Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 162: 114600, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36996679

ABSTRACT

PURPOSE: Previous studies proved the benefits of electroacupuncture (EA) on heart in ischemia reperfusion injury and chronic heart failure. However, the role of EA on sepsis-induced cardiac dysfunction has rarely been elucidated before. In this study, we aimed to investigate the effects of EA on cardiac dysfunction in a rat model of sepsis and to speculate the underlying mechanisms. METHODS: Sepsis was induced by cecum ligation and puncture in anesthetized rats. EA at the acupoint "Neiguan (PC6)" was applied 0.5 h after the induction of sepsis for 20 min. Heart rate variability was obtained immediately after EA to evaluate autonomic balance. Echocardiography was performed at 6 h and 24 h after sepsis induction in vivo. Measurements of hemodynamics, blood gases, cytokines and biochemistry were collected at 24 h. Cardiac tissue underwent immunofluorescence staining to determine the expression of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages. RESULTS: EA increased vagus nerve activity, prevented the development of hyperlactatemia, attenuated the decline of left ventricle ejection fraction, suppressed systemic and cardiac inflammation and alleviated the histopathological manifestations of heart in sepsis rats. Furthermore, the cardiac tissue from EA treated rats showed increased expressions of α7nAChR on macrophages. The cardio-protective and anti-inflammatory effects of EA were partly or completely prevented in rats with vagotomy. CONCLUSION: EA at PC6 attenuates left ventricle dysfunction and decreases inflammation in sepsis-induced cardiac dysfunction. The cardio-protective effects of EA are mediated through vagus nerve mediated cholinergic pathway.


Subject(s)
Electroacupuncture , Heart Diseases , Sepsis , Rats , Animals , Rats, Sprague-Dawley , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Vagus Nerve/metabolism , Vagus Nerve/pathology , Inflammation/pathology , Punctures , Cecum/pathology
2.
Laser Photon Rev ; 16(8)2022 Aug.
Article in English | MEDLINE | ID: mdl-36389089

ABSTRACT

Conventional light sheet fluorescence microscopy (LSFM) utilizes two perpendicularly arranged objective lenses for optical excitation and detection, respectively. Such a configuration often limits the use of high-numerical-aperture (NA) objectives or requires specially designed long-working-distance objectives. Here, a LSFM based on a micro-mirror array (MMA) to enable light sheet imaging with a single objective lens is reported. The planar fluorescent emission excited by the light sheet illumination is collected by the same objective, relayed onto an MMA and detected by a side-view camera. The proposed scheme makes LSFM compatible to single objective imaging system and shows promising candidacy for high spatiotemporal imaging.

3.
Br J Cancer ; 127(7): 1180-1183, 2022 10.
Article in English | MEDLINE | ID: mdl-35999274

ABSTRACT

We speculate ruptured circulating tumour cells (CTC) in capillaries could release a large number of small extracellular vesicle-like vesicles, namely mechanically extruded sEV (sEVme), which can encapsulate chromosomal DNA fragments. These sEVme have similar physicochemical properties compared to small extracellular vesicles spontaneously secreted by living cells (sEVss), and thus sEVme and sEVss cannot be effectively distinguished based on their size or membrane protein markers. Meanwhile, these sEVme derived from CTC inherit oncogenic payloads, deliver cargo through the bloodstream to recipient cells, and thus may promote cancer metastasis. The validation of this speculation could facilitate our understanding of EV biogenesis and cancer pathology. The potential finding will also provide a theoretical foundation for burgeoning liquid biopsy using DNA fragments derived from harvested sEV.


Subject(s)
Extracellular Vesicles , Neoplastic Cells, Circulating , DNA/metabolism , Extracellular Vesicles/metabolism , Humans , Membrane Proteins/metabolism , Neoplastic Cells, Circulating/metabolism , Oncogenes
4.
Bioact Mater ; 9: 251-265, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34820569

