Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 394
Filter
1.
Exploration (Beijing) ; 4(2): 20230104, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38855619

ABSTRACT

Previously, the effect of soil mineral N deficiency on nodule nitrogen fixation capacity (NFC) is unclear. In this study, we found that N deficiency would enhance sucrose allocation to nodules and PEP allocation to bacteroid to promote nodule NFC. Our findings provide new insights into the design of leguminous crops with improved adaptation to fluctuating N levels in the soil.

2.
Hellenic J Cardiol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838914

ABSTRACT

BACKGROUND: Previous studies have shown that remnant cholesterol (RC) was associated with cardiovascular disease (CVD). The study aim to identify the association of RC and the discordance between RC and lipoprotein cholesterol (LDL-C) with CVD. METHODS: Data was obtained from the Kailuan study. RC was calculated as the non high-density lipoprotein cholesterol minus LDL-C. Discordant RC and LDL-C were defined by percentile difference and clinical cutoff points. Cox proportional hazard models were used to explore the association of RC and the discordance between RC and LDL-C with CVD. RESULTS: Total of 96,769 participants were inclued, with the median age of 51.61 years, 79.56% of male. There was a significant association between RC levels and the risk of CVD, with an HR of 1.10 (95% CI, 1.08-1.13) in the continuous analysis. The discordantly high RC group had a significant increase in CVD, MI, and stroke risk, with HRs of 1.18 (95%CI, 1.10-1.26), 1.23 (1.06-1.43), and 1.15 (1.07-1.24), respectively. Compared to the group with low LDL-C and low RC, the group with low LDL-C and high RC had significantly higher incidences of CVD (HR, 1.33 [95% CI, 1.26-1.40]), MI (HR, 1.59 [95% CI, 1.41-1.80]), and stroke (HR, 1.28 [95% CI, 1.20-1.35]). CONCLUSIONS: Elevated levels of RC and discordantly high RC with LDL-C both were associated with the risk of CVD, MI, and stroke. These findings demonstrate the clinical significance of identifying residual risk related to RC.

3.
Cardiovasc Diabetol ; 23(1): 208, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898520

ABSTRACT

BACKGROUND: Triglyceride glucose (TyG) index and its related parameters have been introduced as cost-effective surrogate indicators of insulin resistance, while prospective evidence of their effects on atherosclerotic cardiovascular disease (ASCVD) remained scattered and inconsistent. We aimed to evaluate the association of TyG and its related parameters with new-onset ASCVD, and the predictive capacity were further compared. METHOD: A total of 95,342 ASCVD-free participants were enrolled from the Kailuan study. TyG and its related parameters were defined by fasting blood glucose, triglyceride, body mass index (BMI), waist circumstance (WC) and waist-to-height ratio (WHtR). The primary outcome was incident ASCVD, comprising myocardial infarction (MI) and ischemic stroke (IS). Cox proportional hazard models and restricted cubic spline (RCS) analyses were adopted to investigate the association between each index and ASCVD. The C-index, integrated discrimination improvement (IDI), and net reclassification improvement (NRI) were used for comparison of their predictive value for ASCVD. RESULTS: During a median follow-up of 15.0 years, 8,031 new cases of ASCVD were identified. The incidence rate of ASCVD increased along with elevated levels of each index, and the relationships were found to be nonlinear in the RCS analyses. The hazard ratio (HR) and 95% confidence interval (95% CI) for ASCVD was 1.39 (1.35, 1.43), 1.46 (1.41, 1.50), 1.50 (1.46, 1.55), and 1.52 (1.48, 1.57) per 1 IQR increase of baseline TyG, TyG-BMI, TyG-WC, and TyG-WHtR, respectively, and the association were more pronounced for females and younger individuals aged < 60 years (Pfor interaction<0.05). Using the updated mean or time-varying measurements instead of baseline indicators did not significantly alter the primary findings. Additionally, TyG-WC and TyG-WHtR showed better performance in predicting risk of ASCVD than TyG, with the IDI (95% CI) of 0.004 (0.001, 0.004) and 0.004 (0.001, 0.004) and the category-free NRI (95% CI) of 0.120 (0.025, 0.138) and 0.143 (0.032, 0.166), respectively. Similar findings were observed for MI and IS. CONCLUSIONS: Both the TyG index and its related parameters were significantly and positively associated with ASCVD. TyG-WC and TyG-WHtR had better performance in predicting incident ASCVD than TyG, which might be more suitable indices for risk stratification and enhance the primary prevention of ASCVD.


