≥2 units on the numerical rating scale (NRS) and ≥6 units on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) function score at Week 6 compared with Week 0. Secondary outcomes are NRS, WOMAC, Brief Pain Inventory, Short-Form Health Survey-12, Timed Up and Go Test, and pain threshold. Discussion: This is the first standardized protocol comparing fire needling therapy and positive control drugs. This trial may provide reliable evidence for the effectiveness of fire needling therapy and dose-effect property of it in KOA. Trial registration: The trial has been registered on Chinese Clinical Trial Registry (Registered number: ChiCTR2100043041), registered on 4 February 2021.

7.
J Fungi (Basel) ; 9(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37233225

ABSTRACT

Various carbon sources affect the growth of the G. lucidum fruiting body, and the cassava stalk is considered a promising carbon source for G. lucidum. The composition, functional group characteristics, molecular weight distribution, antioxidant activity in vitro, and growth effect of L. rhamnosus LGG of G. lucidum polysaccharides (GLPs) under cassava stalk stress were investigated by gas chromatography-mass spectrometry, near-infrared spectroscopy, and gel chromatography. The results showed that GLPs consisted of D-glucose, D-galactose, and seven other monosaccharides. The end of the sugar chain had ß-D-Glc and ß-D-Gal configurations. The total sugar content in GLP1 was the highest (4.07%), and GLP1, GLP2, GLP3, and GLP5 had the ß-D-Gal configuration, while GLP4 and GLP6 had the ß-D-Glc configuration. The greater the proportion of cassava stalk, the greater the maximum molecular weight of GLPs. The total antioxidant capacities of GLPs obtained from different cassava stalks significantly varied, as well as their stimulating effects on the L. rhamnosus LGG growth. Higher concentrations of GLPs corresponded to the more intensive growth of L. rhamnosus LGG. This study provided essential data support for cassava stalk as a carbon source in G. lucidum cultivation.

8.
Foods ; 12(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36981101

ABSTRACT

Avocado oil is excellent functional oil. Effects of three extraction methods (squeezing extraction, supercritical carbon dioxide extraction, and aqueous extraction) on the species, composition, and contents of lipids in avocado oil were analyzed via ultra-performance liquid chromatography-time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS), and the differential components of lipids were revealed by OrthogonalPartialLeast Squares-DiscriminantAnalysis (OPLS-DA), S-plot combined with variable importance in the projection (VIP). The results showed that the fatty acid composition of avocado oil mainly consisted of oleic acid (36-42%), palmitic acid (25-26%), linoleic acid (14-18%), and palmitoleic acid (10-12%). A total of 134 lipids were identified first from avocado oil, including 122 glycerides and 12 phospholipids, and the total number of carbon atoms contained in the fatty acid side chains of the lipids was 32-68, and the number of double bonds was 0-9. Forty-eight differential lipid compounds with significant effects of the three extraction methods on the lipid composition of avocado oil were excavated, among which the differences in triglycerides (TG), phosphatidylethanol (PEtOH), and phosphatidylmethanol (PMeOH) contents were highly significant, which provided basic data to support the subsequent guidance of avocado oil processing, quality evaluation, and functional studies.

9.
Foods ; 12(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36900608

ABSTRACT

The relationship between the gel quality of golden pompano surimi treated with dense phase carbon dioxide (DPCD) and changes in water characteristics was evaluated. Low-field nuclear magnetic resonance (LF-NMR) and nuclear magnetic resonance imaging were used to monitor changes in the water status of surimi gel under different treatment conditions. Whiteness, water-holding capacity and gel strength were used as the quality indicators of the surimi gel. The results showed that DPCD treatment could significantly increase the whiteness of surimi and the strength of the gel, while the water-holding capacity decreased significantly. LF-NMR analysis showed that, as the DPCD treatment intensity increased, the relaxation component T22 shifted to the right, T23 shifted to the left, the proportion of A22 decreased significantly (p < 0.05) and the proportion of A23 increased significantly (p < 0.05). A correlation analysis of water characteristics and gel strength showed that the water-holding capacity of surimi induced by DPCD was strongly positively correlated with gel strength, while A22 and T23 were strongly negatively correlated with gel strength. This study provides helpful insights into the quality control of DPCD in surimi processing and also provides an approach for the quality evaluation and detection of surimi products.

