Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Sci Rep ; 8(1): 1192, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352184

ABSTRACT

The atrial G protein-gated inwardly rectifying K+ (GIRK) channel is a critical mediator of parasympathetic influence on cardiac physiology. Here, we probed the details and relevance of the GIRK channel in mouse ventricle. mRNAs for the atrial GIRK channel subunits (GIRK1, GIRK4), M2 muscarinic receptor (M2R), and RGS6, a negative regulator of atrial GIRK-dependent signaling, were detected in mouse ventricle at relatively low levels. The cholinergic agonist carbachol (CCh) activated small GIRK currents in adult wild-type ventricular myocytes that exhibited relatively slow kinetics and low CCh sensitivity; these currents were absent in ventricular myocytes from Girk1-/- or Girk4-/- mice. While loss of GIRK channels attenuated the CCh-induced shortening of action potential duration and suppression of ventricular myocyte excitability, selective ablation of GIRK channels in ventricle had no effect on heart rate, heart rate variability, or electrocardiogram parameters at baseline or after CCh injection. Additionally, loss of ventricular GIRK channels did not impact susceptibility to ventricular arrhythmias. These data suggest that the mouse ventricular GIRK channel is a GIRK1/GIRK4 heteromer, and show that while it contributes to the cholinergic suppression of ventricular myocyte excitability, this influence does not substantially impact cardiac physiology or ventricular arrhythmogenesis in the mouse.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Gene Expression , Heart Ventricles/metabolism , Ion Channel Gating , Action Potentials , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Electrocardiography , G Protein-Coupled Inwardly-Rectifying Potassium Channels/chemistry , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Genotype , Heart Atria/metabolism , Mice , Mice, Knockout , Muscle Cells/metabolism , Protein Multimerization , Signal Transduction , Ventricular Function
2.
Sci Rep ; 7(1): 1639, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28487514

ABSTRACT

Many neurotransmitters directly inhibit neurons by activating G protein-gated inwardly rectifying K+ (GIRK) channels, thereby moderating the influence of excitatory input on neuronal excitability. While most neuronal GIRK channels are formed by GIRK1 and GIRK2 subunits, distinct GIRK2 isoforms generated by alternative splicing have been identified. Here, we compared the trafficking and function of two isoforms (GIRK2a and GIRK2c) expressed individually in hippocampal pyramidal neurons lacking GIRK2. GIRK2a and GIRK2c supported comparable somato-dendritic GIRK currents in Girk2 -/- pyramidal neurons, although GIRK2c achieved a more uniform subcellular distribution in pyramidal neurons and supported inhibitory postsynaptic currents in distal dendrites better than GIRK2a. While over-expression of either isoform in dorsal CA1 pyramidal neurons restored contextual fear learning in a conditional Girk2 -/- mouse line, GIRK2a also enhanced cue fear learning. Collectively, these data indicate that GIRK2 isoform balance within a neuron can impact the processing of afferent inhibitory input and associated behavior.


Subject(s)
Alternative Splicing/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Ion Channel Gating , Neurons/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Conditioning, Psychological , Disks Large Homolog 4 Protein/metabolism , Fear , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , HEK293 Cells , Hippocampus/metabolism , Humans , Integrases/metabolism , Learning , Mice, Inbred C57BL , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyramidal Cells/metabolism , Subcellular Fractions/metabolism , Synapses/metabolism , Transfection
3.
Neuropharmacology ; 117: 33-40, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28131769