Subject(s)
Atherosclerosis , Biomarkers , Blood Glucose , Triglycerides , Humans , Middle Aged , Female , Male , China/epidemiology , Risk Assessment , Blood Glucose/metabolism , Triglycerides/blood , Incidence , Biomarkers/blood , Time Factors , Aged , Prognosis , Atherosclerosis/epidemiology , Atherosclerosis/blood , Atherosclerosis/diagnosis , Ischemic Stroke/epidemiology , Ischemic Stroke/blood , Ischemic Stroke/diagnosis , Follow-Up Studies , Adult , Prospective Studies , Body Mass Index , Risk Factors , Predictive Value of Tests , Myocardial Infarction/epidemiology , Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Waist-Height Ratio
4.
Int J Nanomedicine ; 19: 5511-5522, 2024.
Article in English | MEDLINE | ID: mdl-38895144

ABSTRACT

Introduction: Chrysin has a wide range of biological activities, but its poor bioavailability greatly limits its use. Here, we attempted to prepare casein (cas)-based nanoparticles to promote the biotransfer of chrysin, which demonstrated better bioavailability and anti-infection activity compared to free chrysin. Methods: Cas-based chrysin nanoparticles were prepared and characterized, and most of the preparation process was optimized. Then, the in vitro and in vivo release characteristics were studied, and anti-pulmonary infection activity was evaluated. Results: The constructed chrysin-cas nanoparticles exhibited nearly spherical morphology with particle size and ζ potential of 225.3 nm and -33 mV, respectively. These nanoparticles showed high encapsulation efficiency and drug-loading capacity of 79.84% ± 1.81% and 11.56% ± 0.28%, respectively. In vitro release studies highlighted a significant improvement in the release profile of the chrysin-cas nanoparticles (CCPs). In vivo experiments revealed that the relative oral bioavailability of CCPs was approximately 2.01 times higher than that of the free chrysin suspension. Further investigations indicated that CCPs effectively attenuated pulmonary infections caused by Acinetobacter baumannii by mitigating oxidative stress and reducing pro-inflammatory cytokines levels, and the efficacy was better than that of the free chrysin suspension. Conclusion: The findings underscore the advantageous bioavailability of CCPs and their protective effects against pulmonary infections. Such advancements position CCPs as a promising pharmaceutical agent and candidate for future therapeutic drug innovations.


Subject(s)
Biological Availability , Caseins , Flavonoids , Nanoparticles , Particle Size , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/pharmacokinetics , Caseins/chemistry , Caseins/pharmacokinetics , Animals , Nanoparticles/chemistry , Mice , Drug Liberation , Male , Oxidative Stress/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Cytokines/metabolism , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
5.
Colloids Surf B Biointerfaces ; 241: 114047, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897025