10.
Foods ; 12(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36832768

ABSTRACT

Cashew nut kernel oil (CNKO) is an important oil source from tropical crops. The lipid species, composition, and relative content of CNKO were revealed using ultra high performance liquid chromatography time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS), and the physicochemical properties, functional group structure, and oxidation stability of CNKO at different pressing temperatures were characterized using a near infrared analyzer and other methods. The results showed that CNKO mainly consisted of oleic acid (60.87 ± 0.06%), linoleic acid (17.33 ± 0.28%), stearic acid (10.93 ± 0.31%), and palmitic acid (9.85 ± 0.04%), and a highly unsaturated fatty acid (78.46 ± 0.35%). In addition, 141 lipids, including 102 glycerides and 39 phospholipids, were identified in CNKO. The pressing temperature had a significant effect on the physicochemical properties of cashew kernels, such as acid value, iodine value, and peroxide value, but the change in value was small. The increase in pressing temperature did not lead to changes in the functional group structure of CNKO, but decreased the induction time of CNKO, resulting in a decrease in their oxidative stability. It provided basic data support to guide subsequent cashew kernel processing, quality evaluation, and functional studies.

11.
Food Sci Nutr ; 11(2): 1024-1039, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36789046

ABSTRACT

Golden pompano (Trachinotus ovatus) and hybrid grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus) has widely been distributed in China and Southeast Asian countries with great commercial importance. In this study, the nutritional profiles, chemical and physical parameters of back and abdomen muscles were determined. Significantly different (p < .05) proximate compositions were found in two fish muscles. The contents of water-soluble protein, salt-soluble protein, and non-nitrogenous protein were higher in the golden pompano while salt-insoluble proteins were higher in the hybrid grouper. The main minerals found were K (3700.56-4495.57 µg/g) followed by P > Na > Mg > and Ca, respectively. Fatty acids contents consisted of polyunsaturated fatty acids ranging from 29.40% to 43.09% and saturated fatty acids 28.33% to 39.61%. The muscles were rich in n-3 PUFAs with n-6/n-3 ratio of 1.36%-2.96% in the back and abdomen. On the other hand, total amino acid and non-essential amino acid contents were found higher in the hybrid grouper while essential amino acid and delicious amino acid contents were higher in the golden pompano. Glutamic acid was the most predominant amino acid. The amino acid scores (AAS) of six amino acids were close to 1.00, whereas lysine showed the highest AAS while tryptophan was the most limited essential amino acid in all muscles, respectively. These results indicated golden pompano and hybrid grouper exhibited a varied nutritional composition and offered a good nutritional profile.

12.
Foods ; 11(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36496615

ABSTRACT

Dense phase carbon dioxide (DPCD) is a new non-thermal method to induce surimi gel. However, the gel quality is affected by many factors, such as DPCD treatment time, temperature, and pressure, which makes it complicated to determine its operating parameters. Box-Behnken and backward linear regression were used to optimize the conditions (temperature, pressure, and treatment time) of DPCD-induced shrimp surimi gel formation, and a model between shrimp surimi gel strength and treatment conditions was developed and validated in the present study. Meanwhile, the heat-induced method was used as a control to analyze the effect of DPCD on the quality of shrimp surimi gel in the present study. The results showed that DPCD treatment affected the strength of shrimp surimi gel significantly, and the pressure of DPCD had the greatest influence on the gel strength of shrimp surimi, followed by time and temperature. When the processing pressure was 30 MPa, the temperature was 55 °C, and the treatment time was 60 min, the gel strength of the shrimp surimi was as high as 197.35 N·mm, which was not significantly different from the simulated value of 198.28 N mm (p > 0.05). The results of the gel quality properties showed that, compared with the heat-induced method, DPCD reduced the nutrient and quality loss of the shrimp surimi gel, and increased the gel strength and gel water-holding capacity. The results of low-field nuclear magnet resonance showed that DPCD increased the binding capacity of shrimp surimi to bound water and immobilized water, and reduced their losses. Gel microstructure further demonstrated that DPCD could improve shrimp surimi gelation properties, characterized by a finer and uniformly dense gel network structure. In summary, DPCD is a potential method for inducing shrimp surimi to form a suitable gel. The prediction model established in this study between DPCD treatment temperature, pressure, time, and gel strength can provide a reference for the production of shrimp surimi by DPCD.