ABSTRACT

Immune checkpoint inhibitors (ICI) targeting PD-1/PD-L1 have been approved for the treatment of a variety of cancers. However, the efficacy of antibody-based ICIs could be further improved by mitigating anti-drug antibodies, proteolytic cleavage, and on-target off-tumor toxicity. One strategy for accomplishing this is through the use of extracellular vesicles (EVs), cell derived submicron vesicles with many unique properties. We constructed an engineered MDA-MB-231 cell line for harvesting EVs. This was accomplished by overexpressing a high-affinity variant human PD-1 protein (havPD-1), while simultaneously knocking out intrinsic PD-L1 and beta-2 microglobulin. The engineered havPD-1 EVs reduced PD-L1 overexpressing cancer cell proliferation and induced cellular apoptosis. Moreover, the EVs were shown to efficiently block PD-L1 mediated T cell suppression. Meanwhile antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity were not observed. The havPD-1 EVs treatment resulted in robust anti-tumor activity in both preventative co-implantation and therapeutic xenograft tumor models reconstituted with human T cells. The efficacy of the havPD-1 EVs was shown to be comparable to clinical anti-PD1 monoclonal antibodies. Additionally, loading the havPD-1 EVs with a potent PARP inhibitor was shown to further augment treatment efficacy. In brief, the engineered universal EVs harboring havPD-1 proteins can be used for cancer concurrent immunotherapy and chemotherapy.

6.
Front Mol Biosci ; 8: 647647, 2021.
Article in English | MEDLINE | ID: mdl-34055878

ABSTRACT

Organ failure resulting from excessive inflammation is the leading cause of death in the early phase of acute pancreatitis (AP). The autonomic nervous system was reported to be involved in AP, and the vagus nerve could exert anti-inflammatory effects through α7 nicotinic acetylcholine receptor (α7nAChR) signaling. Acupuncture has been widely used in traditional Asian medicine, and recent studies suggested the inflammation modulating effect of electroacupuncture (EA) might be mediated by the autonomic nervous system. In this study, we aimed to investigate the effects of EA in AP animal models. Two independent AP mouse models were used, namely, caerulein hyperstimulation and pancreatic duct ligation. We found that EA at Zusanli acupoint increased vagus nerve activity, suppressed systemic inflammation, and alleviated the histopathological manifestations and leukocyte infiltrations of the pancreas. Induction of AP resulted in a remarkable decrease in the frequency of α7nAchR+ macrophages in the pancreas, while EA counteracted this phenomenon. The anti-inflammatory, pancreatic protective and upregulation of α7nAchR effects of EA were reduced in mice with vagotomy. Moreover, the therapeutic effects of EA were attenuated in mice treated with methyllycaconitine citrate, a selective α7nAChR antagonist. Taken together, EA could modulate inflammation, thereby exerting protective effects in AP. The mechanism may include activating the vagus nerve through the cholinergic anti-inflammatory pathway.

7.
Biochim Biophys Acta Rev Cancer ; 1876(1): 188539, 2021 08.
Article in English | MEDLINE | ID: mdl-33892051

ABSTRACT

Small extracellular vesicles (sEVs) are submicron-sized, lipid-bilayer-enclosed particles that are released from cells. A variety of tissue-specific molecules, including proteins, DNA fragments, RNA, lipids, and metabolites, can be selectively encapsulated into sEVs and delivered to nearby and distant recipient cells. Incontestable and growing evidence shows the important biological roles and the clinical relevance of sEVs in tumors. In particular, recent studies validate sEVs can be used for early tumor diagnostics, staging, and treatment monitoring. Moreover, sEVs have been used as drug delivery nanocarriers, cancer vaccines, and antigen conferrers. While still in its infancy, the field of sEV-based fundamental and translational studies has been rapidly advancing. This review comprehensively examines the latest sEV-related studies in lung cancers, encompassing extracellular vesicles and their roles in lung cancer pathophysiology, diagnostics, and therapeutics. The state-of-the-art technologies for sEV isolation, downstream molecular analyses, and sEV-based therapies indicate their potency as tools for understanding the pathology and promising clinical management of lung cancers.


Subject(s)
Biomarkers, Tumor/metabolism , Extracellular Vesicles/metabolism , Lung Neoplasms/metabolism , Animals , Biomarkers, Tumor/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Extracellular Vesicles/transplantation , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Molecular Diagnostic Techniques , Organelle Size , Predictive Value of Tests , Prognosis , Signal Transduction
8.
ACS Appl Mater Interfaces ; 13(12): 14423-14432, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33733730