ABSTRACT

Polymer-based scaffolds with different degradability have been investigated to screen the matrix whose degradation rate is more closely matched with the bone regeneration rate. However, these comparisons are inclined to be compromised by the animal individual differences. In this study, we constructed an integrated scaffold model comprising four parts with different degradability and bioactivity to achieve an in situ comparison of bone regeneration ability of different scaffolds. Slow-degradable polycaprolactone (PCL), fast-degradable poly (lactic-co-glycolic acid) (PLGA), and silica-coated PCL and PLGA scaffolds were assembled into a round sheet to form a hydroxyapatite (HA)-free integrated scaffold. HA-doped PCL, PLGA, and silica-coated PCL and PLGA scaffolds were assembled to create an HA-incorporated integrated scaffold. The in vivo experimental results demonstrated that the local acid microenvironment caused by the rapid degradation of PLGA interfered with the osteogenic process promoted by PCL-based scaffolds in defect areas implanted with HA-free integrated scaffolds. Since the incorporation of HA alleviated the acidic microenvironment to some extent, each scaffold in HA-incorporated scaffolds exhibited its expected bone regeneration capacity. Consequently, it is feasible to construct an integrated structure for comparing the osteogenic effects of various scaffolds in situ, when there is no mutual interference between the materials. The strategy presented in this study inspired the structure design of biomaterials to enable in situ comparison of bone regeneration capacity of scaffolds.

6.
J Physiol ; 602(12): 2931-2943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872383

ABSTRACT

Theta-burst transcranial ultrasound stimulation (tbTUS) increases primary motor cortex (M1) excitability for at least 30 min. However, the remote effects of focal M1 tbTUS on the excitability of other cortical areas are unknown. Here, we examined the effects of left M1 tbTUS on right M1 excitability. An 80 s train of active or sham tbTUS was delivered to the left M1 in 20 healthy subjects. Before and after the tbTUS, we measured: (1) corticospinal excitability using motor-evoked potential (MEP) amplitudes from single-pulse transcranial magnetic stimulation (TMS) of left and right M1; (2) interhemispheric inhibition (IHI) from left to right M1 and from right to left M1 using a dual-site paired-pulse TMS paradigm; and (3) intracortical circuits of the right M1 with short-interval intracortical inhibition and intracortical facilitation (ICF) using paired-pulse TMS. Left M1 tbTUS decreased right M1 excitability as shown by decreased MEP amplitudes, increased right M1 ICF and decreased short-interval IHI from left to right hemisphere at interstimulus interval (ISI) of 10 ms but not long-interval IHI at interstimulus interval of 40 ms. The study showed that left M1 tbTUS can change the excitability of remote cortical areas with decreased right M1 excitability and interhemispheric inhibition. The remote effects of tbTUS should be considered when it is used in neuroscience research and as a potential neuromodulation treatment for brain disorders. KEY POINTS: Transcranial ultrasound stimulation (TUS) is a novel non-invasive brain stimulation technique for neuromodulation with the advantages of being able to achieve high spatial resolution and target deep brain structures. A repetitive TUS protocol, with an 80 s train of theta burst patterned TUS (tbTUS), has been shown to increase primary motor cortex (M1) excitability, as well as increase alpha and beta movement-related spectral power in distinct brain regions. In this study, we examined on the effects of the motor cortical tbTUS on the excitability of contralateral M1 measured with MEPs elicited by transcranial magnetic stimulation. We showed that left M1 tbTUS decreased right M1 excitability and left-to-right M1 interhemispheric inhibition, and increased intracortical facilitation of right M1. These results lead to better understand the effects of tbTUS and can help the development of tbTUS for the treatment of neurological and psychiatric disorders and in neuroscience research.


Subject(s)
Evoked Potentials, Motor , Motor Cortex , Transcranial Magnetic Stimulation , Humans , Motor Cortex/physiology , Male , Female , Adult , Transcranial Magnetic Stimulation/methods , Young Adult , Theta Rhythm
7.
Article in English | MEDLINE | ID: mdl-38918056

