Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4258, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769155

ABSTRACT

Thermal fatigue is a common failure mode in electronic solder joints, yet the role of microstructure is incompletely understood. Here, we quantify the evolution of microstructure and damage in Sn-3Ag-0.5Cu joints throughout a ball grid array (BGA) package using EBSD mapping of localised subgrains, recrystallisation and heavily coarsened Ag3Sn. We then interpret the results with a multi-scale modelling approach that links from a continuum model at the package/board scale through to a crystal plasticity finite element model at the microstructure scale. We measure and explain the dependence of damage evolution on (i) the ß-Sn crystal orientation(s) in single and multigrain joints, and (ii) the coefficient of thermal expansion (CTE) mismatch between tin grains in cyclic twinned multigrain joints. We further explore the relative importance of the solder microstructure versus the joint location in the array. The results provide a basis for designing optimum solder joint microstructures for thermal fatigue resistance.

3.
Sci Rep ; 7: 40010, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28079120

ABSTRACT

The development of microstructure during melting, reactive wetting and solidification of solder pastes on Cu-plated printed circuit boards has been studied by synchrotron radiography. Using Sn-3.0Ag-0.5Cu/Cu and Sn-0.7Cu/Cu as examples, we show that the interfacial Cu6Sn5 layer is present within 0.05 s of wetting, and explore the kinetics of flux void formation at the interface between the liquid and the Cu6Sn5 layer. Quantification of the nucleation locations and anisotropic growth kinetics of primary Cu6Sn5 crystals reveals a competition between the nucleation of Cu6Sn5 in the liquid versus growth of Cu6Sn5 from the existing Cu6Sn5 layer. Direct imaging confirms that the ß-Sn nucleates at/near the Cu6Sn5 layer in Sn-3.0Ag-0.5Cu/Cu joints.

SELECTION OF CITATIONS
SEARCH DETAIL