ABSTRACT

Cocaine and other drugs of abuse trigger long-lasting adaptations in excitatory and inhibitory neurotransmission in the mesocorticolimbic system, and this plasticity has been implicated in several key facets of drug addiction. For example, glutamatergic neurotransmission mediated by AMPA receptors (AMPAR) is strengthened in medium spiny neurons (MSNs) in the NAc core and shell during withdrawal following repeated in vivo cocaine administration. Repeated cocaine administration also suppresses inhibitory signaling mediated by G protein-gated inwardly rectifying K+ (GIRK) channels in pyramidal neurons of the prelimbic cortex, an important source of glutamatergic input to the NAc core that has been implicated in cocaine-seeking and behavioral sensitization. Here, we tested the hypothesis that suppression of GIRK channel activity in forebrain pyramidal neurons can promote plasticity of glutamatergic signaling in MSNs. Using novel conditional knockout mouse lines, we report that GIRK channel ablation in forebrain pyramidal neurons is sufficient to enhance AMPAR-dependent neurotransmission in D1R-expressing MSNs in the NAc core, while also increasing motor-stimulatory responses to cocaine administration. A similar increase in AMPAR-dependent signaling was seen in both D1R- and D2R-expressing MSNs in the NAc core during withdrawal from repeated cocaine administration in normal mice. Collectively, these data are consistent with the premise that the cocaine-induced suppression of GIRK-dependent signaling in glutamatergic inputs to the NAc core contributes to some of the electrophysiological and behavioral hallmarks associated with repeated cocaine administration.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology , Glutamic Acid/physiology , Neuronal Plasticity/physiology , Nucleus Accumbens/physiology , Pyramidal Cells/physiology , Synaptic Transmission/physiology , Animals , Cocaine/pharmacology , Dopaminergic Neurons/physiology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/biosynthesis , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Locomotion/drug effects , Mice , Mice, Knockout , Nucleus Accumbens/metabolism , Prosencephalon/physiology
4.
Biol Psychiatry ; 80(10): 796-806, 2016 11 15.
Article in English | MEDLINE | ID: mdl-26612516

ABSTRACT

BACKGROUND: Cognitive dysfunction occurs in many debilitating conditions including Alzheimer's disease, Down syndrome, schizophrenia, and mood disorders. The dorsal hippocampus is a critical locus of cognitive processes linked to spatial and contextual learning. G protein-gated inwardly rectifying potassium ion (GIRK/Kir3) channels, which mediate the postsynaptic inhibitory effect of many neurotransmitters, have been implicated in hippocampal-dependent cognition. Available evidence, however, derives primarily from constitutive gain-of-function models that lack cellular specificity. METHODS: We used constitutive and neuron-specific gene ablation models targeting an integral subunit of neuronal GIRK channels (GIRK2) to probe the impact of GIRK channels on associative learning and memory. RESULTS: Constitutive Girk2-/- mice exhibited a striking deficit in hippocampal-dependent (contextual) and hippocampal-independent (cue) fear conditioning. Mice lacking GIRK2 in gamma-aminobutyric acid neurons (GAD-Cre:Girk2flox/flox mice) exhibited a clear deficit in GIRK-dependent signaling in dorsal hippocampal gamma-aminobutyric acid neurons but no evident behavioral phenotype. Mice lacking GIRK2 in forebrain pyramidal neurons (CaMKII-Cre(+):Girk2flox/flox mice) exhibited diminished GIRK-dependent signaling in dorsal, but not ventral, hippocampal pyramidal neurons. CaMKII-Cre(+):Girk2flox/flox mice also displayed a selective impairment in contextual fear conditioning, as both cue fear and spatial learning were intact in these mice. Finally, loss of GIRK2 in forebrain pyramidal neurons correlated with enhanced long-term depression and blunted depotentiation of long-term potentiation at the Schaffer collateral/cornu ammonis 1 synapse in the dorsal hippocampus. CONCLUSIONS: Our data suggest that GIRK channels in dorsal hippocampal pyramidal neurons are necessary for normal learning involving aversive stimuli and support the contention that dysregulation of GIRK-dependent signaling may underlie cognitive dysfunction in some disorders.


Subject(s)
Cognitive Dysfunction/metabolism , Fear/physiology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology , Hippocampus/metabolism , Learning/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/metabolism , Signal Transduction/physiology , Animals , Cognitive Dysfunction/physiopathology , Conditioning, Psychological , Hippocampus/physiopathology , Mice , Mice, Transgenic
5.
J Neurosci ; 35(18): 7131-42, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25948263

ABSTRACT

G-protein-gated inwardly rectifying K(+) (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential.


Subject(s)
Analgesics, Opioid/pharmacology , Dopaminergic Neurons/physiology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology , GABAergic Neurons/physiology , Motor Activity/physiology , Animals , Dopaminergic Neurons/drug effects , Dose-Response Relationship, Drug , GABAergic Neurons/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Protein Subunits/physiology , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/physiology
6.
Neuropharmacology ; 95: 353-60, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25843643