ABSTRACT

BACKGROUND: Evidence on the longitudinal association of serum uric acid (SUA) with the risk of heart failure (HF) was limited and controversial. This study aimed to investigate the associations of cumulative SUA (cumSUA), incorporating its time course of accumulation, with the risk of HF. METHODS: This prospective study enrolled 54,606 participants from the Kailuan study. The magnitude of SUA accumulation was expressed as cumSUA, exposure duration, and cumulative burden from baseline to the third survey, with cumSUA, calculated by multiplying mean values between consecutive examinations by time intervals between visits, as the primary exposure. RESULTS: During a median follow-up of 10.00 years, 1,260 cases of incident HF occurred. A higher risk of HF was observed in participants with the highest versus the lowest quartile of cumSUA (adjusted hazard ratio [aHR], 1.54; 95% confidence interval [CI], 1.29-1.84), 6-years (6 years) versus 0-year exposure duration (aHR, 1.87; 95% CI, 1.43-2.45), cumulative burden >0 versus =0 (aHR, 1.55; 95 CI, 1.29-1.86), and those with a negative versus positive SUA slope (aHR, 1.12; 95% CI, 1.02-1.25). When cumSUA was incorporated with its time course, those with cumSUA≥median and a negative SUA slope had the highest risk of HF (aHR, 1.55; 95% CI, 1.29-1.86). CONCLUSIONS: Incident HF risk was associated with the magnitude and time course of cumSUA accumulation. Early accumulation resulted in a greater risk of HF than later accumulation, indicating the importance of optimal SUA control earlier in life.

8.
Photodiagnosis Photodyn Ther ; 48: 104231, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821238

ABSTRACT

BACKGROUND: Chordoma is a rare congenital low-grade malignant tumor characterized by infiltrative growth. It often tends to compress important intracranial nerves and blood vessels, making its surgical treatment extremely difficult. Besides, the efficacy of radiotherapy and chemotherapy is limited. The photosensitizer hematoporphyrin derivative (HPD) can emit red fluorescence under 405 nm excitation and produce reactive oxygen species for tumor therapy under 630 nm excitation. Herein, we investigated the effects of the photosensitizer hematoporphyrin derivative (HPD) on different cell lines of chordoma and xenograft tumors under 405 nm and 630 nm excitation. METHODS: The photosensitizer hematoporphyrin derivative (HPD) and Two different chordoma cell lines (U-CH1, JHC7) were used for the test. The in vitro experiments were as follows: (1) the fluorescence intensity emitted by chordoma cells excited by different 405 nm light intensities was observed under a confocal microscope; (2) the Cell Counting Kit-8 (CCK-8) assay was performed to detect the effects of different photosensitizer concentrations and 630 nm light energy densities on the activity of chordoma cells. In the in vivo experiments, (3) Fluorescence visualization of chordoma xenograft tumors injected with photosensitizer via tail vein under 405 nm excitation; (4) Impact of 630 nm excitation of photosensitizer on the growth of chordoma xenograft tumors. RESULTS: (1) The photosensitizers in chordoma cells and chordoma xenografts of nude mice were excited by 405 nm to emit red fluorescence; (2) 630 nm excitation photosensitizer reduces chordoma cell activity and inhibits chordoma xenograft tumor growth in chordoma nude mice. CONCLUSION: Photodynamic techniques mediated by the photosensitizer hematoporphyrin derivatives can be used for the diagnosis and treatment of chordoma.

9.
Int J Clin Health Psychol ; 24(2): 100468, 2024.
Article in English | MEDLINE | ID: mdl-38803683

ABSTRACT

Background: A relatively new computational approach called trial-level bias score (TL-BS) has shown that attentional bias to smoking-related stimuli in smokers fluctuates temporally, trial by trial, during attention tasks. Here, we investigated the reliability of using TL-BS values to assess attentional bias and the electrophysiology mechanisms undergirding fluctuations in attentional bias among smokers. Method: In total, 26 male smokers and 26 male non-smokers performed a dot-probe task in Experiment 1. In Experiment 2, an additional 23 male smokers and 23 male non-smokers performed the same task while undergoing single-pulse transcranial magnetic stimulation, which was used to investigate corticospinal excitability. Results: It showed that assessing TL-BS parameters for reaction time (RT) was more reliable than calculating the traditional mean attentional bias score; however, this superior reliability was no longer apparent after controlling for general RT variability. There was a significant difference between smokers and non-smokers in TL-BS parameters calculated for both RT and motor-evoked potential (MEP) amplitude. However, TL-BS parameters for RT and MEP amplitude were strongly correlated with general RT variability and general MEP variability, respectively. Conclusions: Our findings indicated that TL-BS parameters may not be ideal for measuring attentional bias at either the behavioral or electrophysiology level; however, larger general RT and MEP amplitude variabilities in non-smokers may indicate dysregulation of cognitive processing in smokers.