ABSTRACT

There has been a growing interest in the development of efficient flexible organic solar cells (OSCs) due to their unique capacity to provide energy sources for flexible electronics. To this end, it is required to design a compatible interlayer with low processing temperature and high electronic quality. In this work, we present that the electronic quality of the ZnO interlayer fabricated from a low-temperature (130 °C) sol-gel method can be significantly improved by doping an organic small molecule, TPT-S. The doped TPT-S, on the one hand, passivates uncoordinated Zn-related defects by forming N-Zn bonds. On the other hand, photoinduced charge transfer from TPT-S to ZnO is confirmed, which further fills up electron-deficient trap states. This renders ZnO improved electron transport capability and reduced charge recombination. By illuminating devices with square light pulses of varying intensities, we also reveal that an unfavorable charge trapping/detrapping process observed in low-temperature-processed devices is significantly inhibited after TPT-S doping. OSCs based on PBDB-T-2F:IT-4F with ZnO:TPT-S being the cathode interlayer yield efficiencies of 12.62 and 11.33% on rigid and flexible substrates, respectively. These observations convey the practicality of such hybrid ZnO in high-performance flexible devices.

9.
Bioact Mater ; 6(3): 749-756, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33024896

ABSTRACT

Triple negative breast cancer (TNBC) is a heterogeneous subset of breast cancer characterized by its lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), which altogether prevents TNBC from being treated effectively. For many years, the treatment paradigms and overall survival of patients with TNBC have remained largely stagnant. Recent attempts to convert cold tumors to hot tumors by promoting antigen presentation have shown increased T cell infiltration and significantly induced immune responses for tumor killing. Inspired by this concept, the expression of specific targetable antigens on TNBC cells may further benefit relevant targeted drug delivery. In this study, we successfully conferred sufficient HER2 on the surface of TNBC MDA-MB-231 cells via simple EV-plasma membrane fusion with HER2+ extracellular vesicles (EV) derived from HER2 overexpressing BT-474 cells. Subsequently, anti-HER2 antibody conjugated paclitaxel-loaded liposomes were used for HER2-targeted drug delivery. Our findings demonstrated this HER2 grafting, in conjunction with targeted drug delivery, can improve the treatment efficacy in vitro and in vivo. This novel approach represents a facile method of altering cell membrane antigen presentation via convenient EVs uptake and may pave the way for the burgeoning wave of targeted therapy and/or immunotherapy.

10.
ACS Sens ; 4(12): 3298-3307, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31769284

ABSTRACT

Viruses pose serious infectious disease threats to humans and animals. To significantly decrease the mortality and morbidity caused by virus infections, there is an urgent need of sensitive and rapid point-of-care platforms for virus detection, especially in low-resource settings. Herein, we developed a smartphone-based point-of-care platform for highly sensitive and selective detection of the avian influenza virus based on nanomaterial-enabled colorimetric detection. The 3D nanostructures, which serve as a scaffold for antibody conjugation to capture the avian influenza virus, are made on PDMS herringbone structures with a ZnO nanorod template. After virus capture, the on-chip gold nanoparticle-based colorimetric reaction allows virus detection by naked eyes with a detection limit of 2.7 × 104 EID50/mL, which is one order of magnitude better than that of conventional fluorescence-based ELISA. Furthermore, a smartphone imaging system with data processing capability further improves the detection limit, reaching down to 8 × 103 EID50/mL. The entire virus capture and detection process can be completed in 1.5 h. We envision that this point-of-care microfluidic system integrated with smartphone imaging and colorimetric detection would provide a fast, cheap, sensitive, and user-friendly platform for virus detection in low-resource settings.


Subject(s)
Colorimetry/methods , Influenza A Virus, H5N2 Subtype/isolation & purification , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Nanotubes/chemistry , Smartphone , Colorimetry/instrumentation , Dimethylpolysiloxanes/chemistry , Equipment Design , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Microfluidic Analytical Techniques/instrumentation , Point-of-Care Testing , Zinc Oxide/chemistry
11.
ACS Appl Mater Interfaces ; 11(38): 34989-34996, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31487453

ABSTRACT

Preparing high-quality perovskite film with large grain size and fewer trap states is of vital importance in boosting the efficiency and stability of perovskite solar cells (PSCs). However, it is still difficult to obtain perfect MAPbI3 films by antisolvent treatment so far because of the small grain size, pinholes, and numerous defects in perovskite layers. Herein, acetonitrile (ACN) was introduced into chlorobenzene (CB) antisolvent to modify the MAPbI3 active layer. The results show that the ACN could control the ratio of the DMSO in MAI-PbI2-DMSO intermediate phase film effectively and thus manipulate the formation of MAPbI3 film. Relatively high-quality perovskite films with larger grain size were obtained when we added 6% v/v ACN into CB antisolvent. Based on the ACN-modified MAPbI3 film, the n-i-p planar device with the structure of FTO/SnO2/MAPbI3/spiro-OMeTAD/Ag yields the best power conversion efficiency (PCE) of 18.9%. It exhibited an enhancement of 16.6% in efficiency compared with the PCE of 16.2% for the control device. In addition, the device based on ACN-modified MAPbI3 also presents improved stability in air atmosphere.