13.
Foods ; 11(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36429256

ABSTRACT

Lipase hydrolysis is an effective method to develop different functional types of lipids. In this study, tuna oil was partially hydrolyzed at 30% and 60% by Thermomyces lanuginosus lipase (TL 100 L) and Candida Antarctica lipase A (ADL), respectively, to obtain lipid-modified acylglycerols. The lipidomic profiling of the acylglycerols was investigated by UPLC-Q-TOF-MS and GC-MS to clarify the lipid modification effect of these two lipases on tuna oil. The results showed that 247 kinds of acylglycerols and 23 kinds of fatty acids were identified in the five samples. In the ADL group, the content of triacylglycerols (TAG) and diacylglycerols (DAG) increased by 4.93% and 114.38%, respectively, with an increase in the hydrolysis degree (HD), while there was a decreasing trend in the TL 100 L group. TL 100 L had a better enrichment effect on DHA, while ADL was more inclined to enrich EPA and hydrolyze saturated fatty acids. Cluster analysis showed that the lipids obtained by the hydrolysis of TL 100 L and ADL were significantly different in the cluster analysis of TAG, DAG, and monoacylglycerols (MAG). TL 100 L has strong TAG selectivity and a strong ability to hydrolyze acylglycerols, while ADL has the potential to synthesize functional lipids containing omega-3 PUFAs, especially DAG.

14.
Foods ; 11(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36429260

ABSTRACT

The global population has rapidly expanded in the last few decades and is continuing to increase at a rapid pace. To meet this growing food demand fish is considered a balanced food source due to their high nutritious value and low cost. Fish are rich in well-balanced nutrients, a good source of polyunsaturated fatty acids and impose various health benefits. Furthermore, the most commonly used preservation technologies including cooling, freezing, super-chilling and chemical preservatives are discussed, which could prolong the shelf life. Non-thermal technologies such as pulsed electric field (PEF), fluorescence spectroscopy, hyperspectral imaging technique (HSI) and high-pressure processing (HPP) are used over thermal techniques in marine food industries for processing of most economical fish products in such a way as to meet consumer demands with minimal quality damage. Many by-products are produced as a result of processing techniques, which have caused serious environmental pollution. Therefore, highly advanced technologies to utilize these by-products for high-value-added product preparation for various applications are required. This review provides updated information on the nutritional value of fish, focusing on their preservation technologies to inhibit spoilage, improve shelf life, retard microbial and oxidative degradation while extending the new applications of non-thermal technologies, as well as reconsidering the values of by-products to obtain bioactive compounds that can be used as functional ingredients in pharmaceutical, cosmetics and food processing industries.

15.
Food Chem ; 371: 131046, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34537614

ABSTRACT

To investigate the 3D printability of surimi from golden pompano, the rheological properties, protein molecular structure, and 3D printability of food inks from every step of surimi processing were measured, and their correlations were analysed. The results showed that surimi from chopping (surimi-C), chopping with salt (surimi-CS) and setting (surimi-S) were suitable for 3D printing, among which surimi-CS had the best shape fidelity. The clustering analysis of variables revealed that the yield stress and AF could be used as indexes to characterize extrusion and deposition behaviour of surimi, respectively. The accuracy of 3D printing was affected by the extrusion property of the food ink, which was controlled by the ionic bond content. The stability of 3D printing was affected by the self-supporting capacity of the food ink, which was controlled by the hydrogen bond and hydrophobic interaction contents. The results provided theoretical guidance for developing 3D printing of surimi ingredients.


Subject(s)
Ink , Printing, Three-Dimensional , Animals , Fishes , Molecular Structure , Rheology
16.
Food Chem ; 374: 131727, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34915372

ABSTRACT

In this study, surimi from golden pompanos was mixed with starch to form a surimi-starch system. The water properties, rheological properties, and three-dimensional (3D) printability of the surimi-starch were measured. Cluster analysis results showed that the 3D printability was closely related to the type and addition content of starch, and the water and rheological properties. The low-field nuclear magnetic resonance (LF-NMR) parameters were used to predict 3D printability using polynomial regression models. The correlation coefficients (R2) for 3D printing accuracy and stability were 0.88 and 0.93, and the root mean square error (RMSE) values were 0.20% and 4.59%, respectively. In the verification test, the R2 for the two models were 0.85 and 0.89, and the RMSE values were 0.20% and 1.06%, respectively. The nonlinear surface regression fitting exhibited superior predictive performance. Therefore, LF-NMR is a good non-destructive tool for quickly and accurately predicting the 3D printability of the surimi-starch systems.


Subject(s)
Fishes , Starch , Animals , Magnetic Resonance Spectroscopy , Rheology , Water
17.
Food Chem ; 374: 131737, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34920408

ABSTRACT

The effects of different liquid nitrogen freezing (LNF) temperatures (-35, -55, -75, -95, and -115 °C) on the freezing rate, physicochemical properties, and microstructure of golden pompano (Trachinotus ovatus) were evaluated in the present study. The results showed that the total freezing time of golden pompano was significantly shortened using LNF (P < 0.05). Compared with other freezing methods, the cooking loss and L* values (lightness) of -95 °C LNF golden pompano were significantly lower, the false-colour image was much redder and brighter, the loss and mobility of water in fish muscle were inhibited, the water holding capacity and hardness were higher, and the muscle microstructure was comparatively intact. Therefore, -95 °C LNF effectively shortened the freezing time and improved the muscle qualities of frozen golden pompano.