10.
Ann Epidemiol ; 94: 127-136, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735386

ABSTRACT

BACKGROUND: Previous studies have shown that remnant cholesterol (RC) was associated with cardiovascular disease (CVD) among middle-aged or older adults. However, lack of evidence on long-term exposures to RC and their role in CVD risk among young adults. We thus aimed to explore the association between cumulative RC burden and CVD in young adults. METHODS: We enrolled participants younger than 45 years free of CVD history in the Kailuan Study who completed the first three health examinations from 2006 to 2010. Cumulative RC burden included cumulative RC burden score, time-weighted cumulative RC, exposure duration of high RC, and time course of RC accumulation. The outcome was the incidence of CVD. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) between cumulative RC burden and CVD risk. RESULTS: A total of 15,219 participants were included (73.70% male, median age 39.13 years). During a median follow-up duration of 8.71 years (interquartile range: 8.4-9.15 years), 502 individuals developed CVD. After adjustment for traditional cardiovascular risk factors, highest risk of CVD was observed in participants with the highest cumulative RC burden score (HR, 1.66; 95% CI, 1.29-2.12), the highest quartile time-weighted cumulative RC (HR,1.50; 95% CI, 1.15-1.96), the longest exposure duration of high RC (HR, 1.71; 95% CI, 1.21-2.42), and those with cumulative RC burden and positive slope (HR, 1.79; 95% CI, 1.35-2.36). CONCLUSIONS: Cumulative RC burden increased the risk of CVD among young adults, suggesting that maintaining low RC levels throughout young adulthood may minimize CVD risk.


Subject(s)
Cardiovascular Diseases , Cholesterol , Humans , Male , Cardiovascular Diseases/epidemiology , Female , Adult , Cholesterol/blood , Incidence , Risk Factors , China/epidemiology , Young Adult , Proportional Hazards Models , Middle Aged , Triglycerides/blood
11.
Adv Mater ; : e2314354, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778446

ABSTRACT

Alzheimer's disease (AD) is the most burdensome aging-associated neurodegenerative disorder, and its treatment encounters numerous failures during drug development. Although there are newly approved in-market ß-amyloid targeting antibody solutions, pathological heterogeneity among patient populations still challenges the treatment outcome. Emerging advances in gene therapies offer opportunities for more precise personalized medicine; while, major obstacles including the pathological heterogeneity among patient populations, the puzzled mechanism for druggable target development, and the precision delivery of functional therapeutic elements across the blood-brain barrier remain and limit the use of gene therapy for central neuronal diseases. Aiming for "precision delivery" challenges, nanomedicine provides versatile platforms that may overcome the targeted delivery challenges for AD gene therapy. In this perspective, to picture a toolbox for AD gene therapy strategy development, the most recent advances from benchtop to clinics are highlighted, possibly available gene therapy targets, tools, and delivery platforms are outlined, their challenges as well as rational design elements are addressed, and perspectives in this promising research field are discussed.