12.
Lab Chip ; 19(14): 2346-2355, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31232418

ABSTRACT

Nanoscale extracellular vesicles (nEVs) have recently demonstrated potential value in cancer diagnostics and treatment monitoring, but translation has been limited by technical challenges in nEV isolation. Thus, we have developed a one-step nEV isolation platform that utilizes nEV size-matched silica nanostructures and a surface-conjugated lipid nanoprobe with an integrated microfluidic mixer. The reported platform has 28.8% capture efficiency from pancreatic cancer plasma and can sufficiently enrich nEVs for simpler positive identification of point mutations, particularly KRAS, in nEV DNA from the plasma of pancreatic cancer patients.


Subject(s)
Extracellular Vesicles/chemistry , Lipids/chemistry , Nanostructures/chemistry , Silicon Dioxide/chemistry , Cell Line, Tumor , Extracellular Vesicles/pathology , Feasibility Studies , Humans , Lab-On-A-Chip Devices , Mutation , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics
13.
Small ; 14(44): e1802899, 2018 11.
Article in English | MEDLINE | ID: mdl-30286282

ABSTRACT

The mechanism of cells passing through microconstrictions, such as capillaries and endothelial junctions, influences metastasis of circulating tumor cells (CTCs) in vivo, as well as size-based enrichment of CTCs in vitro. However, very few studies observe such translocation of microconstrictions in real time, and thus the inherent biophysical mechanism is poorly understood. In this study, a multiplexed microfluidic device is fabricated for real-time tracking of cell translocation under physiological pressure and recording deformation of the whole cell and nucleus, respectively. It is found that the deformability and size of the nucleus instead of the whole cell dominate cellular translocation through microconstrictions under a normal physiological pressure range. More specifically, cells with a large and stiff nucleus are prone to be blocked by relatively small constrictions. The same phenomenon is also observed in the size-based enrichment of CTCs from peripheral blood of metastatic cancer patients. These findings are different from a popular viewpoint that the size and deformability of a whole cell mainly determine cell translation through microconstrictions, and thus may elucidate interactions between CTCs and capillaries from a new perspective and guide the rational design of size-based microfilters for rare cell enrichment.


Subject(s)
Biomimetics/methods , Cell Nucleus/metabolism , Humans , Lab-On-A-Chip Devices , Neoplasm Metastasis/pathology , Neoplastic Cells, Circulating/pathology
14.
Small ; 14(12): e1702787, 2018 03.
Article in English | MEDLINE | ID: mdl-29399951

ABSTRACT

Bone metastasis occurs at ≈70% frequency in metastatic breast cancer. The mechanisms used by tumors to hijack the skeleton, promote bone metastases, and confer therapeutic resistance are poorly understood. This has led to the development of various bone models to investigate the interactions between cancer cells and host bone marrow cells and related physiological changes. However, it is challenging to perform bone studies due to the difficulty in periodic sampling. Herein, a bone-on-a-chip (BC) is reported for spontaneous growth of a 3D, mineralized, collagenous bone tissue. Mature osteoblastic tissue of up to 85 µm thickness containing heavily mineralized collagen fibers naturally formed in 720 h without the aid of differentiation agents. Moreover, co-culture of metastatic breast cancer cells is examined with osteoblastic tissues. The new bone-on-a-chip design not only increases experimental throughput by miniaturization, but also maximizes the chances of cancer cell interaction with bone matrix of a concentrated surface area and facilitates easy, frequent observation. As a result, unique hallmarks of breast cancer bone colonization, previously confirmed only in vivo, are observed. The spontaneous 3D BC keeps the promise as a physiologically relevant model for the in vitro study of breast cancer bone metastasis.