Subject(s)
Fishes , Muscles , Animals , Freezing , Nitrogen , Temperature
18.
ACS Appl Mater Interfaces ; 13(47): 55851-55861, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34788006

ABSTRACT

Temozolomide (TMZ) is a prodrug of 5-(3-methyltriazene-1-yl)imidazole-4-carboxamide (MTIC, short-lived) and used as a first-line therapy drug for glioblastoma multiforme (GBM). However, little progress has been made in regulating the kinetics of TMZ to MTIC degradation to improve the therapeutic effect, particularly in the case of TMZ-resistant GBM. In this work, we introduced a strategy to cage MTIC by N-acylation of the triazene moiety to boost the MTIC stability, designed a diblock copolymer-based MTIC prodrug installed with a disulfide linkage, and achieved self-assembled polymer micelles without the concern of MTIC leakage under physiological conditions. Polymer micelles could be induced to disassemble by stimuli factors such as glutathione (GSH) and visible light irradiation through thiol/sulfide exchange and homolytic sulfide scission mechanisms, which contributed to MTIC release in GSH-dependent and GSH-independent pathways. The in vitro results demonstrated that microenvironment-responsive polymeric micelles benefited the suppression of both TMZ-sensitive and TMZ-resistant GBM cells. The chemistry of polymer-MTIC prodrug provided a new option for TMZ-based glioma treatment.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Glioblastoma/drug therapy , Glutathione/chemistry , Light , Polymers/chemistry , Prodrugs/pharmacology , Temozolomide/pharmacology , Antineoplastic Agents, Alkylating/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Delivery Systems , Drug Liberation , Drug Screening Assays, Antitumor , Glioblastoma/pathology , Humans , Molecular Structure , Particle Size , Prodrugs/chemistry , Surface Properties , Temozolomide/chemistry
19.
Food Chem X ; 12: 100156, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34825167

ABSTRACT

This study aimed to investigate volatile compounds and quality traits of shrimp heads stored at 20 °C, 4 °C, -3 °C, and -18 °C. With increased storage time, sensory scores gradually decreased, while pH and TVB-N content showed a gradually increase trend. L* showed a decreasing and then increasing tendency. The radar chart and principal component analysis showed variation changes. Three compounds including 2-decanone, dimethyl disulphide and dimethyl tetrasulphide, four compounds including 2-pentanone, 3-methyl-1-butanol, 2-methylbutyric acid, and 2,3,5-trimethylpyrazine, and 3-methylbutyraldehyde were the characteristic volatiles for the samples stored at 20 °C, 4 °C, and -3 °C, respectively. Twenty-five volatile compounds were key volatile compounds, among which nine were potential classification compounds with high variable importance in projection values. Trimethylamine and 2-nonanol were selected as potential markers of spoilage. The study provides the theoretical basis for quality and volatile compound investigations for shrimp heads with further high-quality utilization.

20.
Foods ; 10(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34828883

ABSTRACT

The nutritional components of different parts (meat, head, shell and tail) of Litopenaeus vannamei (L.v), Macrobrachium rosenbergii (M.r), Penaeus monodon (P.m), Fenneropenaeus chinensis (F.c), and Penaeus japonicus (P.j) were analyzed and their nutritional values were evaluated. For the five species of shrimp, the meat yield was 37.47-55.94%, and the byproduct yield was 44.06-62.53%. The meat yields of L.v and F.c were the highest (55.94 and 55.92%, respectively), and the meat yield of M.r was the lowest (37.47%). The shrimp contain high amounts of crude protein, and the values of the amino acid score (AAS), chemical score (CS), and essential amino index (EAAI) were greater than or close to 1.00, indicating that shrimp protein had higher nutritional value. The shrimp head was rich in polyunsaturated fatty acids and the ratio of n-6 to n-3 PUFAs was from 0.37 to 1.68, indicating that the shrimp head is rich in n-3 PUFAs and is a good source of n-3 PUFAs. The five species of shrimp were rich in macro- and micro-minerals, especially in shrimp byproducts. The shrimp byproducts were also rich in other bioactive ingredients (astaxanthin), which are also very valuable for developing biological resources. Therefore, shrimp have many nutritional benefits, and their byproducts can also be used to develop natural nutraceuticals, which are considered to be one of the healthiest foods.

SELECTION OF CITATIONS
SEARCH DETAIL
...