12.
Environ Sci Technol ; 58(22): 9792-9803, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780952

ABSTRACT

Anaerobic fermentation is a crucial route to realize effective waste activated sludge (WAS) resource recovery and utilization, while the overall efficiency is commonly restrained by undesirable disruptors (i.e., chemical dewatering agents). This work unveiled the unexpectedly positive effects of biodewatering tannic acid (TA) on the volatile fatty acids (VFAs) biosynthesis during WAS anaerobic fermentation. The total VFAs yield was remarkably increased by 15.6 folds with enriched acetate and butyrate in TA-occurred systems. TA was capable to disintegrate extracellular polymeric substances to promote the overall organics release. However, TA further modulated the soluble proteins structure by hydrogen bonding and hydrophobic interactions, resulting in the decrease of proteins bioavailability and consequential alteration of metabolic substrate feature. These changes reshaped the microbial community and stimulated adaptive regulatory systems in hydrolytic-acidogenic bacteria. The keystone species for carbohydrate metabolism (i.e., Solobacterium and Erysipelotrichaceae) were preferentially enriched. Also, the typical quorum sensing (i.e., enhancing substrate transport) and two-component systems (i.e., sustaining high metabolic activity) were activated to promote the microbial networks connectivity and ecological cooperative behaviors in response to TA stress. Additionally, the metabolic functions responsible for carbohydrate hydrolysis, transmembrane transport, and intracellular metabolism as well as VFA biosynthesis showed increased relative abundance, which maintained high microbial activities for VFAs biosynthesis. This study underscored the advantages of biodewatering TA for WAS treatment in the context of resource recovery and deciphered the interactive mechanisms.


Subject(s)
Fatty Acids, Volatile , Fermentation , Sewage , Tannins , Fatty Acids, Volatile/metabolism , Sewage/microbiology , Tannins/metabolism , Anaerobiosis , Microbiota
13.
ACS Omega ; 9(20): 22386-22397, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799314

ABSTRACT

Salidroside, a valuable phenylethanoid glycoside, is obtained from plants belonging to the Rhodiola genus, known for its diverse biological properties. At present, salidroside is still far from large-scale industrial production due to its lower titer and higher process cost. In this study, we have for the first time increased salidroside production by enhancing UDP-glucose supply in situ. We constructed an in vivo UDP-glucose regeneration system that works in conjunction with UDP-glucose transferase from Rhodiola innovatively to improve UDP-glucose availability. And a coculture was formed in order to enable de novo salidroside synthesis. Confronted with the influence of tyrosol on strain growth, an adaptive laboratory evolution strategy was implemented to enhance the strain's tolerance. Similarly, salidroside production was optimized through refinement of the fermentation medium, the inoculation ratio of the two microbes, and the inoculation size. The final salidroside titer reached 3.8 g/L. This was the highest titer achieved at the shake flask level in the existing reports. And this marked the first successful synthesis of salidroside in an in situ enhanced UDP-glucose system using sucrose. The cost was reduced by 93% due to the use of inexpensive substrates. This accomplishment laid a robust foundation for further investigations into the synthesis of other notable glycosides and natural compounds.

14.
Mater Today Bio ; 26: 101063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698884

ABSTRACT

Effective tissue repair relies on the orchestration of different macrophage phenotypes, both the M2 phenotype (promotes tissue repair) and M1 phenotype (pro-inflammatory) deserve attention. In this study, we propose a sequential immune activation strategy to mediate bone regeneration, by loading lipopolysaccharide (LPS) onto the surface of a strontium (Sr) ions -contained composite scaffold, which was fabricated by combining Sr-doped micro/nano-hydroxyapatite (HA) and dual degradable matrices of polycaprolactone (PCL) and poly (lactic-co-glycolic acid) (PLGA). Our strategy involves the sequential release of LPS to promote macrophage homing and induce the expression of the pro-inflammatory M1 phenotype, followed by the release of Sr ions to suppress inflammation. In vitro and in vivo experiments demonstrated that, the appropriate pro-inflammatory effects at the initial stage of implantation, along with the anti-inflammatory effects at the later stage, as well as the structural stability of the scaffolds conferred by the composition, can synergistically promote the regeneration and repair of bone defects.