ABSTRACT

The medial prefrontal cortex (mPFC) has been implicated in multiple disorders characterized by clear sex differences, including schizophrenia, attention deficit hyperactivity disorder, post-traumatic stress disorder, depression, and drug addiction. These sex differences likely represent underlying differences in connectivity and/or the balance of neuronal excitability within the mPFC. Recently, we demonstrated that signaling via the metabotropic γ-aminobutyric acid receptor (GABABR) and G protein-gated inwardly-rectifying K(+) (GIRK/Kir3) channels modulates the excitability of the key output neurons of the mPFC, the layer 5/6 pyramidal neurons. Here, we report a sex difference in the GABABR-GIRK signaling pathway in these neurons. Specifically, GABABR-dependent GIRK currents recorded in the prelimbic region of the mPFC were larger in adolescent male mice than in female counterparts. Interestingly, this sex difference was not observed in layer 5/6 pyramidal neurons of the adjacent infralimbic cortex, nor was it seen in young adult mice. The sex difference in GABABR-GIRK signaling is not attributable to different expression levels of signaling pathway components, but rather to a phosphorylation-dependent trafficking mechanism. Thus, sex differences related to some diseases associated with altered mPFC function may be explained in part by sex differences in GIRK-dependent signaling in mPFC pyramidal neurons.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Prefrontal Cortex/physiology , Pyramidal Cells/physiology , Receptors, GABA-B/metabolism , Sex Characteristics , Animals , Female , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Immunoblotting , Male , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Immunoelectron , Patch-Clamp Techniques , Phosphorylation/physiology , Prefrontal Cortex/growth & development , Prefrontal Cortex/ultrastructure , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology , Tissue Culture Techniques
7.
J Biol Chem ; 289(4): 2440-9, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24318880

ABSTRACT

Parasympathetic activity decreases heart rate (HR) by inhibiting pacemaker cells in the sinoatrial node (SAN). Dysregulation of parasympathetic influence has been linked to sinus node dysfunction and arrhythmia. RGS (regulator of G protein signaling) proteins are negative modulators of the parasympathetic regulation of HR and the prototypical M2 muscarinic receptor (M2R)-dependent signaling pathway in the SAN that involves the muscarinic-gated atrial K(+) channel IKACh. Both RGS4 and RGS6-Gß5 have been implicated in these processes. Here, we used Rgs4(-/-), Rgs6(-/-), and Rgs4(-/-):Rgs6(-/-) mice to compare the relative influence of RGS4 and RGS6 on parasympathetic regulation of HR and M2R-IKACh-dependent signaling in the SAN. In retrogradely perfused hearts, ablation of RGS6, but not RGS4, correlated with decreased resting HR, increased heart rate variability, and enhanced sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol. Similarly, loss of RGS6, but not RGS4, correlated with enhanced sensitivity of the M2R-IKACh signaling pathway in SAN cells to carbachol and a significant slowing of M2R-IKACh deactivation rate. Surprisingly, concurrent genetic ablation of RGS4 partially rescued some deficits observed in Rgs6(-/-) mice. These findings, together with those from an acute pharmacologic approach in SAN cells from Rgs6(-/-) and Gß5(-/-) mice, suggest that the partial rescue of phenotypes in Rgs4(-/-):Rgs6(-/-) mice is attributable to another R7 RGS protein whose influence on M2R-IKACh signaling is masked by RGS4. Thus, RGS6-Gß5, but not RGS4, is the primary RGS modulator of parasympathetic HR regulation and SAN M2R-IKACh signaling in mice.


Subject(s)
Heart Rate/physiology , Muscle Proteins/metabolism , Parasympathetic Nervous System/metabolism , RGS Proteins/metabolism , Sinoatrial Node/metabolism , Animals , Carbachol/pharmacology , Cardiotonic Agents/pharmacology , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , Heart Rate/drug effects , Mice , Mice, Knockout , Muscle Proteins/genetics , Potassium Channels/genetics , Potassium Channels/metabolism , RGS Proteins/genetics , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M2/metabolism , Sinoatrial Node/cytology
8.
PLoS Genet ; 9(9): e1003797, 2013.
Article in English | MEDLINE | ID: mdl-24086149