Subject(s)
Bone Neoplasms/diagnosis , Breast Neoplasms/diagnosis , Microfluidics/methods , Bone Neoplasms/etiology , Bone Neoplasms/pathology , Breast Neoplasms/complications , Breast Neoplasms/pathology , Cell Line, Tumor , Coculture Techniques , Female , Humans , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/pathology
15.
Adv Drug Deliv Rev ; 125: 3-20, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29326054

ABSTRACT

Circulating tumor cells (CTCs) originate from the primary tumor mass and enter into the peripheral bloodstream. Compared to other "liquid biopsy" portfolios such as exosome, circulating tumor DNA/RNA (ctDNA/RNA), CTCs have incomparable advantages in analyses of transcriptomics, proteomics, and signal colocalization. Hence, CTCs hold the key to understanding the biology of metastasis and play a vital role in cancer diagnosis, treatment monitoring, and prognosis. Size-based enrichment features are prominent in CTC isolation. It is a label-free, simple and fast method. Enriched CTCs remain unmodified and viable for a wide range of subsequent analyses. In this review, we comprehensively summarize the differences of size and deformability between CTCs and blood cells, which would facilitate the development of technologies of size-based CTC isolation. Then we review representative size-/deformability-based technologies available for CTC isolation and highlight the recent achievements in molecular analysis of isolated CTCs. To wrap up, we discuss the substantial challenges facing the field, and elaborate on prospects.


Subject(s)
Cell Separation/methods , Microfluidic Analytical Techniques , Neoplastic Cells, Circulating/pathology , Humans , Particle Size , Surface Properties
16.
ACS Appl Mater Interfaces ; 10(6): 5340-5347, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29345456

ABSTRACT

Endo-/lysosome escape is a major challenge in nanoparticle-based protein delivery for cancer therapy. To enhance the endo-/lysosomal escape and increase the efficacy of protein delivery, current strategies mainly focus on destroying endo-/lysosomes by employing modified nanoparticles, such as pH-sensitive polyplexes, cell-penetrating peptides, and photosensitive molecules. Herein, we hypothesize that pretreatment with empty nanocarriers might make endo-/lysosomes occupied and affect the endo/lysosomal escape of protein subsequently delivery by nanocarriers. We first treated breast carcinoma MDA-MB-231 cells with a high concentration of empty nanocarriers, mesoporous silica nanoparticles (MSN), to occupy the endo-/lysosome. After 2 h, we treated the cells with a lower concentration of fluorescein isothiocyanate-labeled MSN (MSN-FITC) and investigated the intracellular spatial and temporal distribution of MSN-FITC and their colocalization with endo-/lysosomes. We discovered the preoccupation of endo-/lysosomes by the empty nanocarriers did exist, mainly through changing the spatial distribution of the subsequently introduced nanocarriers. Furthermore, for the protein delivery, we observed reduced MSN-saporin delivery after endo-/lysosome preoccupation by MSN empty carriers. A similar result is observed for the delivery of cytochrome C by MSN but not for the small-molecule anticancer drug doxorubicin. The results show that the empty nanocarriers inhibit the endo-/lysosome intracellular trafficking process and decrease the endo-/lysosome escape of proteins subsequently delivered by the nanocarriers. This new discovered phenomenon of declined endo-/lysosome escape after endo-/lysosome preoccupation indicates that repeated treatment by nanomaterials with low protein-loading capacity may not yield a good cancer therapeutic effect. Therefore, it provides a new insightful perspective on the role of nanomaterial carriers in intracellular protein delivery.


Subject(s)
Nanoparticles , Doxorubicin , Drug Carriers , Drug Delivery Systems , Lysosomes , Porosity , Silicon Dioxide
17.
Cancer Res ; 78(3): 798-808, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29217761

ABSTRACT

Extracellular nanovesicles (ENV) released by many cells contain lipids, proteins, and nucleic acids that contribute to intercellular communication. ENVs have emerged as biomarkers and therapeutic targets but they have also been explored as drug delivery vehicles. However, for the latter application, clinical translation has been limited by low yield and inadequate targeting effects. ENV vectors with desired targeting properties can be produced from parental cells engineered to express membrane-bound targeting ligands, or they can be generated by fusion with targeting liposomes; however, neither approach has met clinical requirements. In this study, we demonstrate that mechanical extrusion of approximately 107 cells grafted with lipidated ligands can generate cancer cell-targeting ENV and can be prepared in approximately 1 hour. This rapid and economic approach could pave the way for clinical implementation in the future.Significance: A new and rapid method for production of drug-targeting nanovesicles has implications for cancer treatment by chimeric antigen receptor T cells and other therapies. Cancer Res; 78(3); 798-808. ©2017 AACR.