15.
Front Bioeng Biotechnol ; 12: 1392414, 2024.
Article in English | MEDLINE | ID: mdl-38605985

ABSTRACT

Succinic acid (SA), one of the 12 top platform chemicals produced from biomass, is a precursor of various high value-added derivatives. Specially, 1 mol CO2 is assimilated in 1 mol SA biosynthetic route under anaerobic conditions, which helps to achieve carbon reduction goals. In this review, methods for enhanced CO2 fixation in SA production and utilization of waste biomass for SA production are reviewed. Bioelectrochemical and bioreactor coupling systems constructed with off-gas reutilization to capture CO2 more efficiently were highlighted. In addition, the techno-economic analysis and carbon sequestration benefits for the synthesis of bio-based SA from CO2 and waste biomass are analyzed. Finally, a droplet microfluidics-based high-throughput screening technique applied to the future bioproduction of SA is proposed as a promising approach.

16.
Int J Obes (Lond) ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637718

ABSTRACT

BACKGROUND: Obesity and metabolic syndrome (MetS) have been acknowledged to commonly co-exist and lead to increased risks of stroke, whereas the association between various BMI-based metabolic phenotypes and development of intracranial atherosclerotic stenosis (ICAS) remained controversial. METHODS: A total of 5355 participants were included from the Asymptomatic Polyvascular Abnormalities Community (APAC) study. Participants were categorized into six groups according to their body mass index (BMI) and MetS status. ICAS was assessed using transcranial Doppler (TCD) Ultrasonography. Logistic regression was employed to evaluate the association between BMI-based metabolic phenotypes and ICAS. RESULTS: 704 participants were diagnosed with ICAS. Compared to the metabolic healthy normal weight (MH-NW) group, the metabolic unhealthy normal weight (MUH-NW) group demonstrated a higher risk of ICAS (full-adjusted odds ratio [OR], 1.91; 95% confidence interval [CI], 1.42-2.57), while no significant association was observed in the metabolic unhealthy obesity (MUO) group (full-adjusted OR, 1.07; 95% CI, 0.70-1.65) and other metabolic healthy groups regardless of BMI. The results were consistent across gender, age, smoking, alcohol intake, and physical activity subgroups. CONCLUSION: The present study suggested that MUH-NW individuals had a significant association with increased risk of ICAS compared with MH-NW individuals.

17.
Int Immunopharmacol ; 132: 111935, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38599096

ABSTRACT

Finding novel therapeutic modalities, improving drug delivery efficiency and targeting, and reducing the immune escape of tumor cells are currently hot topics in the field of tumor therapy. Bacterial therapeutics have proven highly effective in preventing tumor spread and recurrence, used alone or in combination with traditional therapies. In recent years, a growing number of researchers have significantly improved the targeting and penetration of bacteria by using genetic engineering technology, which has received widespread attention in the field of tumor therapy. In this paper, we provide an overview and assessment of the advancements made in the field of tumor therapy using genetically engineered bacteria. We cover three major aspects: the development of engineered bacteria, their integration with other therapeutic techniques, and the current state of clinical trials. Lastly, we discuss the limitations and challenges that are currently being faced in the utilization of engineered bacteria for tumor therapy.


Subject(s)
Bacteria , Genetic Engineering , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Animals , Bacteria/genetics , Immunotherapy/methods , Drug Delivery Systems
18.
Small ; : e2401216, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593322

ABSTRACT

Polarization-sensitive broadband optoelectronic detection is crucial for future sensing, imaging, and communication technologies. Narrow bandgap 2D materials, such as Te and PdSe2, show promise for these applications, yet their polarization performance is limited by inherent structural anisotropies. In this work, a self-powered, broadband photodetector utilizing a Te/PdSe2 van der Waals (vdWs) heterojunction, with orientations meticulously tailored is introduced through polarized Raman optical spectra and tensor calculations to enhance linear polarization sensitivity. The device exhibits anisotropy ratios of 1.48 at 405 nm, 3.56 at 1550 nm, and 1.62 at 4 µm, surpassing previously-reported photodetectors based on pristine Te and PdSe2. Additionally, it exhibits high responsivity (617 mA W-1 at 1550 nm), specific detectivity (5.27 × 1010 Jones), fast response (≈4.5 µs), and an extended spectral range beyond 4 µm. The findings highlight the significance of orientation-engineered heterostructures in enhancing polarization-sensitive photodetectors and advancing optoelectronic technology.