ABSTRACT

Curation and interpretation of copy number variants identified by genome-wide testing is challenged by the large number of events harbored in each personal genome. Conventional determination of phenotypic relevance relies on patterns of higher frequency in affected individuals versus controls; however, an increasing amount of ascertained variation is rare or private to clans. Consequently, frequency data have less utility to resolve pathogenic from benign. One solution is disease-specific algorithms that leverage gene knowledge together with variant frequency to aid prioritization. We used large-scale resources including Gene Ontology, protein-protein interactions and other annotation systems together with a broad set of 83 genes with known associations to epilepsy to construct a pathogenicity score for the phenotype. We evaluated the score for all annotated human genes and applied Bayesian methods to combine the derived pathogenicity score with frequency information from our diagnostic laboratory. Analysis determined Bayes factors and posterior distributions for each gene. We applied our method to subjects with abnormal chromosomal microarray results and confirmed epilepsy diagnoses gathered by electronic medical record review. Genes deleted in our subjects with epilepsy had significantly higher pathogenicity scores and Bayes factors compared to subjects referred for non-neurologic indications. We also applied our scores to identify a recently validated epilepsy gene in a complex genomic region and to reveal candidate genes for epilepsy. We propose a potential use in clinical decision support for our results in the context of genome-wide screening. Our approach demonstrates the utility of integrative data in medical genomics.


Subject(s)
Algorithms , Bayes Theorem , Epilepsy , Gene Dosage , Comparative Genomic Hybridization , Epilepsy/genetics , Epilepsy/pathology , Genetic Association Studies , Genome, Human , Genome-Wide Association Study , Genomics , Humans , Models, Theoretical , Phenotype
9.
RNA Biol ; 9(10): 1275-87, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22995834

ABSTRACT

MicroRNAs (miRNAs) are important players of post-transcriptional gene regulation. Individual miRNAs can target multiple mRNAs and a single mRNA can be targeted by many miRNAs. We hypothesized that miRNAs select and regulate their targets based on their own expression levels, those of their target mRNAs and triggered feedback loops. We studied the effects of varying concentrations of let-7a-7f and the miR-17-92 cluster plasmids on the reporter genes carrying either DICER- or cMYC -3'UTR in Huh-7 cells. We showed that let-7 significantly downregulated expression of DICER 3'UTR reporter at lower concentrations, but selectively downregulated expression of a cMYC 3'UTR reporter at higher dose. This miRNA dose-dependent target selection was also confirmed in other target genes, including CCND1, CDKN1 and E2F1. After overexpressing let-7a-7f or the miR-17-92 clusters at wide-ranging doses, the target genes displayed a nonlinear correlation to the transfected miRNA. Further, by comparing the expression levels of let-7a and miR-17-5p, along with their selected target genes in 3 different cell lines, we found that the knockdown dose of each miRNA was directly related to their baseline expression level, that of the target gene and feedback loops. These findings were supported by gene modulation studies using endogenous levels of miR-29, -1 and -206 and a luciferase reporter system in multiple cell lines. Finally, we determined that the miR-17-92 cluster affected cell viability in a dose-dependent manner. In conclusion, we have shown that miRNAs potentially select their targets in a dose-dependent and nonlinear fashion that affects biological function; and this represents a novel mechanism by which miRNAs orchestrate the finely tuned balance of cell function.


Subject(s)
3' Untranslated Regions , Feedback, Physiological , Gene Expression Regulation , MicroRNAs/genetics , Cell Line, Tumor , Cell Survival , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Genes, Reporter , Humans , Luciferases , MicroRNAs/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Long Noncoding , Ribonuclease III/genetics , Ribonuclease III/metabolism , Transfection
10.
Am J Med Genet B Neuropsychiatr Genet ; 159B(2): 236-42, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22223473

ABSTRACT

The development of midbrain dopamine (DA) neurons is regulated by several transcription factors, including Nurr1, Wnt1, Lmx1a/1b, En1, En2, Foxa1, Foxa2, and Pitx3. PITX3 is an upstream co-activator of the TH (tyrosine hydroxylase) promoter. Pitx3(-/-) mice have a selective loss of dopaminergic neurons in the substantia nigra and ventral tegmental area, leading to the significantly reduced DA levels in the nigrostriatal pathway and in the dorsal striatum and manifest anomalous striatum-dependent cognitive impairment and neurobehavioral activity. Treatment with L-DOPA, dopamine, or dopamine receptor agonists in these mice reversed several of their sensorimotor impairments. Heterozygous missense mutations in PITX3 have been reported in patients with autosomal dominant congenital cataract and anterior segment (ocular) mesenchymal dysgenesis (ASMD) whereas homozygous missense mutations have been found in patients with microphthalmia and neurological impairment. Using a clinical oligonucleotide array comparative genomic hybridization (aCGH), we have identified an ∼317 kb hemizygous deletion in 10q24.32, involving PITX3 in a 17-year-old male with a Smith-Magenis syndrome-like phenotype, including mild intellectual impairment, sleep disturbance, hyperactivity, and aggressive and self-destructive behavior. Interestingly, no eye anomalies were found in our patient. Analysis of neurotransmitters in his cerebrospinal fluid revealed an absence of L-DOPA and significantly decreased levels of catecholamine metabolites. Importantly, L-DOPA treatment of our patient has led to mild mitigation of his aggressive behavior and mild improvement of his attention span, extended time periods of concentration, and better sleep.