Subject(s)
Aptamers, Nucleotide/administration & dosage , Breast Neoplasms/drug therapy , Drug Delivery Systems , Extracellular Vesicles/chemistry , Nanoparticles/administration & dosage , Paclitaxel/pharmacology , Phosphoproteins/genetics , RNA-Binding Proteins/genetics , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Aptamers, Nucleotide/chemistry , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation , Female , Humans , Lipids/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/chemistry , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Nucleolin
18.
Article in English | MEDLINE | ID: mdl-28966872

ABSTRACT

Extracellular vesicles (EVs) can mediate intercellular communication by transferring cargo proteins and nucleic acids between cells. The pathophysiological roles and clinical value of EVs are under intense investigation, yet most studies are limited by technical challenges in the isolation of nanoscale EVs (nEVs). Here, we report a lipid nanoprobe that enables spontaneous labelling and magnetic enrichment of nEVs in 15 minutes, with isolation efficiency and cargo composition similar to what can be achieved by the much slower and bulkier method of ultracentrifugation. We also show that the lipid nanoprobes, which allow for downstream analyses of nucleic acids and proteins, enabled the identification of EGFR and KRAS mutations following nEV isolation from blood plasma from non-small-cell lung-cancer patients. The efficiency and versatility of the lipid nanoprobe opens up opportunities in point-of-care cancer diagnostics.

19.
Small ; 13(24)2017 06.
Article in English | MEDLINE | ID: mdl-28636164

ABSTRACT

Rapid and simultaneous detection of multiple potential pathogens by portable devices can facilitate early diagnosis of infectious diseases, and allow for rapid and effective implementation of disease prevention and treatment measures. The development of a ZnO nanorod integrated microdevice as a multiplex immunofluorescence platform for highly sensitive and selective detection of avian influenza virus (AIV) is described. The 3D morphology and unique optical property of the ZnO nanorods boost the detection limit of the H5N2 AIV to as low as 3.6 × 103 EID50 mL-1 (EID50 : 50% embryo infectious dose), which is ≈22 times more sensitive than conventional enzyme-linked immunosorbent assay. The entire virus capture and detection process could be completed within 1.5 h with excellent selectivity. Moreover, this microfluidic biosensor is capable of detecting multiple viruses simultaneously by spatial encoding of capture antibodies. One prominent feature of the device is that the captured H5N2 AIV can be released by simply dissolving ZnO nanorods under slightly acidic environment for subsequent off-chip analyses. As a whole, this platform provides a powerful tool for rapid detection of multiple pathogens, which may extent to the other fields for low-cost and convenient biomarker detection.


Subject(s)
Immunoassay/methods , Microfluidics/methods , Nanostructures/chemistry , Animals , Birds , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza in Birds/diagnosis
20.
Microsyst Nanoeng ; 3: 17062, 2017.
Article in English | MEDLINE | ID: mdl-31057886

ABSTRACT

We report the design, fabrication and characterization of a microelectromechanical systems (MEMS) flow control device for gas chromatography (GC) with the capability of sustaining high-temperature environments. We further demonstrate the use of this new device in a novel MEMS chopper-modulated gas chromatography-electroantennography (MEMS-GC-EAG) system to identify specific volatile organic compounds (VOCs) at extremely low concentrations. The device integrates four pneumatically actuated microvalves constructed via thermocompression bonding of the polyimide membrane between two glass substrates with microstructures. The overall size of the device is 32 mm×32 mm, and it is packaged in a 50 mm×50 mm aluminum housing that provides access to the fluidic connections and allows thermal control. The characterization reveals that each microvalve in the flow control chip provides an ON to OFF ratio as high as 1000:1. The device can operate reliably for more than 1 million switching cycles at a working temperature of 300 °C. Using the MEMS-GC-EAG system, we demonstrate the successful detection of cis-11-hexadecenal with a concentration as low as 1 pg at a demodulation frequency of 2 Hz by using an antenna harvested from the male Helicoverpa Virescens moth. In addition, 1 µg of a green leafy volatile (GLV) is barely detected using the conventional GC-EAG, while MEMS-GC-EAG can readily detect the same amount of GLV, with an improvement in the signal-to-noise ratio (SNR) of ~22 times. We expect that the flow control device presented in this report will allow researchers to explore new applications and make new discoveries in entomology and other fields that require high-temperature flow control at the microscale.

SELECTION OF CITATIONS
SEARCH DETAIL
...