19.
J Adv Res ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38609049

ABSTRACT

INTRODUCTION: Helicobacter pylori (H. pylori) infection has been associated with gastric carcinogenesis. However, the precise involvement of LRP8, the low-density lipoprotein receptor-related protein 8, in H. pylori pathogenesis and gastric cancer (GC) remains poorly understood. OBJECTIVES: To investigate the potential role of LRP8 in H. pylori infection and gastric carcinogenesis. METHODS: Three-dimensional human-derived gastric organoids (hGO) and gastric cancer organoids (hGCO) were synthesized from the tissues obtained from human donors. In this work, multi-omics combined with in vivo and in vitro studies were conducted to investigate the potential involvement of LRP8 in H. pylori-induced GC. RESULTS: We found that H. pylori infection significantly upregulated the expression of LRP8 in human GC tissues, cells, organoids, and mouse gastric mucous. In particular, LRP8 exhibited a distinct enrichment in cancer stem cells (CSC). Functionally, silencing of LRP8 affected the formation and proliferation of tumor spheroids, while increased expression of LRP8 was associated with increased proliferation and stemness of GC cells and organoids. Mechanistically, LRP8 promotes the binding of E-cadherin to ß-catenin, thereby promoting nuclear translocation and transcriptional activity of ß-catenin. Furthermore, LRP8 interacts with the cytotoxin-associated gene A (CagA) to form the CagA/LRP8/ß-catenin complex. This complex further amplifies H. pylori-induced ß-catenin nuclear translocation, leading to increased transcription of inflammatory factors and CSC markers. Clinical analysis demonstrated that abnormal overexpression of LRP8 is correlated with a poor prognosis and resistance to 5-Fluorouracil in patients with GC. CONCLUSION: Our findings provide valuable information on the molecular intricacies of H. pylori-induced gastric carcinogenesis, offering potential therapeutic targets and prognostic markers for GC.

20.
Brain Struct Funct ; 229(4): 909-918, 2024 May.
Article in English | MEDLINE | ID: mdl-38483581

ABSTRACT

Humans display automatic action tendencies toward emotional stimuli, showing faster automatic behavior (i.e., approaching a positive stimulus and avoiding a negative stimulus) than regulated behavior (i.e., avoiding a positive stimulus and approaching a negative stimulus). Previous studies have shown that the primary motor cortex is involved in the processing of automatic actions, with higher motor evoked potential amplitudes during automatic behavior elicited by single-pulse transcranial magnetic stimulation. However, it is unknown how intracortical circuits are involved with automatic action tendencies. Here, we measured short-interval intracortical inhibition and intracortical facilitation within the primary motor cortex by using paired-pulse transcranial magnetic stimulation protocols during a manikin task, which has been widely used to explore approaching and avoiding behavior. Results showed that intracortical facilitation was stronger during automatic behavior than during regulated behavior. Moreover, there was a significant negative correlation between reaction times and intracortical facilitation effect during automatic behavior: individuals with short reaction times had stronger faciliatory activity, as shown by higher intracortical facilitation. By contrast, no significant difference was found for short-interval intracortical inhibition between automatic behavior and regulated behavior. The results indicated that the intracortical facilitation circuit, mediated by excitatory glutamatergic neurons, in the primary motor cortex, plays an important role in mediating automatic action tendencies. This finding further supports the link between emotional perception and the action system.


Subject(s)
Motor Cortex , Humans , Motor Cortex/physiology , Evoked Potentials, Motor/physiology , Reaction Time/physiology , Transcranial Magnetic Stimulation/methods , Neurons , Neural Inhibition/physiology , Electromyography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...