Subject(s)
Dopaminergic Neurons/metabolism , Homeodomain Proteins/genetics , Levodopa/therapeutic use , Self-Injurious Behavior/genetics , Sequence Deletion , Smith-Magenis Syndrome/genetics , Smith-Magenis Syndrome/prevention & control , Transcription Factors/genetics , Adolescent , Adult , Comparative Genomic Hybridization , Cytogenetic Analysis , DNA/genetics , Dopamine Agents/cerebrospinal fluid , Dopamine Agents/therapeutic use , Dopaminergic Neurons/pathology , Female , Humans , Levodopa/cerebrospinal fluid , Levodopa/deficiency , Male , Phenotype , Polymerase Chain Reaction , Smith-Magenis Syndrome/psychology , Young Adult
11.
Hum Mutat ; 33(1): 165-79, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21948486

ABSTRACT

We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Aberrations , Nerve Growth Factors/genetics , Segmental Duplications, Genomic/genetics , Sequence Deletion , Vesicular Acetylcholine Transport Proteins/genetics , Child , Child, Preschool , Chromosome Mapping , Chromosomes, Human, Pair 10 , DNA Copy Number Variations , Developmental Disabilities/complications , Developmental Disabilities/genetics , Female , Genetic Variation , Homologous Recombination , Humans , In Situ Hybridization, Fluorescence , Infant , Intellectual Disability/complications , Intellectual Disability/genetics , Male , Oligonucleotide Array Sequence Analysis , Penetrance
12.
Hepatology ; 54(2): 609-19, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21574170

ABSTRACT

UNLABELLED: The liver is one of the few organs that have the capacity to regenerate in response to injury. We carried out genomewide microRNA (miRNA) microarray studies during liver regeneration in rats after 70% partial hepatectomy (PH) at early and mid time points to more thoroughly understand their role. At 3, 12, and 18 hours post-PH ∼40% of the miRNAs tested were up-regulated. Conversely, at 24 hours post-PH, ∼70% of miRNAs were down-regulated. Furthermore, we established that the genomewide down-regulation of miRNA expression at 24 hours was also correlated with decreased expression of genes, such as Rnasen, Dgcr8, Dicer, Tarbp2, and Prkra, associated with miRNA biogenesis. To determine whether a potential negative feedback loop between miRNAs and their regulatory genes exists, 11 candidate miRNAs predicted to target the above-mentioned genes were examined and found to be up-regulated at 3 hours post-PH. Using reporter and functional assays, we determined that expression of these miRNA-processing genes could be regulated by a subset of miRNAs and that some miRNAs could target multiple miRNA biogenesis genes simultaneously. We also demonstrated that overexpression of these miRNAs inhibited cell proliferation and modulated cell cycle in both Huh-7 human hepatoma cells and primary rat hepatocytes. From these observations, we postulated that selective up-regulation of miRNAs in the early phase after PH was involved in the priming and commitment to liver regeneration, whereas the subsequent genomewide down-regulation of miRNAs was required for efficient recovery of liver cell mass. CONCLUSION: Our data suggest that miRNA changes are regulated by negative feedback loops between miRNAs and their regulatory genes that may play an important role in the steady-state regulation of liver regeneration.


Subject(s)
Down-Regulation , Feedback, Physiological , Genome-Wide Association Study , Liver Regeneration/genetics , MicroRNAs/genetics , Animals , Cells, Cultured , Humans , Male , Rats , Rats, Sprague-Dawley
13.
Pediatr Crit Care Med ; 12(6): e427-32, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21572369

ABSTRACT

OBJECTIVE: Report of a 16q24.1 deletion in a premature newborn, demonstrating the usefulness of array-based comparative genomic hybridization in persistent pulmonary hypertension of the newborn and multiple congenital malformations. DESIGN: Descriptive case report. SETTING: Genetic department and neonatal intensive care unit of a tertiary care children's hospital. INTERVENTIONS: None. PATIENT: We report the case of a preterm male infant, born at 26 wks of gestation. A cardiac malformation and bilateral hydronephrosis were diagnosed at 19 wks of gestation. Karyotype analysis was normal, and a 22q11.2 microdeletion was excluded by fluorescence in situ hybridization analysis. A cesarean section was performed due to fetal distress. The patient developed persistent pulmonary hypertension unresponsive to mechanical ventilation and nitric oxide treatment and expired at 16 hrs of life. MEASUREMENTS AND MAIN RESULTS: An autopsy revealed partial atrioventricular canal malformation and showed bilateral dilation of the renal pelvocaliceal system with bilateral ureteral stenosis and annular pancreas. Array-based comparative genomic hybridization analysis (Agilent oligoNT 44K, Agilent Technologies, Santa Clara, CA) showed an interstitial microdeletion encompassing the forkhead box gene cluster in 16q24.1. Review of the pulmonary microscopic examination showed the characteristic features of alveolar capillary dysplasia with misalignment of pulmonary veins. Some features were less prominent due to the gestational age. CONCLUSIONS: Our review of the literature shows that alveolar capillary dysplasia with misalignment of pulmonary veins is rare but probably underreported. Prematurity is not a usual presentation, and histologic features are difficult to interpret. In our case, array-based comparative genomic hybridization revealed a 16q24.1 deletion, leading to the final diagnosis of alveolar capillary dysplasia with misalignment of pulmonary veins. It emphasizes the usefulness of array-based comparative genomic hybridization analysis as a diagnostic tool with implications for both prognosis and management decisions in newborns with refractory persistent pulmonary hypertension and multiple congenital malformations.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 16/genetics , Hypertension, Pulmonary/pathology , Persistent Fetal Circulation Syndrome/pathology , Pulmonary Veins/abnormalities , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Comparative Genomic Hybridization , Humans , Infant, Newborn , Karyotype , Male , Persistent Fetal Circulation Syndrome/genetics , Pulmonary Alveoli/abnormalities , Pulmonary Alveoli/pathology
14.
Genome Res ; 21(1): 33-46, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21205869

ABSTRACT

Four unrelated families with the same unbalanced translocation der(4)t(4;11)(p16.2;p15.4) were analyzed. Both of the breakpoint regions in 4p16.2 and 11p15.4 were narrowed to large ∼359-kb and ∼215-kb low-copy repeat (LCR) clusters, respectively, by aCGH and SNP array analyses. DNA sequencing enabled mapping the breakpoints of one translocation to 24 bp within interchromosomal paralogous LCRs of ∼130 kb in length and 94.7% DNA sequence identity located in olfactory receptor gene clusters, indicating nonallelic homologous recombination (NAHR) as the mechanism for translocation formation. To investigate the potential involvement of interchromosomal LCRs in recurrent chromosomal translocation formation, we performed computational genome-wide analyses and identified 1143 interchromosomal LCR substrate pairs, >5 kb in size and sharing >94% sequence identity that can potentially mediate chromosomal translocations. Additional evidence for interchromosomal NAHR mediated translocation formation was provided by sequencing the breakpoints of another recurrent translocation, der(8)t(8;12)(p23.1;p13.31). The NAHR sites were mapped within 55 bp in ∼7.8-kb paralogous subunits of 95.3% sequence identity located in the ∼579-kb (chr 8) and ∼287-kb (chr 12) LCR clusters. We demonstrate that NAHR mediates recurrent constitutional translocations t(4;11) and t(8;12) and potentially many other interchromosomal translocations throughout the human genome. Furthermore, we provide a computationally determined genome-wide "recurrent translocation map."


Subject(s)
Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 4/genetics , Recombination, Genetic , Translocation, Genetic , Chromosome Breakage , Chromosome Disorders/genetics , Chromosome Disorders/pathology , Chromosome Mapping/methods , Comparative Genomic Hybridization , Family , Female , Humans , Male , Molecular Sequence Data , Multigene Family , Oligonucleotide Array Sequence Analysis , Phenotype , Polymerase Chain Reaction/methods , Receptors, Odorant/genetics , Segmental Duplications, Genomic/genetics , Sequence Analysis, DNA
15.
Eur J Hum Genet ; 19(1): 102-7, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20736978

ABSTRACT

Genome-wide high-resolution array analysis is rapidly becoming a reliable method of diagnostic investigation in individuals with mental retardation and congenital anomalies, leading to the identification of several novel microdeletion and microduplication syndromes. We have identified seven individuals with duplication on chromosome 14q11.2q13.1, who exhibited idiopathic developmental delay and cognitive impairment, severe speech delay, and developmental epilepsy. Among these cases, the minimal common duplicated region on chromosome 14q11.2q13.1 includes only three genes, FOXG1, C14orf23, and PRKD1. We propose that increased dosage of Forkhead Box G1 (FOXG1) is the best candidate to explain the abnormal neurodevelopmental phenotypes observed in our patients. Deletions and inactivating mutations of FOXG1 have been associated with a Rett-like syndrome characterized by hypotonia, irritability, developmental delay, hand stereotypies, and deceleration of head growth. FOXG1, encoding a brain-specific transcription factor, has an important role in the developing brain. In fact, in vivo studies in chicken brain demonstrated that overexpression of FOXG1 results in thickening of the neuroepithelium and outgrowth of the telencephalon and mesencephalum, secondary to a reduction in neuroepithelial cell apoptosis.


Subject(s)
Chromosomes, Human, Pair 14/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Forkhead Transcription Factors/genetics , Gene Duplication , Intellectual Disability/genetics , Language Development Disorders/genetics , Nerve Tissue Proteins/genetics , Adult , Child, Preschool , Comparative Genomic Hybridization , Female , Humans , Infant , Male , Oligonucleotide Array Sequence Analysis
16.
Am J Hum Genet ; 87(6): 857-65, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21109226

ABSTRACT

We report 26 individuals from ten unrelated families who exhibit variable expression and/or incomplete penetrance of epilepsy, learning difficulties, intellectual disabilities, and/or neurobehavioral abnormalities as a result of a heterozygous microdeletion distally adjacent to the Williams-Beuren syndrome region on chromosome 7q11.23. In six families with a common recurrent ∼1.2 Mb deletion that includes the Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) genes and that is flanked by large complex low-copy repeats, we identified sites for nonallelic homologous recombination in two patients. There were no cases of this ∼1.2 Mb distal 7q11.23 deletion copy number variant identified in over 20,000 control samples surveyed. Three individuals with smaller, nonrecurrent deletions (∼180-500 kb) that include HIP1 but not YWHAG suggest that deletion of HIP1 is sufficient to cause neurological disease. Mice with targeted mutation in the Hip1 gene (Hip1⁻(/)⁻) develop a neurological phenotype characterized by failure to thrive, tremor, and gait ataxia. Overall, our data characterize a neurodevelopmental and epilepsy syndrome that is likely caused by recurrent and nonrecurrent deletions, including HIP1. These data do not exclude the possibility that YWHAG loss of function is also sufficient to cause neurological phenotypes. Based on the current knowledge of Hip1 protein function and its proposed role in AMPA and NMDA ionotropic glutamate receptor trafficking, we believe that HIP1 haploinsufficiency in humans will be amenable to rational drug design for improved seizure control and cognitive and behavioral function.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 7 , DNA-Binding Proteins/genetics , Epilepsy/genetics , Intellectual Disability/genetics , Mental Disorders/genetics , Adolescent , Adult , Animals , Child , Child, Preschool , DNA Copy Number Variations , Female , Humans , Infant , Male , Mice , Middle Aged , Molecular Sequence Data
17.
Am J Med Genet A ; 152A(11): 2854-60, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20979191

ABSTRACT

Branchio-oto-renal syndrome is characterized by branchial defects, hearing loss, preauricular pits, and renal anomalies. Mutations in EYA1 are the most common cause of branchio-oto-renal and branchio-otic syndromes. Large chromosomal aberrations of 8q13, including complex rearrangements occur in about 20% of these individuals. However, submicroscopic deletions and the molecular characterization of genomic rearrangements involving the EYA1 gene have rarely been reported. Using the array-comparative genomic hybridization, we identified non-recurrent genomic deletions including the EYA1 gene in three patients with branchio-oto-renal syndrome, short stature, and developmental delay. One of these deletions was mediated by two human endogenous retroviral sequence blocks, analogous to the AZFa microdeletion on Yq11, responsible for male infertility. This report describes the expanded phenotype of individuals, resulting from contiguous gene deletion involving the EYA1 gene and provides a molecular description of the genomic rearrangements involving this gene in branchio-oto-renal syndrome.


Subject(s)
Branchio-Oto-Renal Syndrome/genetics , Endogenous Retroviruses/genetics , Gene Rearrangement/genetics , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Child , Child, Preschool , Chromosome Deletion , Comparative Genomic Hybridization , Female , Gene Deletion , Genome, Human/genetics , Humans , Infant , Infant, Newborn , Male , Pregnancy , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
18.
Brain Res ; 1359: 178-85, 2010 Nov 04.
Article in English | MEDLINE | ID: mdl-20816762

ABSTRACT

We recently reported involvement of oxidative stress in anxiety-like behavior of rats. Others in separate studies have demonstrated a link between oxidative stress and hypertension as well as with type 2 diabetes/insulin resistance. In the present study, we have tested a putative role of oxidative stress in anxiety-like behavior, hypertension and insulin resistance using a rat model of oxidative stress. Oxidative stress in rats was produced by xanthine (0.1%; drinking water) and xanthine oxidase (5 U/kg; i.p.). X+XO-treated rats had increased plasma and urinary 8-isoprostane levels (a marker of oxidative stress) and increased malondialdehyde (MDA) levels in the hippocampus and amygdala as compared to control rats. Serum corticosterone (a systemic marker of stress and anxiety) levels also increased with X+XO treatment. Moreover, anxiety-like behavior measured via open-field and light-dark exploration behavior tests significantly increased in X+XO-treated rats. Mean arterial blood pressure measured in anesthetized rats increased in X+XO-treated compared to control rats. Furthermore, plasma insulin but not glucose levels together with homeostasis model assessment (HOMA), an index of insulin resistance, were higher in X+XO-treated rats. Our studies suggest that oxidative stress is a common factor that link anxiety-like behavior, hypertension and insulin resistance in rats.


Subject(s)
Anxiety/physiopathology , Hypertension/physiopathology , Insulin Resistance/physiology , Oxidative Stress/physiology , Animals , Male , Rats , Rats, Sprague-Dawley , Xanthine/toxicity , Xanthine Oxidase/toxicity
19.
Hum Mutat ; 31(12): 1326-42, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20848651

ABSTRACT

Array comparative genomic hybridization (aCGH) is a powerful tool for the molecular elucidation and diagnosis of disorders resulting from genomic copy-number variation (CNV). However, intragenic deletions or duplications--those including genomic intervals of a size smaller than a gene--have remained beyond the detection limit of most clinical aCGH analyses. Increasing array probe number improves genomic resolution, although higher cost may limit implementation, and enhanced detection of benign CNV can confound clinical interpretation. We designed an array with exonic coverage of selected disease and candidate genes and used it clinically to identify losses or gains throughout the genome involving at least one exon and as small as several hundred base pairs in size. In some patients, the detected copy-number change occurs within a gene known to be causative of the observed clinical phenotype, demonstrating the ability of this array to detect clinically relevant CNVs with subkilobase resolution. In summary, we demonstrate the utility of a custom-designed, exon-targeted oligonucleotide array to detect intragenic copy-number changes in patients with various clinical phenotypes.


Subject(s)
Comparative Genomic Hybridization/methods , DNA Copy Number Variations/genetics , Exons/genetics , Adolescent , Base Sequence , Child , Child, Preschool , Chromosome Breakpoints , Female , Genetic Association Studies , Humans , Infant , Infant, Newborn , Male , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Deletion/genetics , Young Adult
20.
Eur J Med Genet ; 53(6): 378-82, 2010.
Article in English | MEDLINE | ID: mdl-20727427

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a rare multisystem congenital anomaly disorder characterized by growth and developmental delay, distinctive facial dysmorphism, limb malformations and multiple organ defects. Approximately 60-65% of the CdLS subjects have mutation in one of three cohesin proteins, a main regulator of cohesin-associated protein, NIPBL, and two components of the cohesin ring structure SMC1A and SMC3. A prominent role for cohesin is to control chromosome segregation during cell divisions. We have performed MLPA analysis in a group of 11 children with the CdLS but without identifiable point mutations in the NIPBL and SMC1A genes. In a single patient, we identified a large deletion encompassing exons 35 to 47 of the NIPBL gene. Our finding was validated by aCGH and further characterized by long-range PCR and DNA sequencing of the breakpoint junction.


Subject(s)
Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/genetics , Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , De Lange Syndrome/metabolism , Female , Gene Rearrangement , Humans , Male , Nucleic Acid Amplification Techniques , Phenotype , Young Adult , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...